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STABLE PERFECTLY MATCHED LAYERS FOR A CLASS OF ANISOTROPIC

DISPERSIVE MODELS. PART I: NECESSARY AND SUFFICIENT CONDITIONS

OF STABILITY. EXTENDED VERSION ∗

Éliane Bécache1, 2 and Maryna Kachanovska1, 3

Abstract. In this work we consider a problem of modelling of 2D anisotropic dispersive wave propa-
gation in unbounded domains with the help of perfectly matched layers (PML). We study the Maxwell
equations in passive media with a frequency-dependent diagonal tensor of dielectric permittivity and
magnetic permeability. An application of the traditional PMLs to this kind of problems often results
in instabilities. We provide a recipe for the construction of new, stable PMLs. For a particular case of
non-dissipative materials, we show that a known necessary stability condition of the perfectly matched
layers is also sufficient. We illustrate our statements with theoretical and numerical arguments.

1991 Mathematics Subject Classification. 65M12, 35Q60.

.

Introduction

The problem of wave propagation in anisotropic dispersive media, e.g. in negative index metamaterials
or plasmas, is both of theoretical and practical interest. For some applications it is necessary to model the
time-domain wave propagation in unbounded (or semi-bounded) domains. One of the ways to bound the
computational domain is offered by the use of the perfectly matched layers (PMLs), a method introduced by
Bérenger in [1, 2]. For an application of this technique to some dispersive materials, for example, plasmas,
see [3–7], and for the use of the method in isotropic metamaterials see the papers by Cummer [8] and Bécache
et al. [9]. However, it is well known that the PMLs often exhibits instabilities in the presence of dispersion
and/or anisotropy [9, 10]. Multiple attempts were made to overcome this problem [11], but, to our knowledge,
no recipe to construct stable PMLs for an arbitrary hyperbolic system exists.

Indeed, there are other ways to tackle the problem of the unboundedness of the domain; a non-exhaustive list
of those includes the FEM/BEM coupling [12,13], methods based on pole condition [14,15] or various absorbing
boundary conditions [16–20].
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We concentrate on the construction of stable in the time domain PMLs for a class of anisotropic dispersive
models that can be described in the frequency domain as a wave equation with frequency-dependent coefficients

ε1(ω)−1∂2xu+ ε2(ω)−1∂2yu+ ω2µ(ω)u = 0, ω ∈ R, (1)

where ε1, ε2, µ have the meaning of dielectric permittivity and magnetic permeability. This class of models
generalizes isotropic materials considered in [9], where authors use ε1(ω) = ε2(ω). A notable example of such
models includes a uniaxial cold plasma model in two dimensions [7]. In this work we will limit ourselves to so-
called passive systems [21], i.e. systems for which ε1,2(ω), µ(ω) satisfy Im (ωεi(ω)) > 0, i = 1, 2, Im (ωµ(ω)) ≥ 0
for Imω > 0, and are analytic in the upper complex half-plane.

The new (to our knowledge) results obtained in this work include:

(1) a simple recipe of the construction of stable PMLs for passive anisotropic systems (1), even in the
case when the coefficients in (1) correspond to non-local in time operators, or when the model (1) is
dissipative. Our results extend the ideas of Bécache et al. [9] to a more general class of models;

(2) an easy to check constructive stability condition of the PML for a sub-class of problems (1) where
εi, i = 1, 2 and µ satisfy additional requirements. More precisely, we show that the necessary condition
of the stability of the PML formulated in [9] in terms of the directions of phase and group velocity can
be rewritten in an easy-to-check form. Moreover, it is also sufficient for the stability of the PMLs. This
extends the existing result [9] for isotropic materials.

An important difference between our work and [9] (as well as many other works on PMLs) is that we perform
the analysis by using the Laplace transform in time, rather than working with plane waves which come from
the Fourier analysis. This allows to avoid the discussion of the primary cause of the instabilities of the PMLs,
namely the presence of so-called backward propagating waves; an interested reader may consult [9] and [10]. To
our knowledge, in very few works the PML had been studied in the Laplace domain setting, see e.g. articles
for the well-posedness of non-dispersive systems by Halpern et al. [22] or for convergence of the radial PML by
Chen [23]. Such an analysis allows to obtain quite easily sufficient conditions of stability of the PML, while it
is easier to derive necessary stability conditions using plane wave techniques.

This article is organized as follows. In Section 1 we discuss in more detail a class of problems of interest,
providing some important examples. Next, in Section 2 we connect the passivity requirement to the stability
of the problem (1) in the time domain. In Section 3 we discuss the construction of stable PMLs for general
passive materials. In the second part of the article, we concentrate on a subclass of materials, considered in [9],
and characterized in Section 4. Based on the properties of these materials and the necessary stability condition
of [9], we provide a criterion of the stability of PMLs for (1) in Section 5.

We illustrate our results with the numerical experiments in Sections 3.1, 3.3 and 5.4.

1. Problem Setting

We consider a problem of the wave propagation in dispersive, anisotropic media, which is described by the
Maxwell equations. In particular, in the time domain (using the scaling ε0 = µ0 = c = 1) in R2 it reads

∂tDx = ∂yHz,

∂tDy = −∂xHz,

∂tBz = −∂xEy + ∂yEx.

(2)

The relation between the fields D and E, and Hz and Bz is not necessarily explicitly known in the time domain,
but often is given in the Laplace domain. For simplicity, we will consider the above problem with nonvanishing
source terms, but zero initial conditions. We will denote by s the Laplace variable, by û = Lu the Laplace
transform of u in time, and by C+ the right complex half-plane: C+ = {s ∈ C : Re s > 0}. Additionally, given
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a function f(s) : C+ ∪ iR→ C, we will denote

f̃(ω) = f(−iω), Imω ≥ 0. (3)

Then the following identities hold true: D̂ = ε(s)Ê, Ĥz = µ−1(s)B̂z. In the time domain we rewrite them as

the following convolutions (where ε(∂t) denotes a time-domain distribution with the symbol ε(s)):

D = ε(∂t)E, Bz = µ(∂t)Hz. (4)

In particular, we concentrate on the case when the tensor of dielectric permittivity is diagonal. In this case the
Maxwell’s equations are of the following form:

curlµ−1(s) curl Ê + s2

ε1(s) 0

0 ε2(s)

 Ê = 0,

or, alternatively, cf. (1),

s2µ(s)Ĥz − ε2(s)−1∂2xĤz − ε1(s)−1∂2yĤz = 0. (5)

Let us provide a few examples of such models, and comment on the state of the art of the PMLs for those:

(1) isotropic Drude materials:

ε1(s) = ε2(s) = 1 +
ω2
e

s2
, µ(s) = 1 +

ω2
m

s2
, ωe, ωm ≥ 0. (6)

The corresponding system in the time domain reads, cf. [9],

∂tE− curlHz + ω2
eJ = 0,

∂tHz + curl E + ω2
mK = 0,

∂tJ = E,

∂tK = Hz.

(7)

The construction of the stable PMLs for this class of models in the case ωe = ωm was suggested in [8].
In [9] the authors have extended these ideas to more general cases.

(2) uniaxial cold plasma model:

ε1(s) = 1 +
ω2
p

s2
, ωp > 0, ε2(s) = µ(s) = 1. (8)

In the time domain the corresponding system reads

∂tEx − ∂yHz + j = 0,

∂tEy + ∂xHz = 0,

∂tHz + ∂xEy − ∂yEx = 0,

∂tj = ω2
pEx.

This model was considered in [6, 7]. The stable PMLs were constructed using an idea similar to [9].
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(3) generalized Lorentz materials, which generalize the previous two cases:

ε1(s) = 1 +

nx∑
`=0

εx`
s2 + ω2

x`

, εx` > 0, ωx` ∈ R, ` = 0, . . . , nx,

ε2(s) = 1 +

ny∑
`=0

εy`
s2 + ω2

y`

, εy` > 0, ωy` ∈ R, ` = 0, . . . , ny,

µ(s) = 1 +

nµ∑
`=0

µ`
s2 + ω2

µ`

, µ` > 0, ωµ` ∈ R, ` = 0, . . . , nµ.

(9)

The corresponding system of equations can be constructed similarly to (7). For the case ε1(s) = ε2(s),
the stable PMLs for this system have been constructed in [9], by extending and justifying mathematically
the idea of [8]. A major part of the present work will be devoted to extending the results of this work
to an anisotropic case ε1 6= ε2. Moreover, the results of this article show how to construct the PML in
a more general case, for example, in the presence of losses, when ε2(s) is defined as

ε2(s) = 1 +

ny∑
`=0

εy`
s2 + 2ν`s+ ω2

y`

, ν` > 0, ` = 0, . . . , ny.

To our knowledge, stable PMLs for this case did not exist even for isotropic dispersive materials.

For other examples of passive materials we refer an interested reader to [24].

Remark 1.1. Under extra assumptions (causality, analyticity and certain bounds on the coefficients), (5) with
zero initial conditions can be rewritten in the time domain as

t∫
0

M(t− τ)∂ττHz(τ)dτ −
t∫

0

E2(t− τ)∂xxHz(τ)dτ −
t∫

0

E1(t− τ)∂yyHz(τ)dτ = 0, t ≥ 0, (10)

where M = L−1µ, E1,2 = L−1ε−11,2.

2. Properties of the Dielectric Permittivity and the Magnetic Permeability

In the physics literature, when considering the Maxwell equations (2) in so-called passive media, one assumes
that ε1,2 and µ satisfy the following assumptions (here we list only those which are of interest for us) [21,25]:

(P1) ε(s), µ(s) are analytic in s ∈ C+.

(P2) passivity, which we will use in the form

Re (sεj(s)) > 0, j = 1, 2, Re (sµ(s)) > 0, s ∈ C+. (11)

Let us remark that in [21] this requirement is formulated (up to a complex rotation) as Re (s(εj(s)− 1)) ≥
0 in C+; we use a slightly relaxed version.1

1In another reference [25], one considers materials with Re (sεj(s)) ≥ 0, s ∈ C+. Due to the maximum principle, applied to an

analytic function e−sεj(s), if in some point s, the real part Re (sεj(s)) = 0, then sεj(s) = const; one deduces sεj(s) = iα, α ∈ R.
This case is not of interest, since in the time domain the operator with the symbol sεj(s) would map real fields into complex fields,

which is non-physical.
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Although we concentrate our presentation on the wave propagation problems (2), the model (5), which we
will study in the present work, describes other phenomenae, for example, heat transfer (with a formal choice
ε1(s) = ε2(s) = 1, µ(s) = s−1).

This motivates us to redefine separately the property of passivity.

Definition 2.1. We will call a function c : C+ → C passive if it is analytic in C+ and satisfies Re (sc(s)) > 0
in C+.

We proceed as follows. First we recall some known properties of functions that satisfy (11), and next show
that (P1) and (P2) are sufficient for the well-posedness of the problem (5).

2.1. Properties of Analytic Functions Satisfying the Passivity Requirement

Here we will provide a few known results on functions passive in the sense of Definition 2.1. Given such a
function c(s), notice that the function fc(z) := zc(−iz) with z satisfying Im z > 0 is a Herglotz function (i.e. it
is holomorphic in the upper half-plane Im z > 0, and Im f(z) ≥ 0 there). This can be seen by setting z = is:

Im (zc(−iz)) = Re (−izc(−iz)) = Re (sc(s)) .

The class of analytic in C+ functions g(s) which satisfy Re g(s) > 0 in C+, with some additional constraints

(among them, in particular, g(s̄) = g(s)) is known also as positive real functions, see the works by Brune [26]
or Richards [27], where a concise summary of their properties can be found.

The following lemma provides bounds on the functions satisfying the passivity requirement. The upper bound
in this lemma can be obtained using [28, Theorem 8’, p.18], and the lower bound can be viewed as a minor
improvement of [27, Theorem 3] (we consider a more general class of functions, however, the main idea of the
proof is basically the same).

Lemma 2.2. Let c(s) be passive in the sense of Definition 2.1. Then

(1) there exists C > 0, s.t. for s ∈ C+, the function c(s) satisfies

|c(s)| ≤ C|s| (Re s)
−1

max
(

1, (Re s)
−2
)
. (12)

(2) there exists c > 0, s.t. for all s ∈ C+, it holds that

Re (sc(s)) > c|s|−2 min(1, (Re s)2) Re s. (13)

The proof of the above lemma can be found in Appendix A.

Remark 2.3. Notice that passive functions c(s) are not necessarily defined on the imaginary axis, a simple

example being c(s) = Log(is)
is , which has a branch cut on the positive imaginary semiaxis {s : Im s > 0, Re s =

0}.
From the above we immediately obtain a similar result for a function b(s) which satisfies Re (s̄b(s)) > 0 in

C+. Notice that given an analytic in C+ function b(s)

Re (s̄b(s)) > 0, s ∈ C+ ⇐⇒ Re

(
b(s)

s

)
> 0, s ∈ C+ ⇐⇒ Re

(
s

b(s)

)
> 0, s ∈ C+. (14)

The function 1
b(s) is well-defined in C+, since b(s) does not vanish there. With the help of the above, we obtain

the following simple result on the behaviour of such a function b(s).

Corollary 2.4. Let b(s) be analytic in C+ and Re (s̄b(s)) > 0 there. Then
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(1) there exists C > 0, s.t. for s ∈ C+, it holds

|b(s)| ≤ C|s|3 (Re s)
−1

max
(

1, (Re s)
−2
)
. (15)

(2) there exists c > 0, s.t. for s ∈ C+

Re (s̄b(s)) ≥ cmin
(

1, (Re s)
2
)

Re s. (16)

Proof. The upper and lower bounds can be obtained simply by noticing that gb(s) := b(s)s−2 satisfies Re (sgb(s)) =

Re
(
s̄ b(s)|s|2

)
> 0 in C+. Then both bounds follow immediately from (12, 13) applied to gb(s). Namely,

|b(s)| = |s|2|gb(s)| ≤ C|s|3 (Re s)
−1

max
(

1, (Re s)
−2
)
, C > 0, Re (s̄b(s)) ≥ cmin

(
1, (Re s)

2
)

Re s, c > 0.

�

The following lemma summarizes some of the results on the behaviour of functions h(s) such that Reh(s) > 0
for all s ∈ C+ on the imaginary axis, and is essentially a reformulation of results of [26] (the first statement
of the lemma below), [28, p.308, Theorem 1](the second statement of the lemma for h(s) purely imaginary on
iR), [29, Proposition 13.8.1, p.920] (the second statement of the lemma, in a slightly modified form).

Lemma 2.5. Let h(s) be analytic in C+ and Reh(s) > 0 there. Then

(1) poles and zeros of h(s) that lie on the imaginary axis are simple. Residues of the function h(s) of its
poles on the imaginary axis are real, positive, and so are the derivatives of h(s) in its zeros on the
imaginary axis.

(2) if h(s) is additionally meromorphic in C, and h(−s̄) = −h(s), all the poles and zeros of h(s) lie on the
imaginary axis and they alternate.

Proof. (1) let us first consider the case of zeros. Assume that h(s) has a zero s0 = iω0 of multiplicity m on
the imaginary axis. Then in a small vicinity of iω0, with s = iω0 + εeiφ and ε→ 0:

h(iω0 + εeiφ) =
h(m)(iω0)

m!
εmeimφ +O(εm+1), φ ∈ (−π, π].

Assume h(m)(iω0) = reiφ0 , r > 0, for some φ0 ∈ (−π, π]. For φ ∈
(
−π2 , π2

)
, i.e. when Re s > 0, it holds

Reh(s) =
rεm

m!
cos(mφ+ φ0) +O(εm+1) > 0,

from which it follows that, necessarily, cos(mφ+φ0) > 0 for all φ ∈
(
−π2 , π2

)
. This would be impossible

if m were larger than 1, or m = 1 and φ0 6= 0. Hence, m = 1 and φ0 = 0.
In particular, we immediately obtain h′(iω0) = r > 0 in a zero s0 = iω0.
The condition on the poles, and thus, the residues of h, can be obtained by looking at the principal

part of the Laurent series.
(2) if h(s) = −h(−s̄), and h(s) has a pole with Re s < 0, −s̄ ∈ C+ is correspondingly its pole as well.

This is a contradiction to the analyticity of h(s). On the other hand, if h(s) a zero with Re s < 0, the
existence of zero −s̄ ∈ C+ contradicts the condition Reh(s) > 0 in C+ combined with the maximum
principle, see the footnote on p. 4.

Next, assume that h(s) has m > 1 zeros (for simplicity let m = 2), which lie on the imaginary axis
and between which there is no pole. Let us take a contour γ, which is symmetric with respect to the
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imaginary axis and encloses these two zeros and no other zeros/poles of h(s), and on which h(s) is
analytic. Thanks to the argument principle,∫

γ

h′(s)
h(s)

ds = 4πi, (17)

i. e. the change of the argument of h(s) along the contour γ equals to 4π. Denoting by γ− a part of
the contour with Re s < 0 and by γ+ the part of the contour with Re s > 0, we notice that for s ∈ γ+,
−s̄ ∈ γ−, due to the symmetry. Moreover, h(s) = −h(−s), and thus the change of the argument of h(s)
along γ+ equals 2π, and so does the change of the argument of h(s) along γ−.

Since γ+ ∈ C+, this is a contradiction to Reh(s) > 0 in C+.
A similar argument can be applied to show that among two consecutive poles of h(s) on the imaginary

axis there is always a zero.
�

Thus, a passive function c(s) cannot vanish in zero (otherwise sc(s) would have a zero of multiplicity two
there).

2.2. Passivity Implies Stability: Laplace Domain Analysis

The goal of this section is to investigate a connection between the passivity and the stability of the Maxwell
system (5). The main result of this section is Theorem 2.15 formulated in the end of the section.

For convenience, let us introduce a sesquilinear form A(u, v) : H1(R2)×H1(R2)→ C:

A(u, v) = a(s)(∂xu, ∂xv) + b(s)(∂yu, ∂yv) + s2c(s)(u, v), s ∈ C+, u, v ∈ H1(R2). (18)

Here

(u, v) =

∫
R2

u(x)v̄(x)dx, for u, v ∈ L2
(
R2
)
.

Given f ∈ H−1(R2), u ∈ H1(R2), we will denote by 〈f, u〉 the duality pairing induced by the above inner
product (where H−1(R2) is a space of antilinear functionals on H1(R2)).

Remark 2.6. The operator corresponding to (18) is defined as follows

As : H1(R2)→ H−1(R2),

Asu = −a(s)∂2xu− b(s)∂2yu+ s2c(s)u.
(19)

Indeed, we recognize the problem (5) with

a(s) = ε2(s)−1, b(s) = ε1(s)−1, c(s) = µ(s). (20)

Remark 2.7. The case a(s) = b(s) corresponds to an isotropic medium, see also [9].

Remark 2.8. All the results of this section are valid for a bounded Lipschitz domain Ω, with the corresponding
modification of the spaces for which the sesquilinear form A(u, v) is defined (e.g. H1

0 (Ω) × H1
0 (Ω) for the

homogeneous Dirichlet problem).

An approach that we are going to adopt here is based on the Laplace transform, see e.g. [30]. It is possible
to obtain some of the results on the stability of the systems presented in the following sections with the help of
the plane-wave analysis [31, Chapter 2], which is discussed in Section 2.3.

The results used here are based on the theory developed in [32, Section 2.1], which was, under stronger
assumptions, made more precise in the following theorem of Dominguez and Sayas [33]. We present here a
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less refined version of this theorem. Let us remark that by causal we mean distributions φ defined on R, s.t.
〈φ, λ〉 = 0, for all λ : suppλ ∈ (−∞, 0).

Theorem 2.9 (Proposition 3.2.2 [34], Proposition 3.2.2 [35]). Let X,Y be Banach spaces, and f be an L(X,Y )-
valued causal distribution whose Laplace transform F (s) exists for all s ∈ C+ and satisfies

‖F (s)‖L(X,Y ) ≤ CF (Re s)|s|γ , s ∈ C+, (21)

where γ ≥ 0 and CF : (0, ∞)→ (0, ∞) is a non-increasing function, s.t. CF (λ) < Cσ−m, C > 0, m ≥ 0, for
σ ∈ (0, 1]. Define k = bγ + 2c (where bkc denotes the integer part of k). Then for all causal Ck−1(R) functions
g : R → X with integrable k−th distributional derivative, the distribution f ∗ g is a causal continuous function
R→ Y which satisfies the following bound with αγ,m > 0 independent of t:

‖(f ∗ g)(t)‖Y ≤ αγ,m max(tm, 1)

t∫
0

‖(1 + ∂τ )kg(τ)‖Xdτ, t ≥ 0. (22)

Proof. See [34, Proposition 3.2.2] for the proof. Notice that in the derivation of the above bounds we use tε(1 +
t)−ε ≤ const for ε ≥ 0 (see [34, Proposition 3.2.2] for the notation), and the bound CF (1/t) ≤ C max(tm, 1). �

Remark 2.10. First of all, as remarked in [34, p. 45], the bounds in the above result are non-optimal. However,
provided e.g. a compactly supported right hand side data, the bound in (22) grows not faster than a polynomial
in the time domain, which implies the time-domain stability.

Now let us come back to the question of the well-posedness of the variational formulation with the sesquilinear
form (18). We will need the following assumption on coefficients of the sesquilinear form (18).

Definition 2.11. We will call the sesquilinear form (18) passive if the functions a(s)−1, b(s)−1, c(s) are passive
in the sense of Definition 2.1.

Our goal in this section is to show that passive sesquilinear forms define stable systems in the time domain.
This motivates the name ’passive’, since for the Maxwell system (2) the passivity requirement is connected to
stability [24]. First of all, a direct application of Theorem 2.9 provides the following result.

Proposition 2.12 (Properties of passive sesquilinear forms). Let the sesquilinear form A(u, v) given by (18)
be passive in the sense of Definition 2.11. Then:

(1) for some C0, C1 > 0 independent of s, and for all s ∈ C+, it holds:

|A(u, v)| ≤ C0|s|3(Re s)−1 max
(
1, (Re s)−2

)
‖u‖H1‖v‖H1 , u, v ∈ H1(R2), (23)

Re
(
e−iArg sA(u, u)

)
≥ C1 Re s|s|−1 min

(
1, (Re s)

2
)
‖u‖2H1 , u ∈ H1(R); (24)

(2) for all G ∈ H−1(R2), for all s ∈ C+, there exists a unique solution U(s) ∈ H1(R2) to the variational
formulation

A (U(s), v) = 〈G, v〉, v ∈ H1
(
R2
)
. (25)

Moreover, there exists C > 0, s.t. for s ∈ C+,

‖U(s)‖H1(R2) ≤ C|s|(Re s)−1 max(1, (Re s)
−2

)‖G‖H−1(R2); (26)

(3) let G(s) ∈ H−1(R2) be the Laplace transform of a causal C2-function g(t) : R → H−1(R2), whose 3rd
derivative in the sense of distributions g(3) ∈ L1(R, H−1(R2)). Then the solution U(s), s ∈ C+, of
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(25) with G = G(s) is the Laplace transform of a causal continuous function u(t) : R→ H1(R2), which
can be bounded as follows, with α > 0 independent of t:

‖u(t)‖H1 ≤ αmax(t3, 1)

t∫
0

∥∥∥(1 + ∂τ )
3
g(τ)

∥∥∥
H−1

dτ, t ≥ 0.

Proof. First of all, let us show that A(u, v) is bounded and coercive. Indeed, given u, v ∈ H1(R2), using (12)
and (15), we obtain, for some C0 > 0 independent of s and for all s ∈ C+:

|A(u, v)| ≤ max
(
|a(s)|, |b(s)|, |c(s)||s|2

)
‖u‖H1‖v‖H1 ≤ C0|s|3(Re s)−1 max

(
1, (Re s)−2

)
‖u‖H1‖v‖H1 .

To show the coercivity, consider u ∈ H1(R2), and take A(su, u) = s̄A(u, u), for s ∈ C+:

Re (s̄A(u, u)) = Re (s̄a(s)) ‖∂xu‖2L2 + Re (s̄b(s)) ‖∂yu‖2L2 + |s|2 Re (sc(s)) ‖u‖2L2

≥ min(Re (s̄a(s)) ,Re (s̄b(s)) , |s|2 Re (sc(s)))‖u‖2H1 ≥ C1 min(1, (Re s)2) Re s‖u‖2H1 , C1 > 0,

where the last inequality was obtained with the help of (13) and (16). The above coercivity estimate is obtained
for s̄A(u, u), hence, after the division by |s| both sides of the above inequality, we obtain the estimate (24).

The second statement is obtained by a direct application of the Lax-Milgram lemma.
To obtain the third statement, we use the invertibility of the operator (19). Let us take s0 ∈ C+, and

define Ts = A−1s0 As a bounded invertible operator from H1(R2) into H1(R2). Due to [36, p.592, Lemma 13],

T−1s is analytic in C+ as an operator-valued function, which implies, thanks to [37, Propositions 3.1, 3.2], that
T−1s , and thus A−1s , is a Laplace transform of a causal distribution. Additionally, the bound ‖A−1s ‖H−1→H1 ≤
C−11 |s|(Re s)−1 max

(
1, (Re s)−2

)
holds for s ∈ C+. Then the statement of the proposition follows by the

application of Theorem 2.9 to U(s) = A−1s G(s):

‖u(t)‖H1 =
∥∥(L−1U(s)

)
(t)
∥∥
H1 ≤ αmax(t3, 1)

t∫
0

∥∥∥(1 + ∂τ )
3
g(τ)

∥∥∥
H−1

dτ, t ≥ 0, α > 0.

�

Let us now apply the above results to the model (5) with source terms, more precisely,

∂tD− curlHz = fD, ∂tBz + curl E = fz,

D = ε(∂t)E, Bz = µ(∂t)Hz.
(27)

Recall that the notation µ(∂t)Hz corresponds to the convolution

µ(∂t)Hz =

t∫
0

M(t− τ)Hz(τ)dτ,

where M is the inverse Laplace transform of µ(s), see [38].
We define the regularity for the right-hand side, for any k,m ∈ N0 as follows:

fD ∈ Ck
(
R;
(
L2(R2)

)2)
, f

(k+1)
D ∈ L1

(
R;
(
L2(R2)

)2)
,

fz ∈ Cm
(
R;L2(R2)

)
, f

(m+1)
z ∈ L1

(
R;L2(R2)

)
.

(Rkm)
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Definition 2.13. We will call the problem (27) well-posed, if there exists k∗,m∗ ∈ N0, s.t. for any causal right-
hand side data satisfying (Rkm) for some k ≥ k∗ and m ≥ m∗, the problem (27) with zero initial conditions has
a unique solution (E, Hz, D, Bz) ∈ C0(R;L2(R2)), which satisfies

‖E(t)‖L2 + ‖Hz(t)‖L2 + ‖D(t)‖L2 + ‖Bz(t)‖L2 ≤ C(t)eat
t∫

0

(
k∑
`=0

∥∥∥f (`)D (τ)
∥∥∥
L2

+

m∑
`=0

∥∥∥f (`)z (τ)
∥∥∥
L2

)
dτ, (28)

where a ≥ 0, C(t) is polynomial in t (i.e. C(t) ≤ c(1 + tn), for some n, c ≥ 0). If, additionally, the above bound
holds with a = 0, we will call the problem (27) stable.

Remark 2.14. In our definition of the well-posedness, the couple (k∗, m∗) corresponds to a minimal regularity
required on the data in order to be able to obtain estimates of the solution via the Laplace domain technique.
In general, this requirement is not optimal. The minimal regularity is related to the explicit form of ε(s), µ(s).

For the classical Maxwell equations, when ε1(s) = ε2(s) = µ(s) = 1, one has k∗ = m∗ = 2.

While the regularity required by the Hille-Yosida theorem is lower, e.g. fD ∈ C1
(
R+;

(
L2(R2)

)2)
, the results

of this work allow to obtain the explicit bounds on the solutions in terms of the right hand side data, unlike the
result of Hille-Yosida.

Applying Proposition 2.12, we immediately obtain the following result.

Theorem 2.15 (Connection of the Passivity and the Stability). The problem (27) with passive diagonal dielec-
tric permittivity and magnetic permeability is well-posed and stable.

Remark 2.16. In many practical cases ε1(s), ε2(s) and µ(s) are rational fractions, cf. Lorentz materials (9).
Then the convolutions in (27) can be computed by introducing auxiliary unknowns and coupling (27) with an
ODE system for the corresponding unknowns, see e.g. the system (60a-60e). In a more general setting, this is
explained in [24]. The result of Theorem 2.15 holds true in this case as well.

It would be natural to ask whether the passivity requirement is necessary for the stability of (27). This is
true [24] for a class of isotropic dispersive models.

2.3. Passivity Implies Stability: Plane-Wave Analysis

In this section we will briefly discuss a connection between the plane-wave analysis and the Laplace domain
analysis. A Fourier-based approach, see e.g. [31, Chapter 2], had been used to study the stability of the PMLs in
isotropic dispersive media [9], or anisotropic non-dispersive media [10]. When applied to the system (5) without

the PML, such analysis consists in looking for the plane-wave solutions Ĥze
−i(ωt−k·x), k, x ∈ R2, ω ∈ C, of (5)

rewritten in the time domain. This requires examining the corresponding dispersion relation, which, in general,
depends on the time domain formulation of the problem. However, some of its solutions satisfy

ε̃2(ω)−1k2x + ε̃1(ω)−1k2y − ω2µ̃(ω) = 0. (29)

Definition 2.17. Continuous branches of solutions ω(k) of the dispersion relation are called modes.

In the time domain the system (5) is stable if and only if all the modes ω(k) satisfy

Imω(k) ≤ 0, for all k ∈ R2. (30)

This holds true for passive sesquilinear forms.

Proposition 2.18 (Modal Analysis for Passive Systems). Let the sesquilinear form (18) associated to a, b, c
given in (20) be passive. Then all the solutions ω(k) of (29) satisfy (30), and therefore, correspond to stable
modes of (5).
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Proof. Setting s = −iω, (29) can be rewritten as

s2c(s) + b(s)k2y + a(s)k2x = 0, k ∈ R2.

After multiplication by s̄ this yields:

|s|2sc(s) + s̄b(s)k2y + s̄a(s)k2x = 0, k ∈ R2.

The passivity assumption implies that the real part of the LHS of this equation is strictly positive for s ∈ C+.
Thus, the above equation has no solutions in C+, and hence all solutions of (29) satisfy (30). �

3. Construction of Stable PMLs for General Passive Materials

3.1. A Brief Introduction into PMLs for Dispersive Media. Instability of Classical PMLs
for Anisotropic Dispersive Models

3.1.1. Introduction into PMLs for Dispersive Media

In this section we will briefly present the technique of PMLs, with a particular application to dispersive
media. A detailed introduction into this technique can be found e.g. in [39] or [40]. There are at least two ways
to apply the perfectly matched layers to the system (2). The first one is to use splitting of the time-domain
system, as in seminal works by Bérenger [1, 2]. The second way consists in the change of variables in the
frequency domain, as reinterpreted by Chew et al. in [41], see also [42]. Such PMLs are called unsplit PMLs.
We will adopt here the latter approach. More precisely, consider the following equation

a(s)∂2xu+ b(s)∂2yu− s2c(s)u = 0, s ∈ C+, (x, y) ∈ R2. (31)

Let the perfectly matched layer be located in the region x ≥ 0. We assume that the above equation is valid for
x = x̃ ∈ C+, and introduce an analytic continuation of u that we denote U(x̃, y). Naturally, U will satisfy the
above equation, however, for (x̃, y) ∈ C+ × R. Then choosing a parameterization of x̃ suggested in [9]

x̃ =


x+ s−1ψ(s)

x∫
0

σ(x′)dx′, x ≥ 0,

x, x < 0,

where σ(x) =


σ(x) ≥ 0, x ≥ 0,

0, x < 0,

(32)

and ψ(s) is an analytic in C+ function, we obtain the following system:

a(s)

(
1 +

σ(x)ψ(s)

s

)−1
∂x

((
1 +

σ(x)ψ(s)

s

)−1
∂xU

)
+ b(s)∂2yU − s2c(s)U = 0, (x, y) ∈ R2. (33)

For x < 0, the above system coincides with (31). The original and the PML systems are coupled via transmission
conditions. Importantly, u(x, y) = U(x, y) for x < 0 by analytic continuation. The resulting system needs to
be rewritten in the time domain, see Section 4.2.

Other PML directions can be treated similarly, and in the corners the change of multiple variables should
be used. To truncate the perfectly matched layer at some x = L > 0, since in practice it cannot be chosen
infinitely long, zero Dirichlet or Neumann boundary conditions are used on the exterior boundary of the PML.

Classical PMLs (split or unsplit) correspond to the choice ψ(s) = 1. The function ψ(s) was introduced
in [8, 9] in order to take into account the dispersive character of the equations. Indeed, as demonstrated in [9],
for isotropic dispersive models classical PMLs can lead to instabilities in the time domain. We demonstrate that
this is also the case for anisotropic dispersive models with the help of the following simple numerical experiment.
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Remark 3.1. Notice that in terms of stability (i.e. the absence of exponential blow-up), there is no difference
between split and unsplit PMLs, as they both correspond to the same change of variables.

3.1.2. Numerical Illustration: Instability of Classical PMLs for Anisotropic Dispersive Models

Before providing numerical data, let us introduce some auxiliary notation, which we will use in all the
numerical experiments in this section, as well as Sections 3.3, 5.4. First of all, we compute solutions to the
problem (2) inside rectangular domains. Their physical (i.e. without the PML) dimensions in the direction x
and y are Lx, and Ly. The width of the PML in x-direction is denoted by Lσx , and in y-direction by Lσy . The
absorption parameters in directions x and y are σx(x) and σy(y), cf. (32). On all outer boundaries (physical
boundary if no PML in one of the directions is used, or external boundary of the PML), we assume zero Dirichlet
boundary conditions for the field Hz.

The time domain PML system has a structure similar to the system of equations (62-63), see Section 4.2.2
and Remark 4.11. We use zero initial conditions and a source f(t, x, y) in the third equation of (62). The
numerical resolution is done with the help of the Yee scheme [43] for dispersive models, where the dispersive
terms are discretized by trapezoid rule, and non-dispersive part is computed with a leapfrog. In the scheme, we
discretize the field Hz on integer time and spatial steps. The time step is denoted by ∆t, and the space step is
∆x = ∆y.

In all the experiments where we show a solution at different time steps, or compare the stable and unstable
PMLs, we use the same color scale in all relevant figures.

Example 3.2 (Instability of classical PMLs for anisotropic Drude material). We model an anisotropic Drude
material, which extends the isotropic model (6), where

a(s) = ε2(s)−1 =

(
1 +

ω2
a

s2

)−1
, b(s) = ε1(s)−1 =

(
1 +

ω2
b

s2

)−1
, µ(s) = 1. (34)

In particular, we choose ωa = 8, ωb = 4. The passivity of the parameters can be checked by a direct calculation.
We use the classical PMLs in the direction x, i.e. ψ(s) = 1 in (32), and zero Dirichlet BCs in the direction

y, in order to show that the instability occurs not necessarily in the corner, but in a certain direction. The
rest of the parameters can be found in Table 1. We show the field Hz computed with the help of the classical

Lx Ly Lσx Lσy σx(x) σy(y) ∆x ∆t f(t, x, y)

8 24 2 0 20x2 0 0.05 0.025 10(t− 1.6)e−15(t−1.6)
2

e−300x
2−300y2

Table 1. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (34). The notation can be found in the beginning of Section 3.1.2.

PMLs in Figure 1. One can see the instability developing in this case. In the rightmost plot we demonstrate
an exponential blow-up of the L2-norm of the solution Hz.

3.2. Construction of Stable PMLs

3.2.1. The Well-Posedness of the PMLs

Let us consider the PML system in the Laplace domain (33). We associate to this equation the sesquilinear
form

Ap(u, v) = a(s)

((
1 +

σ(x)ψ(s)

s

)
∂xu, ∂xv

)
+ b(s)

((
1 +

σ(x)ψ(s)

s

)
∂yu, ∂yv

)
+ s2c(s)

((
1 +

σ(x)ψ(s)

s

)
u, v

)
, u, v ∈ H1

0 (Ω).

(35)
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Figure 1. From left to right: a solution Hz of Example 3.2 computed with the classical PML
at t = 10, 20, 35; the dependence of the L2-norm of Hz with respect to time. The boundary
between the PML and the physical domain is marked in black.

To show the well-posedness of the corresponding time domain model, cf. (27), it suffices to demonstrate the
coercivity of the above sesquilinear form for all s ∈ Csr = {s ∈ C : Re s > sr}, sr ∈ R.

One may notice that the sesquilinear form (35) is a particular case of the following sesquilinear form.

Ag(u, v) = (α(s, x, y)∂xu, ∂xv) + (β(s, x, y)∂yu, ∂yv) + s2 (γ(s, x, y)u, v) , u, v ∈ H1
0 (Ω). (36)

We will assume that for large Re s, the above sesquilinear form behaves as the sesquilinear form for the nondis-
persive wave equation.

Proposition 3.3. Let α(s, x, y), β(s, x, y), γ(s, x, y) satisfy the following:

α(s, x, y), β(s, x, y), γ(s, x, y)→ 1

as Re s → +∞, uniformly in x, y ∈ R2 and Im s. Moreover, let α(s, x, y), β(s, x, y), γ(s, x, y) be analytic in
s : Re s > M∗ for some M∗ > 0, and a.e. in R2.

Then there exists M > M∗ > 0, s.t.:

(1) the sesquilinear form Ag(u, v) is bounded and coercive for all s : Re s > M ; moreover, it holds

|Ag(u, v)| < C|s|2|u|H1 |v|H1 ,

Re(s̄Ag(u, u)) ≥ c0 Re s|u|2H1 , C, c0 > 0.

(2) for all G ∈ H−1(R2), for all s ∈ C+, s.t. Re s > M , there exists a unique solution U(s) ∈ H1(R2) to
the variational formulation

Ag (U(s), v) = 〈G, v〉, v ∈ H1
(
R2
)
. (37)

Moreover, for s ∈ C+,

‖U(s)‖H1(R2) ≤ C(Re s)−1|s|‖G(s)‖H−1(R2), C > 0. (38)
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(3) let G(s) ∈ H−1(R2) be the Laplace transform of a causal C2-function g(t) : R → H−1(R2), which
satisfies (e−Mtg(t))(3) ∈ L1(R, H−1(R2)). Then the solution U(s), s ∈ C+, of (37) with G = G(s) is a
Laplace transform of a causal continuous function u(t) : R→ H1(R2), which can be bounded as follows:

‖u(t)‖H1 ≤ αmax(t3, 1)eMt

t∫
0

‖ (1 + ∂τ )
3

(e−Mτg(τ))‖H−1dτ, t ≥ 0, α > 0.

Proof. Due to the properties of the coefficients of the sesquilinear form at the infinity, there exists M > 1
sufficiently large so that for all s with Re s > M , it holds

|α(s, x, y)|∞ < Cα, |β(s, x, y)|∞ < Cβ , |s2γ(s, x, y)|∞ < Cγ |s|2,
Re(s̄α(s, x, y)) ≥ cα Re s, Re(s̄β(s, x, y)) ≥ cβ Re s, Re(s̄s2γ(s, x, y)) ≥ cγ |s|2 Re s ≥ cγ Re s,

with some constants Cα, Cβ , Cγ , cα, cβ , cγ > 0. From this the continuity and the coercivity bounds on the
sesquilinear form follow.

The existence of the solution and the corresponding bound hold immediately from the Lax-Milgram theorem.
To come back to the time domain, let us consider the problem (37) and recast it into the known framework

of problems defined for s ∈ C+. More precisely, for s̃ ∈ C+, the bound (38) becomes:

‖U(s̃+M)‖H1(R2) ≤ C(M + Re s̃)−1|s̃+M |‖G(s̃+M)‖H−1(R2)

= C(M + Re s̃)−1
√

(Re s̃+M)2 + (Im s̃)2‖G(s̃+M)‖H−1(R2)

≤ C|s̃|‖G(s̃+M)‖H−1(R2).

Thus, we are in the framework of Theorem 2.9, and proceed as in Proposition 2.12. In particular, we notice that
given a function g(t) with the Laplace transform G(s̃), the inverse Laplace transform of G(s̃+M) is e−Mtg(t).
From this the bound of the theorem follows. �

The assumptions on the behaviour of α, β, γ at infinity are introduced for technical reasons. They can be
waived, however, this requires separate consideration of the corresponding equations.

Corollary 3.4. Let a(s), b(s), c(s), ψ(s) satisfy the following:

a(s), b(s), c(s), ψ(s)→ 1

as Re s → +∞ uniformly in Im s. Let σ(x) ∈ L∞(R2). Let also a, b, c, ψ be analytic in s ∈ C+. Then the

form Ap(u, v) can be recast in the form Ag(u, v) with α = a(1 + σψ
s )−1, β = b(1 + σψ

s ) and γ = c(1 + σψ
s ), and

the latter satisfies assumptions of Proposition 3.3.

Corollary 3.5. Let εx(s), εy(s), µ(s), ψ(s)→ 1 as Re s→ +∞ uniformly in Im s. Let ψ(s) ∈ L∞(R2). Then

the system (27) with εy(s) = a(s)−1(1 + σψ
s ), εx(s) = b(s)−1(1 + σψ

s )−1 and µ(s) = c(s)(1 + σψ
s )is well-posed.

The requirement about the behaviour at the infinity of the parameters of the model is not too restrictive
(though it might seem not entirely standard, cf. [24]), and is valid e.g. for the Lorentz/Drude materials, as well
as their generalizations.

The result of the well-posedness of the PML model is indeed important. However, for the numerical aspect of
the PML such analysis does not seem to be very sufficient. Indeed, according to this result, the Bérenger’s PML
applied to the problem (34) leads to a well-posed system of equations; yet, the system is unstable. Therefore,
it is crucial to perform a stability analysis.
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3.2.2. Stability Analysis

The question of the stability is somewhat more subtle than the well-posedness. There exist very few works,
which provide a full stability analysis of the PMLs for nonconstant absorption parameters even for the case
of the classical perfectly matched layers applied to nondispersive anisotropic models. For example, in [44] the
authors prove the stability and convergence result of the 2D classical PML for isotropic nondispersive wave
equation and extend it to stable PMLs for the advective wave equation. In [23] some convergence estimates are
provided for the radial PMLs for 2D acoustic wave equation.

Due to complexity of rigorous analysis, the construction of stable PMLs is often done in two stages:

• assuming that σ(x) = σ = const > 0 in R2 in (35) and performing the analysis for the resulting problem.
This can be viewed as a very particular case of an arbitrary σ(x) ≥ 0. Such a simplification was used,
for example, in works [9–11, 45, 46]. It facilitates finding the right PML change of variables (in our
case ψ(s)), which is potentially stable for variable σ(x). And, as many numerical experiments show
(including those in the present work), this analysis often results in stable PMLs for σ(x) 6= const.

• proving that the PML constructed with the help of the simplified analysis is stable for a more general
class of absorption parameters. This part is trickier, as we discussed before, and is an open question for
most existing stabilized PMLs.

In this work we will concentrate on the first part of the analysis. For the newly constructed PML the full
rigorous proof of the stability is the subject of future research, see, in particular, [47].

3.2.3. Stability Analysis

Let us consider a simplified case, when the absorption function is a non-negative constant and is defined in
R. This amounts to taking σ(x) = σ = const in (33) and considering the corresponding sesquilinear form for
(x, y) ∈ R2. Alternatively, this can be viewed as the following change of variables:

x→ x
(
1 + s−1ψ(s)σ

)
, σ ≥ 0, x ∈ R. (39)

As shown before, the choice ψ(s) = 1 may lead to time-domain instabilities. Our goal is to provide stable
choices of ψ(s) for an arbitrary passive material. The main results of this section are Theorems 3.11 and 3.14.

Upon the application of (39), the sesquilinear form (18) is transformed to

Aσ(u, v) = a(s)

(
1 +

σψ(s)

s

)−2
(∂xu, ∂xv) + b(s)(∂yu, ∂yv) + s2c(s)(u, v), s ∈ C+, u, v ∈ H1(R2). (40)

We suggest that taking in the above ψ(s) = a(s) produces a passive sesquilinear form. This result is generalized
in Lemma 3.6 and is explained in detail in Theorem 3.11. Although Lemma 3.6 does not provide an explicit
way to construct the function ψ(s), it will play an important role in Section 5.

Lemma 3.6 (Sufficient stability condition for the PML (39)). Let the sesquilinear form A(u, v) given by (18)
be passive in the sense of Definition 2.11. Let an analytic ψ(s) : C+ → C satisfy for all s ∈ C+

(S1) Re (s̄ψ(s)) > 0,
(S2) Re

(
s̄ψ(s)a(s)−1b(s)

)
> 0,

(S3) Re
(
sψ(s)a(s)−1c(s)

)
> 0.

Then for all σ ≥ 0, the sesquilinear form

Ãσ(u, v) = ψ(s)a(s)−1Aσ(u, v), u, v ∈ H1(R2), (41)

where Aσ(u, v) is defined in (40), is passive.
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Proof. Notice that since a(s) satisfies Re (s̄a(s)) > 0, s ∈ C+, it never vanishes in C+. Let us verify the
conditions on the coefficients of the sesquilinear form (41) required by passivity. The first coefficient

Re

(
sψ(s)−1

(
1 +

σψ(s)

s

)2
)

= Re
(
sψ(s)−1

)
+ 2σ + Re

(
s−1ψ(s)

)
> 0,

for all s ∈ C+, thanks to (14) and (S1). It is obviously analytic in C+. The passivity condition on the rest of
the coefficients is included explicitly into the conditions of the lemma. �

Combining the above with Theorem 2.9 and Proposition 2.12, we obtain the following simple result of the
time-domain stability of the PML system.

Corollary 3.7 (Stability bounds of the PML of Lemma 3.6). Let Aσ(u, v) be defined by (40), and let ψ(s)
satisfy the conditions of Lemma 3.6 Let, additionally,∣∣∣∣ψ(s)

a(s)

∣∣∣∣ ≤ |s|γCf (Re s), s ∈ C+, (42)

with γ ≥ −1 and Cf (λ) : (0,∞)→ (0,∞) being non-increasing and satisfying Cf (λ) < C0λ
−m, C0 > 0, m ≥ 0.

Then the following holds true for the sesquilinear form (40):

(1) for all G ∈ H−1(R2), for all s ∈ C+, there exists a unique solution U(s) ∈ H1(R2) to the variational
formulation

Aσ (U(s), v) = 〈G, v〉, v ∈ H1
(
R2
)
, (43)

which satisfies, for all s ∈ C+,

‖U(s)‖H1(R2) ≤ C|s|γ+1(Re s)−1 max(1, (Re s)−2)Cf (Re s)‖G‖H−1(R2), (44)

where C > 0 is a constant independent of s;
(2) let k = bγ + 3c, and ` = 3 + m. Let G(s) ∈ H−1(R2) be the Laplace transform of a causal function

g(t) : R → H−1(R2), which belongs to Ck−1(R;H−1(R2)) and has an integrable k−th distributional
derivative. Then the solution U(s), s ∈ C+, of (43) with G = G(s) is a Laplace transform of a causal
continuous function u(t) : R→ H1(R2), which can be bounded as follows, with α > 0 independent of t:

‖u(t)‖H1 ≤ αmax(t`, 1)

t∫
0

‖
(
1 + ∂τ )kg

)
(τ)‖H−1dτ, t ≥ 0. (45)

Proof. The first statement follows directly from Proposition 2.12, applied to the following variational formula-
tion, which is equivalent to (43):

Ãσ(U(s), v) = ψ(s)a(s)−1〈G, v〉, v ∈ H1(R2), s ∈ C+.

Notice that Ãσ(u, v) is passive, according to Lemma 3.6. The second statement is obtained as in the proof of
Proposition 2.12; it is important to notice that ψ(s)a(s)−1 is analytic in C+. The bound in the time domain
follows by the application of Theorem 2.9. �

Remark 3.8. Indeed, if (42) holds with γ < −1, we can always bound |s|γCf (Re s) = |s|−1|s|1+γCf (Re s) ≤
|s|−1 (Re s)

γ+1
Cf (Re s), which satisfies the conditions of Corollary 3.7.
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The time-domain bounds in Corollary 3.7 are non-optimal, since they are based on the extensive use of
Proposition 2.12 and non-optimal bounds of Theorem 2.9. Therefore this result cannot be used to compare the
bounds on the solution of the PML and non-PML system. Using a priori bounds on

∣∣a(s)ψ(s)−1
∣∣ which can be

computed with the help of Corollary 2.4, we obtain the following simple result.

Corollary 3.9 (A priori bounds for Corollary 3.7). Let a(s)−1, ψ(s)−1 be passive. Then the estimate (42)
holds true with γ ≤ 4, m ≤ 6. If additionally a(s)−1, ψ(s)−1 are generalized Lorentz, i.e. have an expansion as
in (9), the estimate (42) holds true with γ ≤ 1, m ≤ 3.

Proof. See Appendix B. �

All the above can be summarized in the following theorem.

Theorem 3.10 (Stability of the time-domain PML of Lemma 3.6). Let the sesquilinear form Ãσ(u, v) satisfy

the conditions of Lemma 3.6. Then the system (27) with ε1(s) = b(s)−1, ε2(s) = a(s)−1
(
1 + σs−1ψ(s)

)2
and

µ(s) = c(s) is well-posed and stable.

The following direct corollary of Lemma 3.6 provides a simple way to construct a stable PML.

Theorem 3.11 (Construction of stable PMLs in the direction x). Let a sesquilinear form A(u, v) given by (18)
be passive in the sense of Definition 2.11. Then for all σ ≥ 0, the form

Aσ(u, v) = a(s)

(
1 +

σa(s)

s

)−2
(∂xu, ∂xv) + b(s)(∂yu, ∂yv) + s2c(s)(u, v), u, v ∈ H1(R2),

obtained from (40) with a particular choice ψ(s) = a(s), is passive in the sense of Definition 2.11.

Proof. Setting ψ(s) = a(s) shows that the assumptions of Lemma 3.6 are satisfied. �

Example 3.12 (Uniaxial Cold Plasma). Consider the plasma model (8), with the PML in y-direction chosen
as ψ(s) = ε1(s)−1. The stability of this PML was confirmed in [6, 7]. In this case in Corollary 3.7 m = µ = 0.

Theorem 3.11 applied to the isotropic Drude model (6) suggests that the choice ψ(s) = ε(s)−1 in the change of
variables (39) leads to a stable PML. This is confirmed by the analysis and numerical experiments in [9]. In the
same work it was demonstrated that a more general change of variables leads to a stable PML, more precisely,

ψ(s) =
(

1 +
ω2
`

s2

)−1
, where ω` ∈ [min(ωe, ωm), max(ωe, ωm)]. We explain this in the following proposition.

Proposition 3.13 (Other stable PMLs for isotropic models). Let a sesquilinear form A(u, v) given by (18)

with a(s) = b(s) be passive in the sense of Definition 2.11. Let ψ(s) =
(
αa(s)−1 + (1− α)c(s)

)−1
, 0 ≤ α ≤ 1.

Then for all σ ≥ 0, the form Ãσ(u, v) defined in (41) is passive.

Proof. It is sufficient to verify conditions of Lemma 3.6:

(1) thanks to (14), it is sufficient to check Re
(
sψ(s)−1

)
= αRe

(
sa(s)−1

)
+ (1− α) Re (sc(s)) > 0.

(2) since b(s) = a(s), ψ(s)a(s)−1b(s) = ψ(s).
(3) to show the required bound for a(s)−1ψ(s)c(s), we use (14):

Re
(
s̄ψ(s)−1a(s)c(s)−1

)
= αRe(s̄c(s)−1) + (1− α) Re(s̄a(s)) > 0.

�

Finally, to construct a stable PML in corners, we extend the statement of Theorem 3.11. Recall that in a
corner we perform changes of several variables:

x→ x(1 + s−1ψx(s)σx), y → y(1 + s−1ψy(s)σy). (46)



18

Theorem 3.14 (PML stable in a corner). Let a sesquilinear form A(u, v) given by (18) be passive in the sense
of Definition 2.11. Then for all σx, σy ≥ 0, the form

Aσx,σy (u, v) = a(s)

(
1 +

σxa(s)

s

)−2
(∂xu, ∂xv) + b(s)

(
1 +

σyb(s)

s

)−2
(∂yu, ∂yv) + s2c(s)(u, v), u, v ∈ H1(R2),

obtained from (18) by applying the PML (46) with ψx = a, ψy = b, is passive in the sense of Definition 2.11.

Proof. The proof of this result follows the same arguments as the proof of Lemma 3.6. �

The corresponding time-domain stability result can be formulated as in Theorem 3.10.

Remark 3.15. The stability of the PML as proved in this work implies the uniform stability of the PML as
defined in [9], see also Proposition 2.18.

While the changes of variables suggested in this section lead to stable systems, it is not obvious whether the
resulting layer is absorbing, i.e. that it leads to the energy decay. This question is addressed in [47].

3.3. Numerical Verification of the Results

Example 3.16. (The system of Example 3.2; verification of Theorem 3.11) First of all, we apply the obtained
results to the system described in Example 3.2. We use exactly the same parameters, see (34) and Table 1,
however, in this case we construct the PML system with the help of the PML change of variables (32) with
ψ(s) = ε2(s)−1. As before, in y-direction we use zero Dirichlet boundary conditions.

The results of this experiment are shown in Figure 2. One clearly sees that the solution is stable. Interestingly,
in this case the norm of the solution decays very lightly inside the domain and the PML. This is partially due
to the dispersive, anisotropic nature of the problem (the solution remains non-zero inside a bounded domain
for a fairly long time), and partially because the PML was used only in one direction (cf. e.g. Figure 3, where
the PML was used in two directions). Notice that the oscillations in the norm of the solution are likely due to
the dispersive behaviour of the problem.

x

y

x

y

x

y

0 20 40 60
1e-3

8e-3

t

‖H
z
(t
)‖

Figure 2. From left to right: a solution Hz of Example 3.16 computed with the new PML
at t = 10, 20, 35; the dependence of the L2-norm of Hz with respect to time. The boundary
between the domain and the layer is marked in black.
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Example 3.17. (Anisotropic Lorentz Material; verification of Theorem 3.14) We consider an anisotropic
Lorentz material (9) with the parameters

ε1(s) = 1 +
1

12

(
325

s2 + 42
+

119

s2 + 82

)
, ε2(s) = 1 +

16

s2 + 1
+

16

s2 + 52
, µ(s) = 1 +

3

s2 + 22
. (47)

Notice that the corresponding time-domain system is stable, since a = ε−12 , b = ε−11 , c = µ satisfy conditions
of Definition 2.11, cf. Theorem 4.4. This time we apply the PML change of variables in both directions (46)
with ψx = ε−12 and ψy = ε−11 . The stability of such a PML is proven in Theorem 3.14.

The rest of the parameters for this experiment are provided in Table 2. The results of the experiment are

Lx Ly Lσx Lσy σx(x) σy(y) ∆x ∆t f(t, x, y)

8 8 2 2 20x2 20y2 0.025 0.0125 10(t− 1.6)e−15(t−1.6)
2

e−20x
2−20y2

Table 2. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (47). The notation can be found in the beginning of Section 3.1.2.

shown in Figure 3. Notice that the classical PMLs are unstable, whereas with the use of the new PMLs the
norm of the solution decays. Due to the anisotropy of the model, when using the classical PMLs, the instability
in the x-direction is more pronounced and occurs earlier than the instability in the y-direction.
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Figure 3. Top row: the experiment was done with the help of the classical PML. Bottom row:
the experiment is done with the new PML. From left to right: a solution Hz of Example 3.17
at the times t = 15, 30, 80, computed with the help of corresponding PMLs; the dependence
on time of the L2-norm of this solution measured in the whole domain. The boundary between
the physical domain and the PML is marked in black.

Example 3.18. (Verification of Theorem 3.11 for Materials with Losses) Let us consider the problem (5) with
the parameters:

ε1(s) = 1, ε2(s) = 1 +
2

3(s+ 3)
+

25

12s
+

3

4(s+ 2)
, µ(s) = 1. (48)
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By a direct computation one can verify that the corresponding sesquilinear form is passive. Unlike the previous
two examples, this problem does not fit the framework of Lorentz materials (9). Moreover, the existing necessary
PML stability condition [9] does not cover this class of models.

The parameters for this experiment are provided in Table 3. We use the PML only in the direction x. A

Lx Ly Lσx Lσy σx(x) σy(y) ∆x ∆t f(t, x, y)

8 12 2 0 50x2 0 0.05 0.025 120e−16(t−2)
2

e−300x
2−800y2

Table 3. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (48). The notation can be found in the beginning of Section 3.1.2.

numerical comparison of the new PMLs (32) with ψ(s) = ε2(s)−1 with the classical perfectly matched layers is
shown in Figure 4. Contrary to the classical PMLs, the new change of variables leads to a stable system.

x
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y

0 50 100 150 200
10−2

101

104

t

‖H
z
(t
)‖

ψ(s) = 1

ψ(s) = ε2(s)−1

Figure 4. From left to right: a solution Hz to the problem of Example 3.18 at t = 200
computed with the classical PMLs; the same quantity computed with the new PMLs; the
comparison of L2-norms of the solution Hz, computed with two different PMLs, measured in
the whole domain. The boundary between the physical domain and the PML is in black.

Example 3.19. (Nonlocal Materials) Another (somewhat academic) example is provided by application of a
PML to a problem with non-local operators. We choose the problem parameters as:

ε1(s) = 1, ε2(s) =
(

1 + s
(
1 + e−0.5s

)−1)−1
, µ(s) = 1. (49)

The above functions satisfy Re (sµ(s)) > 0 and Re
(
s̄εj(s)

−1) > 0, with j = 1, 2, for all s ∈ C+. Notice as well

that L−1
(
e−0.5sû(s)

)
(t) = u(t− 0.5) for causal functions. We compare the performance of the classical PMLs

employed in both directions, and the new PMLs (32) with ψ(s) = ε2(s)−1 in the direction x, and ψ(s) = 1 (i.e.
classical PMLs) in the direction y.

To semi-discretize the corresponding equation (10) in time, we employ the Runge-Kutta (3-stage Radau IIA)
convolution quadrature (CQ) method [48–50], and use the FFT-based algorithm described in [51]. A similar
algorithm for volumetric problems can be found in [52]. To discretize the resulting problem in space we apply
second order central finite differences. Notice that for stable perfectly matched layer there is no need to employ
the CFL condition restriction [52], since the method we use is implicit and A-stable. However, a time step
restriction may be required if the PML system is unstable. The parameters of the experiment are given in
Table 4. The results of the comparison of two PMLs can be found in Figure 5. We can clearly see that the
solution computed with Bérenger’s PML is unstable. To investigate whether the instability problem comes the
discretization, we computed as well the norms of the solution to the problem computed with a twice finer time
step, see Figure 5. Refining the time step even aggravates the Bérenger’s PML instability, which indicates the
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Lx Ly Lσx Lσy σx(x) σy(y) ∆x ∆t f(t, x, y)

12 12 2 2 10x2 10y2 0.025 0.1 e−40x
2−40y2−12(t−10)2 (242(t− 10)2 − 24

)
Table 4. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity of Example 3.19. The notation can be found in the beginning of Section 3.1.2. We discretize
directly the problem (5) with the PML change of variables (32). We use zero initial conditions
and the right hand side (in the time domain) f(t, x, y).
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New PML, σx(x) = 10x2

New PML, σx(x) = x2

Standard PML, σx(x) = 10x2

Standard PML, σx(x) = x2

Figure 5. From left to right: a solution Hz of Example 3.19 at t = 14 and t = 20 computed
with the help of the new PML; the dependence of the L2-norm of the solution Hz measured
in the physical domain and the PML with respect to time, for the stable and unstable PMLs,
for t ≤ 30; the dependence of the L2-norm of the solution Hz measured in the physical domain
and the PML with respect to time, for the stable and unstable PMLs, computed for t ≤ 12 and
different absorption parameters. The boundary between the physical domain and the PML is
marked in black.

convergence problem of the CQ in this case. However, refining the time step results in a stable, convergent
solution when the new PML is used.

Indeed, the result produced by convolution quadrature discretization of the unstable PML has large stepwise
errors. Moreover, the result is non-causal (in our experiments the right hand side ‖f(t, x, y)‖∞ < 10−8 for
t ≤ 8.5, i.e. it almost vanishes, while this is not true for the solution). Such a global behaviour may be
attributed to the algorithm that we used for the implementation of the CQ, which computes the solution of
(5) in the Laplace domain for many values of frequencies s ∈ C+, and then comes back to the time domain.
As a result, the instability of the PML propagates over all the time steps, which is shown in Figure 5, where
this is expressed in the non-causal behaviour of the solution. Another problem comes from the fact that the
discretizations of (18), to which the classical PMLs are applied, are highly ill-conditioned (in the algorithm we
use, these matrices should be inverted to compute the solution). This is likely to be caused by the fact that the
corresponding matrix has some of its eigenvalues in the right complex half-plane.

We checked the first assumption (i.e. propagation of the error globally) by computing the solution with the
help of the unstable PML on the interval [0, 12], before the instability occurs, see the left-most plot in Figure
5. It appeared that the norm of the solution on this interval did not grow exponentially, however the difference
between the solutions computed with two PMLs was non-negligible. To check the second assumption (i.e. the
effect of matrix ill-conditioning), we reduced the absorption parameter, by setting σx(x) = x2, while keeping
the rest of parameters as in Table 4, and again computed the solution on [0, 12]. This allowed to reduce the
condition number of the matrices. The results displayed in the leftmost plot of Figure 5 show that the solutions
computed with stable and unstable PMLs on the interval [0, 12] almost coincide.

Summarizing all said, our experiments demonstrate that the solution remains stable when the new perfectly
matched layer is applied, however, there are convergence and stability problems when the standard PMLs used.
Let us also remark that in general the discretization by the Runge-Kutta method Radau IIA introduces some
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dissipation into the problem (which can be controlled by decreasing the time step), however, even in this case
we observe the instability of the classical PMLs.

4. Dispersive Systems with Rational Dielectric Permittivity and Magnetic
Permeability

In the previous section we have shown how to construct a stable PML for a model described by a passive
sesquilinear form (18). In this section we will study a special case when the coefficients of the sesquilinear form
are rational even functions (however, most of the results are valid as well for meromorphic even functions). This
section is organized as follows. First of all, we will discuss some important properties of rational functions under
consideration. Next, we will reformulate the corresponding systems, with the PML and without the PML, in
the time domain.

4.1. Properties of Even Rational Functions which Satisfy the Passivity Condition

We will consider a set of rational functions r(z) satisfying the following assumptions (these are the same
assumptions as in the work [9]).

Assumption 4.1. (1) r(z) can be represented as r(z) = 1 + p(z2)
q(z2) , where p(z) and q(z) are polynomials

with real coefficients that have no common roots, s.t. deg p < deg q.
(2) all zeros and poles of r(z) lie on the imaginary axis.

Recall that given r(z), z ∈ C+, by r̃(ω) we denote the restriction r̃(ω) = r(−iω), Imω ≥ 0, see (3).

Remark 4.2 (Physical Relevance). Later on we will assume that εj(s) for j = 1, 2, and µ(s) in (5) belong to
the above class. These requiremends are indeed physically meaningful:

(1) requiring that ε and µ are rational functions is equivalent to the fact that in the time domain the system

(5) can be written with the help of local (i.e. linear combinations of ∂
(k)
t , for k ∈ N0) operators;

(2) ε̃(ω), µ̃(ω)→ 1 as ω →∞ is a requirement that can be found in [53, §59, p. 251]; this means that for

large frequencies the system becomes non-dispersive;

(3) in a so-called transparency regime [53, §64, p. 260] the rational functions ε(s), µ(s) are real on the

imaginary axis. Moreover, in this case ε̃, µ̃ are even functions of ω (see [53, p. 250]). From this it

follows that these rational functions should have real coefficients.

Let us remark that many of the results of this section are known, or follow from known theorems; however,
we were not able to find a single reference that would summarize all the properties we will make use of later.
Some of the results that we describe in this section are summarized as well in [24].

We can formulate the following a priori property of passive functions.

Lemma 4.3. Let r(s) be a passive function satisfying Assumption 4.1. Then all of its poles and zeros are real.

Proof. The passivity requirement implies that r(s) cannot have poles or zeros in C+. Thanks to the fact that
r(s) is even, all its poles and zeros lie on the imaginary axis. �

The following result describes rational functions that satisfy the passivity requirement. It can be obtained
from [27, Corollary 10.1], combined with [26, Theorem 5].
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Theorem 4.4 ( [27], [26]). Let r(s) be a rational function satisfying Assumption 4.1. Then this function is
passive, i.e. Re(sr(s)) > 0, s ∈ C+, if and only if

r(s) = 1 +

n∑
`=0

r`
s2 + ω2

`

, r` > 0, ω` ∈ R, ` = 0, . . . , n. (50)

Moreover, in this case

Re(sr(s)) > Re s. (51)

Proof. Let us show that any passive function satisfying Assumption 4.1 satisfies (50). From Assumption 4.1 it
follows that all the poles of r(s) lie on the imaginary axis. Applying the first part of Lemma 2.5 to sr(s), which
shows that all purely imaginary poles of r(s) are simple, and zero may be a pole of multiplicity either 1 or 2,
and using the fact that r(s) is even, we obtain the following partial fraction expansion for r(s):

r(s) = 1 +
r0
s2

+

n∑
`=1

µ+
`

s+ iω`
+

n∑
`=1

µ−`
s− iω`

, ω` > 0, ` = 1, . . . , n. (52)

Now, since r(s) = r(−s) in C, we obtain that
µ+
`

s+iω`
+

µ−
`

s−iω` =
µ+
`

−s+iω` +
µ−
`

−s−iω` , for all ` = 1, . . . , n, and thus

µ+
` = −µ−` for all ` = 1, . . . , n. The positivity of residues of sr(s), see Lemma 2.5, gives

r0 > 0, −iω`µ+
` > 0, ` = 1, . . . , n. (53)

From this it immediately follows that µ+
` ∈ iR>0. This allows us to obtain the expansion r(s) = 1 +

n∑̀
=0

r`
s2+ω2

`
,

with ω` ≥ 0 for ` = 0, . . . , n, where r` = −2iω`µ
+
` , with ` = 1, . . . , n. The positivity of r` follows from (53).

Now let us demonstrate that r(s) given by (50) is passive, by showing that (51) holds true in this case:

Re (sr(s)) = Re s+ Re

(
n∑
`=0

r`s

s2 + ω2
`

)
= Re s+ Re

(
n∑
`=0

r`s(s̄
2 + ω2

` )

|s2 + ω2
` |2

)
> Re s,

when s ∈ C+. �

This result shows in particular that under Assumption 4.1 the passivity requirement can be satisfied only by
the Lorentz materials (9). Naturally, we would also like to understand what the reciprocals of rational functions
satisfying the passivity requirement look like.

Theorem 4.5. Let r(s) be a rational function satisfying Assumption 4.1. Then Re(s̄r(s)) > 0, s ∈ C+, if and
only if

r(s) = 1−
n∑
`=0

r`
s2 + ω2

`

, r` > 0, ω` ∈ R \ {0}, ` = 0, . . . , n, r(0) = 1−
n∑
`=0

r`
ω2
`

≥ 0. (54)

Moreover,

Re(s̄r(s)) ≥ r(0) Re s+ C min(1, (Re s)2) Re s, C > 0. (55)

Proof. First let us show that any rational function satisfying Assumption 4.1 and Re (s̄r(s)) > 0, when s ∈ C+,
is of the form (54).
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Thanks to Lemma 2.5, which says that s−1r(s) can have a simple pole in zero only, r(s) cannot have a pole
in zero; moreover, all the poles of r(s) are imaginary, due to Assumption 4.1, and thus, due to Lemma 2.5, are
simple. Like in Theorem 4.4, we write

r(s) = 1 +

n∑
`=0

µ+
`

s+ iω`
+

n∑
`=0

µ−`
s− iω`

, ω` > 0, ` = 1, . . . , n.

The same argument as in the proof of Theorem 4.4, shows that µ+
` = −µ−` , and r(s) = 1 −

n∑̀
=0

r`
s2+ω2

`
, where

ω` > 0, ` = 0, . . . , n, and r` = 2iω`µ
+
` > 0. Lemma 2.5 says that residues of s−1r(s) in all poles should be

positive:

lim
s→iω`

(s− iω`)s−1r(s) =
r`

2ω2
`

> 0.

If r(0) 6= 0, the positivity of the residue of s−1r(s) in zero implies that r(0) > 0.
To show that any r(s) of the form (54) satisfies Re (s̄r(s)) > 0 in C+, we will demonstrate the validity of the

bound (55). First of all,

r(s) = 1−
n∑
`=0

r`
s2 + ω2

`

= 1−
n∑
`=0

r`
ω2
`

+

n∑
`=0

r`
ω2
`

−
n∑
`=0

r`
s2 + ω2

`

= r(0) +

n∑
`=0

r`s
2

ω2
` (s2 + ω2

` )
(56)

Hence, for all s ∈ C+ it holds:

Re (s̄r(s)) = r(0) Re s+ Re

n∑
`=0

r`|s|2s(s̄2 + ω2
` )

ω2
` |s2 + ω2

` |2
= r(0) Re s+ Re s

n∑
`=0

r`ω
−2
` |s|2(|s|2 + ω2

` )|s2 + ω2
` |−2

≥ r(0) Re s+ Re s

n∑
`=0

r`ω
−2
` |s|2(|s|2 + ω2

` )−1. (57)

For any ω` ∈ R∗, the function f(x) = x2

x2+ω2
`

= 1− ω2
`

x2+ω2
`

grows in x for x > 0. Since 0 < Re s < |s|, we obtain

|s|2
|s|2 + ω2

`

≥ (Re s)2

(Re s)2 + ω2
`

≥ (Re s)2

2 max((Re s)2, ω2
` )

=
1

2
(Re s)

2
min

((
Re s

)−2
, ω−2`

)
≥ C min(1, (Re s)

2
),

for some C > 0. This, combined with (57), gives (55). �

Another property of passive materials, which is exploited in [9], is the so-called growing property. More
precisely, a rational function r(s) satisfies the growing property if for all ω ∈ R except for poles of r̃(ω), it holds
(ωr̃(ω))′ > 0. It is interesting that in physical literature [54], [53, p.256] the above property is shown to be
crucial for the positivity of the energy density.

We provide a minor generalization of this statement in the following two lemmas, stating before an auxiliary
result that can be found in [26, Theorem V, Coroll. 1].

Lemma 4.6 ( [26]). Let r(s) satisfy Assumption 4.1. Let g1(s) = sr(s), and g2(s) = s−1r(s), s ∈ C+. If all
zeros of gα(s) are simple, and the derivative d

dsgα(s) is real and positive in these zeros, then Re (gα(s)) > 0 for
all s ∈ C+. Here α = 1 or α = 2.

To prove the validity of the statement, we start with the following trivial result.

Lemma 4.7. Let r(s) satisfy Assumption 4.1. Then:
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(1) if all the poles of sr(s) are simple, and the corresponding residues are positive, then Re (sr(s)) > 0, s ∈
C+.

(2) if all the poles of s−1r(s) are simple, and the corresponding residues are positive, then Re (s̄r(s)) >
0, s ∈ C+.

Proof. The result can be proved following the lines of Theorems 4.4 and 4.5. More precisely, in the first case
r(s) is of the form (52); the positivity of residues and evenness of the function r(s) results in the expansion
(50), which, in turn, shows that r(s) is passive, see Theorem 4.4. �

Now we can give a proof of Lemma 4.6.

Proof. Let α = 1 or 2. Notice that if all the zeros of gα(s) are simple, and the derivative d
dsgα(s) is real and

positive in these zeros, then all the poles of fα(s) = gα(s)−1 are simple, and the residues of fα(s) in these poles
are positive:

Ress=s0 fα(s) = lim
s→s0

(s− s0)fα(s) = lim
s→s0

(s− s0)gα(s)−1 = lim
s→s0

s− s0
gα(s)− gα(s0)

= (g′α(s0))−1 > 0.

Combined with Lemma 4.7, we obtain the desired result. �

Finally, let us discuss the equivalence of the growing property and passivity.

Lemma 4.8. Let r(s) satisfy Assumption 4.1. Then the following conditions are equivalent:

(M1) (ωr̃(ω))′ > 0 in all points but poles of r̃(ω);
(M2) the function r(s) satisfies Re (sr(s)) > 0, s ∈ C+.

Proof. Thanks to Lemma 4.6, to show that (M1) implies (M2), it is sufficient to verify that from (M1) it follows

that the zeros of R(s) = sr(s) are simple, and R′(s) > 0 in these zeros. Notice that R̃(ω) = −iωr̃(ω).
First let us show the implication (M1) =⇒ (M2). In zeros s = −iω0 of sr(s)

dR

ds

∣∣∣∣
s=−iω0

= r(−iω0)− iω0r
′(−iω0) = r̃(ω0) + r̃′(ω0)ω0 = (ωr̃(ω))

′∣∣
ω=ω0

> 0, (58)

from which we obtain as well the simplicity of zeros of R(s).

Notice that (M2) is equivalent to requiring that r̃(ω) = 1 −
n∑̀
=0

r`
ω2−ω2

`
, r` > 0, ω` ∈ R, ` = 0, . . . , n, see

Theorem 4.4. Thus, (M2) =⇒ (M1) follows by a direct computation:

(ωr̃(ω))′ = 1 +

n∑
`=0

r`

(
2ω2

(ω2 − ω2
` )2
− 1

ω2 − ω2
`

)
= 1 +

n∑
`=0

r`
ω2 + ω2

`

(ω2 − ω2
` )2

> 0

in all points but poles of r̃(ω). �

A similar result can be formulated for functions r(s), which satisfy Re(s̄r(s)) > 0 in C+.

Lemma 4.9. Let r(s) satisfy Assumption 4.1. Then the following conditions are equivalent:

(M1)
(
ω−1r̃(ω)

)′
< 0 in all points ω ∈ R but poles of ω−1r̃(ω);

(M2) the function r(s) satisfies Re (s̄r(s)) > 0, s ∈ C+.

Proof. Thanks to Lemma 4.6, to show that (M1) implies (M2), it is sufficient to verify that from (M1) it follows

that the zeros of R(s) = s−1r(s) are simple, and R′(s) > 0 in these zeros. Notice that R̃(ω) = iω−1r̃(ω). First
let us show the implication (M1) =⇒ (M2). In zeros s = −iω0 of s−1r(s)

dR

ds

∣∣∣∣
s=−iω0

= ω−20 r(−iω0)− (iω0)−1r′(−iω0) = r̃(ω0)ω−20 − r̃′(ω0)ω−10 = −
(
ω−1r̃(ω)

)∣∣
ω=ω0

> 0, (59)



26

from which we obtain as well the simplicity of zeros of R(s).

Notice that (M2) is equivalent to requiring that r̃(ω) = r(0)+
n∑̀
=0

r`ω
2

ω2
` (ω

2−ω2
` )
, r` > 0, ω` ∈ R\{0}, ` = 0, . . . , n,

and r(0) ≥ 0, see (56) in Theorem 4.5. Thus, (M2) =⇒ (M1) follows by a direct computation:

(ω−1r̃(ω))′ = −r(0)

ω2
+

n∑
`=0

r`
ω2
` (ω2 − ω2

` )
−

n∑
`=0

2r`ω
2

ω2
` (ω2 − ω2

` )2
= −r(0)

ω2
−

n∑
`=0

r`
ω2
`

(ω2 + ω2
` )

(ω2 − ω2
` )2

The above expression is strictly negative in ω s.t. ω 6= 0 and ω is not a pole of r̃(ω). If r(0) = 0, the above
expression is strictly negative in ω = 0. �

The following statement is at least partially well known, cf. e.g. [28, p.308, Theorem 1].

Lemma 4.10. Let r(s) satisfy Assumption 4.1. Let (ω`)
n
`=1 be non-negative poles of r̃(ω) ordered in ascending

order, and (r`)
n
`=1 be its non-negative zeros, ordered in ascending order (counting multiplicities). Then

(I1) r(s) is passive in the sense of Definition 2.1 if and only if 0 ≤ ω1 < r1 < ω2 < r2 < . . . < ωn < rn.
(I2) r(s)−1 is passive in the sense of Definition 2.1 if and only if 0 ≤ r1 < ω1 < r2 < ω2 < . . . < rn < ωn.

Proof. We explain the proof for (I1). The statement (I2) can be proved similarly.
Let us explain first ” =⇒ ”-part. The fact that zeros and poles of r(s) are simple, with the exception of

s = 0, and the condition on the multiplicity of the pole/zero in s = 0 follows from Lemmas 2.5. They interlace

due to the same lemma (one notices that h(s) = sr(s) satisfies h(−s̄) = −s̄r(s̄) = h(s)).
Finally, if ω1 6= 0, then, necessarily r(0) > 0. Hence if r1 were smaller than ω1, the sign change in r1 would

be from the positive to negative, and the function would have to decay on (0, ω1). This is a contradiction to
Lemma 4.8.

If ω1 = 0, the statement follows directly from the interlacing property of poles and roots.
The same argument applies to the case Re (s̄r(s)) > 0, s ∈ C+.
Let us now show that the interlacing of roots and poles implies Re (sr(s)) > 0, s ∈ C+. We will simply make

use of Lemma 4.8.
First of all from the condition of the lemma we see that all zeros (and poles) of sr(s) are simple. Next, we

must verify whether the function ωr̃(ω) grows.
We start by showing that r̃(0) > 0 or r̃(ω)→ −∞, when ω → 0. First notice that

r̃(ω) = C
(ω2 − r21)(ω2 − r22) . . . (ω2 − r2n)

(ω2 − ω2
1)(ω2 − ω2

2) . . . (ω2 − ω2
n)
,

where C = 1 due to r̃(ω)→ 1 as ω →∞. If ω1 6= 0, r̃(0) =

(
n∏
k=1

(−r2k)

)(
n∏
k=1

(−ω2
k)

)
> 0. If ω1 = 0,

r̃(ε) =
(ε2 − r21)(ε2 − r22) . . . (ε2 − r2n)

ε2(ε2 − ω2
2) . . . (ε2 − ω2

n)
=

(−1)n(r21 − ε2)(r22 − ε2) . . . (r2n − ε2)

ε2(−1)n−1(ω2
2 − ε2) . . . (ω2

n − ε2)
→ −∞, as ε→ 0.

Consider two cases:

• r̃(ω) > 0. In this case ω = 0 is a zero of ωr̃(ω). On the interval (0, ω1) the function grows (otherwise
it would have to intersect the real axis, which is a contradiction to r1 > ω1); the same is valid on the
interval (−ω1, 0), due to evenness of r(s). Therefore, (ωr̃(ω))′ > 0 on this interval. In ω1 the function
r̃(ω) changes the sign from positive to negative, and in r1 from negative to positive. Thanks to the
interlacing of roots and poles, (ωr̃(ω))′ > 0 for R.

• r̃(ω) = −∞. Since r1 < ω2, the function ωr̃(ω) changes its sign in r1 from negative to positive. The
same argument as before allows to conclude that (ωr̃(ω))′ > 0 on R.

Similarly we can prove the second equivalence. �
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4.2. PMLs for Anisotropic Lorentz Materials: Time Domain Formulation

In the previous section we showed that provided that the dielectric permittivity and magnetic permeability
satisfy the conditions of passivity and Assumption 4.1, the corresponding materials are Lorentz (9). This class of
models can be expressed in the time domain as a system of partial differential equations coupled with ordinary
differential equations. The goal of this section is to present the corresponding formulation, as well as provide a
PML system obtained after the change of variables (32), which can be used in practical calculations.

4.2.1. Time Domain System without the PML

Recall that the Lorentz dielectric permittivity and magnetic permeability are given by (9). To rewrite
the Maxwell system (2) in the time domain, we first notice that one of the ways to express the relation

sD̂x = sε1(s)Êx in the time domain is via the introduction of auxiliary unknowns:

∂tDx = ∂tEx +

nx∑
`=0

εx`jx`,

∂tjx` + ω2
x`px` = Ex, ∂tpx` = jx`, ` = 0, . . . , nx.

One can verify that in the frequency domain it holds sD̂x = sε1(s)Êx, provided the initial conditions Dx|t=0 =

Ex|t=0, and zero initial conditions for the unknowns jx` and px`, ` = 0, . . . , nx. Similarly we deal with sB̂z =
sµ(s)Hz. Then the Maxwell system (2) can be rewritten in the following form:

∂tEx +

nx∑
`=0

εx`jx` = ∂yHz, (60a)

∂tEy +

ny∑
`=0

εy`jy` = −∂xHz, (60b)

∂tHz +

nµ∑
`=0

µ`jµ` = ∂yEx − ∂xEy, (60c)

∂tjm` + ω2
m`pm` = Em, ∂tpm` = jm`, ` = 0, . . . , nm, m ∈ {x, y}, (60d)

∂tjµ` + ω2
µ`pµ` = Hz, ∂tpµ` = jµ`, ` = 0, . . . , nµ. (60e)

4.2.2. Time-Domain System with the PML

Our goal is to rewrite the system (60a-60e) in the time domain with the PML change of variables (32)
and non-constant σ(x) ≥ 0. Let us limit our discussion to the functions ψ(s) which satisfy Assumption 4.1.
Additionally, let us assume that ψ(s)−1 is of the following form (this is clarified in Theorem 5.8):

ψ(s)−1 = 1 +

nψ∑
`=0

cψ`
s2 + r2ψ`

, rψ` ∈ R, cψ` ∈ R, ` = 0, . . . , nψ.

Recall that (32) amounts to substituting all ∂x by (1 + σψ
s )−1∂x in the frequency-domain formulation of (60a-

60e). For example, consider the equation for Ey of (60a-60e) in the Laplace domain, with the PML (32):

sÊy +

ny∑
`=0

εy`̂y` = −
(

1 +
σψ(s)

s

)−1
∂xĤz = − s

s+ σψ
∂xĤz = −

(
1− σ

sψ−1 + σ

)
∂xĤz. (61)
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Thus, let us define Ê∗y = −(sψ−1 + σ)−1∂xĤz:

sÊ∗y +

nψ∑
`=0

cψ`̂
∗
Ey,` + σ(x)Ê∗y = −∂xĤz,

ŝ∗Ey,` + r2ψ`p̂
∗
Ey,` = Ê∗y , sp̂∗Ey,` = ̂∗Ey,`, ` = 0, . . . , nψ.

Using the above strategy to derive all the remaining equations with the PML, the system (60a-60e) with the
change of variables (32) becomes in the time domain:

∂tEx +
nx∑̀
=0

εx`jx` = ∂yHz,

∂tEy +
ny∑̀
=0

εy`jy` = −∂xHz − σ(x)E∗y ,

∂tHz +
nµ∑̀
=0

µ`jµ` = ∂yEx − ∂xEy − σ(x)H∗z ,

∂tjm` + ω2
m`pm` = Em, ∂tpm` = jm`, ` = 0, . . . , nm, m ∈ {x, y},

∂tjµ` + ω2
µ`pµ` = Hz, ∂tpµ` = jµ`, ` = 0, . . . , nµ,

(62)

coupled with the system for the auxiliary unknowns

∂tE
∗
y +

nψ∑̀
=0

cψ`j
∗
Ey,`

+ σ(x)E∗y = −∂xHz,

∂tj
∗
Ey,`

+ r2ψ`p
∗
Ey,`

= E∗y , ∂tp
∗
Ey,`

= j∗Ey,`, ` = 0, . . . , nψ,

∂tH
∗
z +

nψ∑̀
=0

cψ`j
∗
Hz,`

+ σ(x)H∗z = −∂xEy,

∂tj
∗
Hz,`

+ r2ψ`p
∗
Hz,`

= H∗z , ∂tp
∗
Hz,`

= j∗Hz,`, ` = 0, . . . , nψ.

(63)

Remark 4.11. There is no unique way to write the time-domain formulation depending on the choice of the
family of auxiliary unknowns. However, all these choices are equivalent in terms of stability, see e.g. [55].

5. Necessary and Sufficient Stability Conditions of PMLs for Models with
Lorentz Parameters

While Theorem 3.11 provides an explicit way to construct stable perfectly matched layers for anisotropic
systems of type (18) by choosing ψ(s) = a(s), such a choice of the function ψ(s) may appear to be non-optimal,
in a sense that it does not necessarily lead to the smallest number of unknowns in the resulting system in the
time domain. On the other hand, while Lemma 3.6 provides a sufficient condition which should be satisfied by
ψ(s), it does not provide a constructive way of choosing such a function ψ(s).

In the work [9], which is based on examining the behaviour of modes of the dispersion relation, a necessary
condition of the stability of perfectly matched layers is formulated. Such a condition is easier to analyze
compared to the conditions of Lemma 3.6, since instead of dealing with the right-half complex plane (as in
Lemma 3.6), one studies the behaviour of functions restricted to the imaginary axis. It is well-known [10] that
such conditions are not necessarily sufficient for the stability. For example, when applied to non-dispersive
cases, they account only for the behaviour in the high-frequency regimes. Nevertheless, in [9] the authors
have demonstrated that for a class of isotropic dispersive models (described by the sesquilinear form (18) with
a(s) = b(s)) the necessary condition becomes sufficient.
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The goal of this section is to demonstrate that the necessary condition derived in [9] is sufficient for the
stability of the perfectly matched layers for a more general class of models of the form (18), which, unlike the
models considered in [9], are anisotropic. However, we restrict our considerations to passive materials only.

The results of this section will enable us to find a family of ψ(s) that would result in stable PMLs, among
which there is an optimal choice in terms of number of auxiliary unknowns in the resulting time-domain PML
system. Finding such an optimal ψ(s) is however not always trivial.

First of all, we recall the necessary stability condition derived in [9], and then formulate the main result
(Theorem 5.12) in Section 5.2. The proof of this result can be found in Section 5.3. An easy to use method
to construct the function ψ(s) can be found in Appendix G. Finally, in Section 5.4 we show some numerical
experiments with the new PML confirming the main results of Theorem 5.12.

5.1. The Necessary Stability Condition

A necessary stability condition of the perfectly matched layers for anisotropic dispersive medium had been
deduced in [9] with the help of the plane-wave analysis. We do not repeat the derivation of this result for the
system recast in the Laplace domain, but simply recall the result itself.

In this section we limit ourselves to passive (18) whose coefficients satisfy an extra condition. This is
summarized in the following assumption, see also (14).

Assumption 5.1. The coefficients of the sesquilinear form (18) a(s)−1, b(s)−1, c(s) are passive in the sense
of Definition 2.1 and satisfy Assumption 4.1.

Remark 5.2. Since a(s)−1, b(s)−1, c(s) satisfy Assumption 5.1, we know, thanks to Theorem 4.4, that they
have a partial fraction expansion (50) and therefore correspond to Lorentz materials. However, the results of
this section can be extended to the case when a(s)−1, b(s)−1, c(s) are even meromorphic functions and have
the partial fraction expansion as in (50) with infinite number of terms (n = ∞), cf. e.g. [28, Theorem 1, p.
308]. Moreover, most of the results of this section do not rely on the (physical) assumption a(s) = ε1(s)−1,
b(s) = ε2(s)−1, c(s) = µ(s)→ 1 as s→∞. A numerical illustration of these two statements will be provided in
Example 5.25.

Remark 5.3. If a passive function does not have poles and zeros s, s.t. Re s < 0 (i.e. non-dissipative case, cf.
Definition 5.4), it is necessarily meromorphic, see e.g. [56].

Let us first recall a few definitions and crucial assumptions on the Maxwell system in the Laplace domain
(5). First of all, the dispersion relation for this system is obtained when looking at the plane-wave solutions of
(5). In particular, for Lorentz materials (60), it reads, see Appendix E:

F (ω,k) =
(
ω−1ã(ω)k2x + ω−1b̃(ω)k2y − ωc̃(ω)

) na∏
`=0

(ω2 − ω2
a`)

nb∏
`=0

(ω2 − ω2
b`)

nc∏
`=0

(ω2 − ω2
c`)ω

2 = 0. (64)

Here (ωa`)
na
`=0 , (ωb`)

nb
`=0, (ωc`)

nc
`=0 are the poles of correspondingly ã, b̃ and c̃.

Crucially, the analysis in [9] applies only to non-dissipative systems, as defined below.

Definition 5.4 ( [9]). A system is called non-dissipative if all modes ω(k) of its dispersion relation are real for
all k = (kx, ky) ∈ R2.

Proposition 5.5 (Non-dissipativity of (60a-60e)). Under Assumption 5.1, all modes ω(k) of (64) are real.

Proof. The solutions of the dispersion relation (64) are either poles of ã, b̃, c̃, vanish, or are the solutions of

ã(ω)k2x + b̃(ω)k2y − ω2c̃(ω) = 0. (65)

Thanks to Lemma 4.3 and passivity of a−1, b−1, c, the poles of ã, b̃, c̃ are real.
It remains to show that ω(k) solving (65) are real. According to Proposition 2.18, all solutions of (65) satisfy

Imω(k) ≤ 0. Additionally, since a, b, c are even, if ω solves (65), so does −ω. Therefore, ω(k) ∈ R. �
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The PML change of variables (39) leads to the system (62-63) with σ(x) = σ = const, with a new dispersion
relation, see Appendix F (and notice that εy = a−1 and εx = b−1),

Fσ(σ, ω,k) =

ω−1ã(ω)

(
1− σψ̃(ω)

iω

)−2
k2x + ω−1b̃(ω)k2y − ωc̃(ω)

×∏
`

(ω2 − ω2
c`)

×
∏
`

(ω2 − ω2
ψ`)

2
∏
`

(ω2 − ω2
a`)
∏
`

(ω2 − ω2
b`)
(

1 + σψ̃(ω)(−iω)−1
)2
ω4 = 0.

(66)

Here (ωψ`)
nψ
`=0 are the poles of ψ̃. As in Section 2.3, one studies the stability of the PML system by examining

the modes of the corresponding dispersion relation.

Definition 5.6 (Definition 4.3.2 in [9]). A PML system (62-63) obtained with the change of variables (39)
is called uniformly stable if all solutions ω(k, σ) of its dispersion relation (66) satisfy: Imω(k, σ) ≤ 0, for all
k ∈ R2 and σ ≥ 0.

To formulate the necessary PML stability condition, let us recall the concepts of phase and group velocities.

Definition 5.7. A phase velocity of a mode ω(k) is defined by vp(ω(k)) = ω(k)
|k|

k
|k| , and the group velocity by

vg(ω(k)) = ∇kω(k), provided that this derivative is well-defined.

Finally, the choice of the function ψ in [9] is restricted to the class of functions ψ̃(ω) = h(ω), where

h(ω) = 1 +

n∑
`=0

h`
ω2 − ω2

`

, h` ∈ R, ω` ∈ R \ {0}, ` = 0, . . . , n. (67)

In [9] the authors have classified the solutions of the dispersion relation (66) and provided the necessary condi-
tions of the uniform stability for each of the classes of the modes. We will discuss these classes afterwards.

Theorem 5.8 (Propositions 4.7, 4.8 in [9]; necessary PML stability condition). Given ψ̃(ω) = 1 +
nψ∑̀
=0

ψ`
ω2−ω2

ψ`
,

with ωψ` ∈ R \ {0}, ψ` ∈ R, ` = 0, . . . , nψ, let a PML system corresponding to the dispersion relation (66) be
uniformly stable. Then

(N1) the coefficients of the expansion of ψ̃(ω) satisfy ψ` > 0, ` = 0, . . . , nψ. Additionally, ψ̃(0) ≥ 0.
(N2) for all the solutions ωj(k), j = 1, . . . , N, of the original dispersion relation (64), it holds that

ψ̃(ωj(k))vg,x(ωj(k))vp,x(ωj(k)) ≥ 0, k ∈ R2.

Here the subscript x indexes the x-component of a vector.

Let us re-interpret Theorem 5.8. All the modes of (66) belong to one of the following classes:

(1) they are non-propagating (i.e. independent of k). Such modes can be real ω(k) = const ∈ R or solve

1− (iω)−1ψ̃(ω)σ = 0.

The stability of the modes that solve the above equation is ensured by the condition (N1), or, in our
terms, cf. Theorem 4.5, by the condition that Re (s̄ψ(s)) > 0, s ∈ C+.

(2) they are propagating, i.e. solve, for some kx, ky ∈ R:

ω−1ã(ω)

(
1− σψ̃(ω)

iω

)−2
k2x + ω−1b̃(ω)k2y − ωc̃(ω) = 0. (68)

A necessary condition of the stability of the propagating modes is given by the condition (N2).
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Let us rewrite (N2) with the use of the implicit function theorem. Clearly, this condition is of interest for the
modes that depend on k non-trivially, i.e. modes that solve, cf. dispersion relation (64):

F(ω,k) = ω−1ã(ω)k2x + ω−1b̃(ω)k2y − ωc̃(ω) = 0. (69)

We denote the set of the propagating modes of the original system by

Ωp :=
{
ω ∈ R : F(ω,k) = 0 for some k ∈ R2

}
. (70)

Then, given F(ω,k) as in (69), we deduce with the help of the implicit function theorem:

∂kxω(kx, ky) = − (∂kxF(ω,k)) (∂ωF(ω,k))
−1

= −2kxω
−1ã(ω)

(
k2x(ω−1ã(ω))′ + (ω−1b̃(ω))′k2y − (ωc̃(ω))′

)−1
.

The condition (N2) in Theorem 5.8 can be rewritten in the form: for all ω ∈ Ωp,

−k2xψ̃(ω(k))ã(ω(k))
(
k2x(ω(k)−1ã(ω(k)))′ + k2y(ω(k)−1b̃(ω(k)))′ − (ω(k)c̃(ω(k)))′

)−1
≥ 0, (71)

provided that the above expression is well-defined.
We will need to reformulate the above condition in a simpler form. First of all, we will simplify (70). Given a

rational function r(z) satisfying Assumption 4.1, let us introduce a set Dr = {ω ∈ R : r̃(ω) = 0 or r̃(ω)−1 = 0}.

Lemma 5.9. Let a(s), b(s), c(s) satisfy Assumption 4.1. Then Ωp defined in (70) can be represented as a
union of the following (possibly intersecting) sets:

Ωp = Ωãc̃>0
p ∪ Ωãb̃<0

p ∪ Zp,
Ωãc̃>0
p = {ω ∈ R \ (Da ∪ Dc) : ã(ω)c̃(ω) > 0} , (72)

Ωãb̃<0
p =

{
ω ∈ R \ (Da ∪ Db) : ã(ω)b̃(ω) < 0

}
, (73)

Zp =
{
ω ∈ Da ∪ Db ∪ Dc : for some kx, ky ∈ R, it holds ω−1ã(ω)k2x + ω−1b̃(ω)k2y − ωc̃(ω) = 0

}
.

Proof. First we show Ωp ⊂ Ωãc̃>0
p ∪ Ωãb̃<0

p ∪ Zp. Let ω /∈ Zp. Then the modes ω ∈ Ωp satisfy

k2x = − b̃
ã
k2y + ω2 c̃

ã
.

This equation has at least one real solution kx if and only if there exists ky ∈ R s.t.

−b̃(ω)ã(ω)−1k2y + ω2c̃(ω)ã(ω)−1 ≥ 0. (74)

The above inequality has no real solutions ky if b̃(ω)ã(ω)−1 ≥ 0 and c̃(ω)ã(ω)−1 < 0. Hence, the inequality (74)
has a real solution ky if and only if ω /∈ Zp satisfies at least one of the following conditions:

• b̃(ω)ã(ω)−1 < 0, i.e. ω ∈ Ωãb̃<0
p ;

• c̃(ω)ã(ω)−1 > 0, i.e. ω ∈ Ωãc̃>0
p .

The inclusion Ωãc̃>0
p ∪ Ωãb̃<0

p ∪ Zp ⊂ Ωp can be proved similarly. �

With the above we can reformulate the necessary stability condition (N2).
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Lemma 5.10 (Necessary stability condition (N2)). Let a(s), b(s), c(s) satisfy Assumption 5.1, and let ψ(s)
satisfy Assumption 4.1 and Re (s̄ψ(s)) > 0, s ∈ C+. Let for ω ∈ Ωp the stability condition (71) hold true,

provided that the latter expression is well-defined. Then for all ω ∈ Ωãc̃>0
p ∪ Ωãb̃<0

p it holds

ψ̃(ω)ã(ω) ≥ 0. (75)

Proof. Consider the denominator of the left-hand side of (71): H := k2x(ω−1ã(ω))′ + k2y(ω−1b̃(ω))′ − (ωc̃(ω))′.
Thanks to Lemmas 4.8, 4.9 about the signs of the derivatives of passive functions, for all ω /∈ Zp, it holds

(ω−1ã(ω))′ < 0, (ω−1b̃(ω))′ < 0, (ωc̃(ω))′ > 0,

Therefore, the denominator H < 0 for all kx, ky ∈ R and ω /∈ Zp. We can thus rewrite the inequality (71) as

ψ̃(ω)ã(ω) ≥ 0.

�

5.2. Equivalence of the Necessary and Sufficient Stability Conditions

In this section we show that the necessary stability condition of the PML in Lemma 5.10 is equivalent to the
sufficient stability condition of Lemma 3.6. To formulate it, we need the following assumption.

Assumption 5.11. The functions a(s), b(s), c(s) satisfy Assumption 5.1, and ψ(s) satisfies Assumption 4.1
and Re (s̄ψ(s)) > 0, s ∈ C+.

Theorem 5.12 (Equivalence of the necessary and sufficient stability conditions). Let a(s), b(s), c(s), ψ(s)
satisfy Assumption 5.11 and let

A(u, v) = a(s)(∂xu, ∂xv) + b(s)(∂yu, ∂yv) + s2c(s)(u, v)

be the corresponding passive sesquilinear form. Then the following two conditions are equivalent:

(NSC1) for all ω ∈ Ωãb̃<0
p ∪ Ωãc̃>0

p (see (72, 73)), it holds that ψ̃(ω)ã(ω) ≥ 0.
(NSC2) for all σ ≥ 0, the sesquilinear form

Ãσ(u, v) =
ψ(s)

a(s)

(
a(s)

(
1 +

σψ(s)

s

)−2
(∂xu, ∂xv) + b(s)(∂yu, ∂yv) + s2c(s)(u, v)

)
, s ∈ C+,

is passive in the sense of Definition 2.11, and thus, bounded and coercive (due to Proposition 2.12).

Proof. The proof (NSC2) =⇒ (NSC1) follows from the results of [9]. Consider one of the factors of the dispersion

relation (66) given by (68). Thanks to Proposition 2.18, the passivity of the sesqulinear form Ãσ(u, v) implies
that all the solutions ω(k), k ∈ R2, of (68) have a non-positive imaginary part, i.e. Imω(k) ≤ 0. In [9,
Proposition 4.8], the following implication was shown:

all solutions ω(k), k ∈ R2 of (68) are s.t. Imω(k) ≤ 0 =⇒ for ω ∈ Ωp, (71) holds true.

Thanks to Lemma 5.10, from the above (NSC1) follows.
To show the implication (NSC1) =⇒ (NSC2), we use Lemma 3.6. It is sufficient to prove that for ψ(s)

satisfying the sign conditions (NSC1), it holds

Re
(
sc(s)a(s)−1ψ(s)

)
> 0, s ∈ C+, (NSC2)-(a)

Re
(
s̄b(s)a(s)−1ψ(s)

)
> 0, s ∈ C+. (NSC2)-(b)
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The proof of the above relies on several technical results, which we will formulate and prove in Section 5.3. �

We readily obtain the following corollary for a specific class of anisotropic systems (18) with c(s) = b(s)−1.
A particular representative of this class is a uniaxial cold plasma model given in (8), with b(s) = 1.

Corollary 5.13. Let a(s), ψ(s), b(s) satisfy Assumption 5.11. Then the following two conditions are equivalent:

(1) for all σ ≥ 0, the sesquilinear form

Ãσ(u, v) =
ψ(s)

a(s)

(
a(s)

(
1 +

σψ(s)

s

)−2
(∂xu, ∂xv) + b(s)(∂yu, ∂yv) + s2b(s)−1(u, v)

)
, s ∈ C+,

is passive in the sense of Definition 2.11.
(2) ψ(s) = a(s).

Proof. Notice that the above sesquilinear form is as in Theorem 5.12 with c̃(ω) = b̃(ω)−1. Using Theorem

5.12, we see that in points ω ∈ R s.t. ã(ω)c̃(ω) = ã(ω)b̃(ω)−1 > 0, the functions ψ̃(ω) and ã(ω) should be of

the same sign. The same should hold in points where ã(ω)b̃(ω) < 0. Thus, the poles and zeros of ψ(s) and
a(s) coincide (not necessarily with their multiplicity). Since all the poles and zeros of ψ(s) are simple (with a
possible exception of s = 0), see also (M2) in Lemma 4.9, the assertion follows immediately. �

Remark 5.14. From Theorem 3.11, there always exists ψ̃ which satisfies (NSC1) of Theorem 5.12, namely
ψ(s) = a(s), and thus, results in a stable PML.

5.3. Proof of Theorem 5.12

To prove Theorem 5.12, we proceed as follows. First of all, let us remark that the condition (NSC1) of
Theorem 5.12 is equivalent to the following two conditions:

For all ω ∈ Ωãc̃>0
p : ψ̃(ω)ã(ω) ≥ 0, (NSC1)-(a)

For all ω ∈ Ωãb̃<0
p : ψ̃(ω)ã(ω) ≥ 0. (NSC1)-(b)

We will first demonstrate that (NSC1)-(a) implies the passivity condition (NSC2)-(a). To show that from
(NSC1)-(b) the condition (NSC2)-(b) follows, we will make use of a logical argument (Lemma 5.21).

We proceed as follows:

(1) rewrite the condition (NSC2)-(a) in terms of equivalent conditions on the signs of ψ̃ in poles (zeros) of
functions ã, c̃ (Lemma 5.15);

(2) show that if ψ̃ satisfies (NSC1)-(a), then above conditions on the signs of ψ̃ follows. This is explained
in Lemma 5.16, whose proof relies largely on Lemmas 5.18, 5.20 and Corollary 5.19.

5.3.1. Reformulation of the Condition (NSC2)-(a)

We start with the following simple lemma that allows us to reformulate the passivity condition (NSC2)-(a)
in a more suitable form.

Lemma 5.15. Let a(s), c(s), ψ(s) satisfy Assumption 5.11. Then (NSC2)-(a) holds if and only if the following
limits exist and satisfy:

(a) in all poles
(
ωcj
)nc
j=0

of c̃(ω), it holds that lim
ω→ωcj

ã(ω)−1ψ̃(ω) ≥ 0.

(b) in all zeros
(
ωaj
)na
j=0

of ã(ω), it holds that lim
ω→ωaj

ψ̃(ω)c̃(ω) ≥ 0.

(c) in all poles
(
ωψj
)nψ
j=0

of ψ̃(ω), it holds that lim
ω→ωψj

ã(ω)−1c̃(ω) ≤ 0.
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Proof. Thanks to Theorem 4.4, the function c(s)a(s)−1ψ(s) is passive if and only if it has the following partial
fraction expansion:

c̃(ω)ã(ω)−1ψ̃(ω) = 1−
N∑
`=0

p`
ω2 − ω2

`

, p` > 0, ω` ∈ R, ` = 0, . . . N.

Hence to show the equivalence of the statements, it is sufficient to ensure that in each of the poles ω = ωk, k =
0, . . . , N, the following limit exists and satisfies

lim
ω→ωk

(ω2 − ω2
k)c̃(ω)ã(ω)−1ψ̃(ω) = −pk < 0. (76)

Since (ωk)
N
k=0 is a subset of poles of c̃, ã−1 and ψ̃, we separately consider (76) for each of these poles. Let ωcj

be a pole of c̃(ω). The latter function, thanks to Theorem 4.4, has an expansion c̃(ω) = 1−
nc∑̀
=0

c`
ω2−ω2

c`

, where

c` > 0 for ` = 0 . . . nc. Evaluating the limit (76) in ωk = ωcj , we obtain:

lim
ω→ωcj

(ω2 − ω2
cj )c̃(ω)ã(ω)−1ψ̃(ω) = lim

ω→ωcj

(
(ω2 − ω2

cj )c̃(ω)
)

lim
ω→ωcj

ã(ω)−1ψ̃(ω) = −cj lim
ω→ωcj

ã(ω)−1ψ̃(ω) ≤ 0.

The equality sign would mean that c(s)a(s)−1ψ(s) has no pole in ωcj . Similarly we deduce the rest of the
inequalities in the statement of the lemma. �

5.3.2. Necessary Stability Condition (NSC1)-(a) Implies Passivity of c(s)a(s)−1ψ(s)

Let us first present the main result of this section, which shows how from the necessary stability condition
(NSC1)-(a) we obtain the passivity (NSC2)-(a).

Lemma 5.16. Let a(s), ψ(s), c(s) satisfy Assumption 5.11. Assume that (NSC1)-(a) holds. Then (NSC2)-(a)
holds true as well.

Proof. Due to Lemma 5.15, it is sufficient to analyze step by step the condition on ψ in various cases: poles of
c, zeros of a, as well as examine the values of a, c in poles of ψ. Let us thus look at the following cases according
to Lemma 5.15:

• given a pole ωcj of c̃(ω), we must show that the following limit exists and satisfies: lim
ω→ωcj

ã(ω)−1ψ̃(ω) ≥
0. This follows by a direction application of Lemma 5.18, see below, with α = a, γ = c and φ = ψ.

• given a zero ωajof ã(ω), we must demonstrate lim
ω→ωaj

c̃(ω)ψ̃(ω) ≥ 0. This is shown in Corollary 5.19, see

below.
• finally, given a pole of ωψj of the function ψ̃, we obtain from Lemma 5.20, see below, the existence of

the following non-positive limit lim
ω→ωψj

c̃(ω)ã(ω)−1 ≤ 0.

�

Remark 5.17. The necessary condition in the above lemma is also sufficient, see Appendix D.

Before formulating results mentioned in the proof of Lemma 5.16, let us summarize simple properties of
passive functions and their reciprocals crucial for proving the result of Theorem 5.12, see also Figure 6 for
illustration. More precisely, for a passive rational function r(s) satisfying Assumption 4.1, it holds, thanks to
Lemmas 4.10, 4.8 and Theorem 4.4:

(P1) if ω = 0 is a pole of r̃, then r̃(ω) < 0 in a sufficiently small vicinity of ω = 0. Otherwise r̃(0) > 0.
(P2) in a pole ω > 0, the function r̃ changes its sign from positive to negative.
(P3) in a zero ω > 0, the function r̃ changes its sign from negative to positive.
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ω ω

Figure 6. In the left figure we depict r̃(ω), s.t. Re (sr(s)) > 0, s ∈ C+ and in the right one
we plot r̃(ω), s.t. r(s) satisfies Re (s̄r(s)) > 0, s ∈ C+. In both cases r(s) is a rational function
satisfying Assumption 4.1.

Similarly, for a rational function r(s) satisfying Assumption 4.1, whose reciprocal is passive, i.e. Re (s̄r(s)) > 0,
s ∈ C+, it holds, thanks to Lemmas 4.10, 4.9, Theorem 4.5:

(P̄1) if ω = 0 is a zero of r̃, then r̃(ω) < 0 in a sufficiently small vicinity of ω = 0. Otherwise r̃(0) > 0.
(P̄2) in a pole ω > 0, the function r̃ changes its sign from negative to positive.
(P̄3) in a zero ω > 0, the function r̃ changes its sign from positive to negative.

Now let us state the auxiliary results used in the proof of Lemma 5.16.

Lemma 5.18. Let α(s), φ(s), γ(s) satisfy Assumption 4.1, and Re (s̄α(s)) > 0, Re (s̄φ(s)) > 0, and
Re (sγ(s)) > 0, for all s ∈ C+. Assume that for all ω ∈ R \ (Dγ ∪ Dα) it holds

γ̃(ω)α̃(ω) > 0 =⇒ φ̃(ω)α̃(ω) ≥ 0. (77)

Then in all the poles
(
ωγj
)nγ
j=0

of γ̃(ω) the following limit exists and satisfies

0 ≤ lim
ω→ωγj

α̃(ω)−1φ̃(ω) < +∞. (78)

Proof. Let ωγj ≥ 0 be a pole of γ̃(ω) (negative poles are treated similarly). Then the following cases are possible:

• ωγj = 0. According to Theorem 4.5 applied to α(s), only one of the following can hold true:
(1) either α̃(0) = 0. Then, for sufficiently small ω > 0:

– α̃(ω)−1 < 0, see (P̄1),
– γ̃(ω) < 0, see (P1).

Thus, in a small vicinity of zero, α̃γ̃ > 0, and with (77) it follows that there φ̃(ω) ≤ 0, which is

possible only if φ̃(0) = 0, see (P̄1). Thus, φ̃, α̃ both have a zero of order 2 in ω = 0, see (M2) of

Lemma 4.9. Therefore, the following limit exists and satisfies: lim
ω→0

φ̃(ω)α̃(ω)−1 > 0.

(2) or α̃(0)−1 > 0. Applying Theorem 4.5 to φ(s), we notice φ̃(0) ≥ 0, hence (78) holds true.
• ωγj > 0. The following cases are possible:

(1) 0 < α̃(ωγj ) < ∞ (−∞ < α̃(ωγj ) < 0). Due to (P2), the inequality γ̃(ω)α̃(ω) > 0 holds for all

ω = ωγj − δ (ω = ωγj + δ), with δ > 0 being sufficiently small. As for φ̃, there are two possibilities:

– φ̃(ω) does not have a pole in ωγj . Then, due to (77), the limit (78) exists and satisfies the

inequality (78) (this includes the case φ̃(ωγj ) = 0).

– φ̃ has a pole in ωγj . This is impossible, since in this case (77) would require that φ̃(ω) > 0

(φ̃(ω) < 0) for ω = ωγj − δ (ω = ωγj + δ), for δ > 0; this would be a contradiction to the fact

that in its pole φ̃(ω) changes its sign from negative to positive, see (P̄2).
(2) α̃(ω) has a zero in ωγj . Then in ωγj α̃(ω) changes its sign from positive to negative, see (P̄3), and

so does γ̃, see (P2). Thus, in the vicinity of ωγj , the product α̃−1(ω)γ̃(ω) > 0. Therefore, (77)
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requires that φ̃(ω) ≥ 0 there. Thus φ̃ changes the sign in ωγj from positive to negative, which is

possible only if φ̃(ωγj ) = 0, see (P̄3). Since nonvanishing zeros of α̃, ψ̃ are simple, (78) holds true.
(3) α̃ has a pole in ωγj . Then there are two possibilities:

– φ̃ is finite in ωγj . This immediately implies that the limit (78) vanishes.

– φ̃ has a pole in ωγj . Due to (P̄2), in ωγj both functions φ̃, α̃ change their signs from negative
to positive (and hence their product is positive in the vicinity of the pole). This, combined

with the simplicity of poles of α̃, φ̃, shows that (78) holds true.

�

The following result is a direct corollary of the above.

Corollary 5.19. Let a(s), ψ(s), c(s) satisfy Assumption 5.11. Assume that (NSC1)-(a) holds true. Then in

all the zeros
(
ωaj
)na
j=0

of ã(ω) the following limit exists and satisfies

0 ≤ lim
ω→ωaj

c̃(ω)ψ̃(ω) < +∞. (79)

Proof. The condition (NSC1)-(a) can be rewritten as follows: for all ω ∈ R\(Da∪Dc), it holds: c̃(ω)−1ã(ω)−1 >
0 =⇒ ψ̃(ω)c̃(ω)−1 ≥ 0. Then α(s) = c(s)−1, γ(s) = a(s)−1 and φ(s) = ψ(s) satisfy conditions of Lemma 5.18
(see (14)), from which the result is immediately obtained. �

Finally, what remains to show is the following.

Lemma 5.20. Let a(s), ψ(s), c(s) satisfy Assumption 5.11. Assume that (NSC1)-(a) holds. Then in all the

poles
(
ωψj
)nψ
j=0

of ψ̃(ω), the following limit exists and satisfies

−∞ < lim
ω→ωψj

c̃(ω)ã(ω)−1 ≤ 0. (80)

Proof. Recall that ωψj = 0 cannot be a pole of ψ̃, see Theorem 4.5. Hence we consider the case ωψj > 0
(negative values are treated similarly). We thus look at the following cases:

(1) let −∞ < c̃(ωψj ) < 0 (0 < c̃(ωψj ) <∞). As for ã(ω), it satisfies either of the following:
• ã(ω) is finite and does not change its sign in ωψj . Assume by contradiction that (80) does not

hold true, i.e. c̃(ωψj )ã(ωψj )
−1 > 0. By continuity this holds in a vicinity of ωψj . Then, due to

(NSC1)-(a), ã(ω)ψ̃(ω) ≥ 0 in the vicinity of ωψj . We arrive at the contradiction, since ψ̃ changes

its sign in ωψj but not ã. Hence, necessarily, c̃(ωψj )ã(ωψj )
−1 ≤ 0.

• ωψj is a pole of ã(ω). Then obviously the limit (80) vanishes.

• ã(ωψj ) = 0: due to (P̄3), ã changes its sign from positive to negative in ωψj , and the inequality
c̃(ω)ã(ω) > 0 holds for all ω = ωγj +δ (ω = ωγj −δ), with δ > 0 being sufficiently small. Then, due

to (NSC1)-(a), the product ã(ω)ψ̃(ω) ≥ 0 for such values ω, which is impossible, since ψ̃ changes
in ωψj its sign from negative to positive and ã from positive to negative, see (P̄3) and (P̄2).

(2) c̃(ωψj ) = 0. Then either is possible for ã:
• ã(ω) is finite or has a pole in ωψj . Obviously, the limit (80) vanishes.

• if ã(ωψj ) = 0, then (P3) and (P̄2) imply that ã(ω)c̃(ω) < 0 in a vicinity of ωψj . Combined with
the fact that positive zeros and poles of ã and c̃ are simple, we obtain the existence of the limit.

(3) c̃ has a pole in ωψj . As shown in Lemma 5.18, with α = a, φ = ψ, γ = c, in this case ψ̃ can have a pole
in ωψj only if ã has a pole in ωψj . The existence of the limit follows from the fact that ωψj is a simple
pole of ã, c̃, and the sign of the limit follows from the character of the sign change of c̃ and ã in ωψj ,

see (P2) and (P̄2).

�
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5.3.3. Necessary Stability Condition (NSC1)-(b) Implies Passivity of b(s)−1a(s)ψ(s)−1 (NSC2)-(b)

Now our goal is to connect the passivity of b(s)−1a(s)ψ(s)−1 and the necessary stability condition. We will
not make use of lemmas similar to Lemma 5.18, but rather use some trivial logic arguments to show that Lemma
5.16 implies the validity of the following result.

Lemma 5.21. Let a(s), ψ(s), b(s) satisfy Assumption 5.11. If (NSC1)-(b) holds true, then so does (NSC2)-(b).

Proof. Given a, b, ψ, let us introduce the following new unknowns:

cn := ψ−1, an := b, ψn := a. (81)

Notice that cn(s) is passive, see (14). Due to Lemma 5.16, the first statement below implies the second one:

(1) for all ω ∈ R \ (Dan ∪ Dcn) it holds that

c̃nãn > 0 =⇒ ψ̃nãn ≥ 0, (82)

(2) Re(scn(s)an(s)−1ψn(s)) > 0 in C+, or, equivalently, see (14), and the notation (81), Re
(
s̄b(s)ψ(s)a(s)−1

)
>

0 in C+.

With the new notation (81), the expression (82) reads

ψ̃(ω)−1b̃(ω) > 0 =⇒ ã(ω)b̃(ω) ≥ 0, ω ∈ R \ (Dψ ∪ Db),

However, the above is equivalent to

ã(ω)b̃(ω) < 0 =⇒ ψ̃(ω)−1b̃(ω)−1 ≤ 0, ω ∈ R \ (Dψ ∪ Db),

or, alternatively, due to the continuity of all the functions in ω,

ã(ω)b̃(ω) < 0 =⇒ ψ̃(ω)ã(ω) ≤ 0, ω ∈ R \ (Da ∪ Db).

From this we obtain the desired statement. �

Remark 5.22. As before, the necessary condition in the above lemma is also sufficient, see Remark 5.17.

5.4. Numerical Experiments

In this section we will numerically verify Theorem 5.12, and study its applicability to materials with losses.

Example 5.23. (Anisotropic Lorentz material. Numerical verification of Theorem 5.12) We start with the
system (5), where we choose the parameters as follows, see Remark 2.6,

ã(ω) = ε̃2(ω)−1 =
ω2

ω2 − ω2
p

, b̃(ω) = ε̃1(ω)−1 =
ω2 − ω2

p

4

ω2 − 4ω2
p

, c̃(ω) = µ̃(ω) = 1, ωp = 5. (83)

By Theorem 5.12, stable PML in x is generated by ψ(s), s.t. ψ(s)−1 is passive and ψ̃(ω)ã(ω) ≥ 0 for ω from

Ωãb̃<0
p ∪ Ωãc̃>0 = (−∞, −ωp) ∪

(
−ωp

2
, 0
)
∪
(

0,
ωp
2

)
∪ (ωp, +∞).

Let us consider the following possible choices of ψ(s):

ψ1(s) = 1, ψ̃2(ω) =
ω2

ω2 − ω2
p

4

, ψ̃3(ω) =
ω2
(
ω2 − ω2

p

4

)
(
ω2 − ω2

p

8

) (
ω2 − ω2

p

) , ψ4(s) = ε2(s)−1. (84)
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Notice that Re (s̄ψj(s)) > 0, j = 1, . . . , 4, in C+ thanks to (M2) of Lemma 4.9. We expect the PMLs to be

unstable for ψ(s) = ψ1(s) (classical PMLs) and stable otherwise (since ψ̃j ã ≥ 0, j = 2, 3, 4, in Ωãb̃<0
p ∪ Ωãc̃>0).

In particular, ψ4 corresponds to the PML of Theorem 3.11. The parameters of the numerical experiment are
given in Table 5. As before, in y-direction we use zero Dirichlet boundary conditions.

Lx Ly Lσx Lσy σx(x) σy(y) ∆x ∆t f(t, x, y)

8 12 2 0 20x2 0 0.025 0.0125 (t− 2)e−10(t−2)
2−1000(x−3.8)2−2z2H(3.98− x)

Table 5. Parameters for the experiment with dielectric permittivity and magnetic permeabil-
ity (83). By H(x) we denote the Heaviside function. See Section 3.1.2 for notation.

The results of these experiments are shown in Figure 7.

x

y
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(t
)‖

ψ(s) = ψ1(s)

ψ(s) = ψ2(s)

ψ(s) = ψ3(s)

ψ(s) = ψ4(s)

Figure 7. Left: Hz of Example 5.23 at t = 60 computed with ψ(s) = ψ2(s), see (84). The
boundary between the physical domain and the PML is marked in black. Right: the dependence
of ‖Hz‖L2 , computed with different ψ(s), on time.

The new PMLs are stable, unlike the classical PMLs. The rate of the decrease of the solution norm for the
PMLs with ψ(s) = ψ2(s), ψ(s) = ψ3(s), ψ(s) = ψ4(s) is almost indistinguishable on the scale used in the figure.

Example 5.24. (Anisotropic Lorentz Materials with Loss) Another interesting question is whether a perfectly
matched layer which we have devised for the Lorentz materials (9) in this section can be applied to Lorentz
materials with losses, more precisely, when the dielectric permittivity/permeability are of the form

r(s) = 1 +

n∑
`=0

r`
s2 + 2ν`s+ ω2

`

, r` > 0, ω` ≥ 0, ν` ≥ 0.

It is easy to check that Re (sr(s)) > 0, s ∈ C+; this shows that all the roots of r(s) lie in C \C+. Moreover, all

poles of r(s) also lie in C\C+. To see this, notice that the poles of r(s) are given by s±` = −ν`±
√
ν2` − ω2

` , ` =

0, . . . , n. If ν` ≥ ω`, then s±` ≤ 0; otherwise Re s±` = −ν`.
We consider the problem (5) with the following parameters:

ε1(s) = 1, ε2(s) = 1 +
ε21

s2 + 2νs+ ω2
p

, µ(s) = 1, ε21 = 12, ωp = 2. (85)

Although these parameters do not satisfy Assumption 4.1, we would like to verify whether it’s possible to use for
it the PML in x-direction, which was constructed for the analogical non-dissipative case, namely ψ(s) = ε2(s)−1

from (85) with ν = 0. The necessary stability conditions of the PMLs in [9] do not cover this case, and hence
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we would like to check it numerically. We test the following choices of ψ(s) = ψj(s):

ψ1(s) = 1, ψ2(s) =

(
1 +

ε21
s2 + ω2

p

)−1
, ψ3(s) =

(
1 +

ε21
s2 + 2νs+ ω2

p

)−1
. (86)

The choice ψ(s) = ψ2(s) corresponds to a stable PML in the case ν = 0, whereas the choice ψ(s) = ψ3(s) is a
stable PML of Theorem 3.11. The parameters of the experiment are presented in Table 6.

Lx Ly Lσx Lσy σx(x) σy(y) ∆x ∆t f(t, x, y)

8 12 2 0 50x2 0 0.05 0.025 e−1000(x−3.8)
2−300y2−300z2H(3.98− x)e−15(t−1.6)

2

Table 6. Parameters for the experiment of Example 5.24 with the dielectric permittivity and
magnetic permeability (85). By H(x) we denote the Heaviside function. The notation can be
found in the beginning of Section 3.1.2.
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Figure 8. The dependence of the L2-norm of the solution Hz (computed inside the domain
and the PML) to the problem of Example 5.24 on time, computed with different PMLs. In the
left plot ν = 0.01 in (85), and in the right plot ν = 0.1.

The results of the experiment are shown in Figure 8. The choice ψ(s) = ψ3(s) results in a stable solution, thus
confirming numerically the result of Theorem 3.11 (even though here σ(x) 6= const). The choice ψ(s) = ψ2(s),
which one would hope to be stable, results in instabilities, which seem to develop at long time. However, the
larger the absorption ν is, the faster the instability occurs. The classical PMLs develop instabilities almost
immediately.

Example 5.25. (Nonlocal Materials) One of the examples of a function that satisfies the passivity requirement
Re (sf(s)) > 0, s ∈ C+, is [57, p.19] a function s−1 tanh(s), which has the following partial fraction expansion [58,
1.421.2, p.43]:

s−1 tanh(s) = 2

∞∑
`=1

(
s2 + (2`− 1)

2
(π

2

)2)−1
. (87)

One can see that the above expression coincides, up to a constant, with the expansion (50) where n =∞. We
would like to apply the results of Theorem 5.12 to the system (5) with parameters, see also Remark 5.2:

ε1(s) = s−1 tanh(4s), ε2(s) = s−1 tanh(2s), µ(s) = s−1 tanh(s). (88)

Notice that these functions do not satisfy the behaviour at the infinity as prescribed by Assumption 4.1. Our
goal is to demonstrate numerically that the statement of Theorem 5.12 can be extended to this case. More
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precisely, we would like to construct the PML in the direction x; in the direction y we will use zero boundary
conditions.

One can notice that on the interval ω ∈
(
3π
8 ,

π
2

)
, it holds

ε̃1(ω) < 0, ε̃2(ω) < 0, µ̃(ω) > 0.

According to Theorem 5.12, the sign of the function ψ̃(ω) on this interval can be arbitrary (in particular,
positive, so that it does not coincide with the sign of ε̃2(ω)). We thus suggest that the choices of ψ(s) = ψ2,3(s)
for the PML (32) in the direction x should lead to a stable method, and the choice ψ(s) = 1 would be unstable:

ψ1(s) = 1, ψ2(s) = ε2(s)−1, ψ3(s) = ε2(s)−1
(
s2 +

(
3π

8

)2
)−1(

s2 +
(π

2

)2)
. (89)

One can check that ψ̃3(ω) is positive on
(
3π
8 ,

π
2

)
, and its sign coincides on the rest of the real axis with ε̃2(ω).

To verify the condition that Re (s̄ψ3(s)) > 0 in C+, we refer to an extension of Lemma 4.10 for a certain
class of meromorphic functions, see [28, p.308, Theorem 1], as well as [59, pp.140-143] for a more detailed proof
of the corresponding result.

To explain this in more detail, let us consider the aforementioned theorem, which is originally due to Krein.

Theorem 5.26 (Theorem of Krein, [28]). In order that a meromorphic function φ(z), s.t. φ(z) is real on R,
map the upper half-plane into the upper half-plane, it is necessary and sufficient that this function be represented
in the form:

φ(z) = C
z − a0
z − b0

∏
k∈Z\{0}

(
1− z

ak

)(
1− z

bk

)−1
, (90)

with C > 0, bk < ak < bk+1, for all k ∈ Z and a−1 < 0 < b1.

It is easy to see that given any even passive meromorphic function c(s), which is real on the imaginary axis,
we can define hc(z) = zc(−iz), with z ∈ C which would satisfy the conditions of the above theorem. Moreover,
hc(z) maps the upper half plane into the upper half plane if and only if c(z) is passive. In particular, for z s.t.
Im z > 0, it holds

Imhc(z) = Re (−ihc(z)) = Re (−izc(−iz)) > 0, Re (−iz) = Im z > 0.

Moreover, such hc(z) is real on the real axis. The application of the Krein theorem gives the following repre-
sentation:

c̃(z) = c(−iz) = Cz−1
z − a0
z − b0

∏
k∈Z\{0}

(
1− z

ak

)(
1− z

bk

)−1
. (91)

If c̃(z) is even, because of symmetry of the poles and roots of c̃(z) with respect to zero, only two possibilities
are possible:

(1) either a0 = 0; from this bk = b−k+1, when k ∈ Z and ak = a−k, k ∈ Z \ {0};
(2) either b0 = 0; from this ak = a−k−1, for k ∈ Z, and bk = b−k for k ∈ Z \ {0}.

In all other cases it is impossible to place zeros and poles of c̃(z) symmetrically with respect to zero.
In particular, for ε̃2(ω), the root a0 = 0, and the other roots ak = πk

2 , with k ∈ Z \ 0. Similarly, the pole
b0 = −π4 , and bk = π

4 + π
2 (k − 1) = π

4 (2k − 1), for k ∈ Z \ {0}.
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Finding C in (91) from the condition ε2(0) = 2, we obtain the following expansion of ε2(s):

ε2(s) =
π

2i(s− iπ4 )

∏
k∈Z\{0}

(
1 +

2s

iπk

)(
1 +

4s

i(2k − 1)π

)−1
. (92)

From this expansion for ε2(s) we can obtain a similar product expansion for ψ3(s) (thus showing that hψ3(z)

is of the form (90). Notice that the poles and roots of ψ̃3(ω) interlace. The non-negative roots of ψ̃3(ω) are
π
4 ,

3π
4 ,

5π
4 , (2`− 1)π4 , with ` = 4, 5, . . .. The non-negative poles, in turn, are 0 (which is a pole of multiplicity

2), 3π
8 , π,

3π
2 , `

π
2 , where ` = 4, 5, . . .. Moreover, thanks to (89), (ψ3(s))

−1
possesses an expansion similar to

(92):

(ψ3(s))−1 =
π

2i(s− iπ4 )

∏
k∈Z\{0,±1}

(
1 +

2s

iπk

)(
1 +

4s

i(2k − 1)π

)−1(
1 +

2s

iπ

)(
1 +

4s

iπ

)−1

×
(

1− 2s

iπ

)(
1− 4s

3iπ

)−1(
1− 2s

iπ

)−1(
1 +

2s

iπ

)−1
4

π2

(
1− 8s

3iπ

)(
1 +

8s

3iπ

)(
3π

8

)2

=
9π

32i(s− iπ
4 )

∏
k∈Z\{0,±1}

(
1 +

2s

iπk

)(
1 +

4s

i(2k − 1)π

)−1(
1 +

8s

3iπ

)(
1 +

4s

iπ

)−1(
1− 8s

3iπ

)(
1− 4s

3iπ

)−1

This gives the form of the expansion (90) for hψ3(z), and shows that hψ3(z) maps the upper half plane into the
upper half plane, thanks to the Krein theorem. Hence ψ3(s) is passive.

As before, see Example 3.19, we conducted an experiment with the help of the 3-stage Radau IIA convolution
quadrature method. The rest of the parameters of the experiments are provided in Table 7. The results of the

Lx Ly Lσx Lσy σx(x) σy(y) ∆x ∆t f(t, x, y)

12 16 2 0 20x2 0 0.05 0.05 e−40x
2−40y2−12(t−10)2 (242(t− 10)2 − 24

)
H(2− |x|)H(2− |y|)

Table 7. Parameters for the experiment with a dielectric permittivity and magnetic perme-
ability (89). We discretize directly the problem (5) where the PML change of variables (32) is
used in direction x. We use zero initial conditions and the right hand side (in the time domain)
f(t, x, y). By H(x) we denote the left-continuous Heaviside function. The notation can be
found in the beginning of Section 3.1.2.

experiment are shown in Figure 9. We can observe the non-causality of the behaviour of the solution norm,
when the Bérenger’s PML is used, see Example 3.19 for a possible explanation, as well as its growth (the largest
achieved value of ‖Hz‖ not shown in the plot was close to 2 · 107), which evidences the instability of the PML.
On the other hand, both PMLs (32) with ψ(s) = ψ2(s) and ψ(s) = ψ3(s) are stable, however, one can observe
distinctively a small difference in their behaviour for this problem in the rightmost plot of Figure 9, contrary
to what happens in Example 5.23, Figure 7; notice that the difference between the computed norms is fairly
small. We measured the norms inside the domain (i.e. without the PML), and the difference between them is
much less pronounced (it would not be visible on the same scale as in Figure 9).

Moreover, we can see that the solution norm in this case decreases very slowly, which is probably due to the
dispersivity of this problem (we checked that this decay does not come from a slight dissipation of the Runge-
Kutta method by computing the norm of the solution obtained with twice smaller time step; the difference
between the norms is negligible). The stability of the PML (32) with ψ(s) = ψ2,3(s) is a numerical illustration
of the possibility of the extension of the results of Theorem 5.12 to a slightly more general class of materials.
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Figure 9. From left to right: a solution Hz of Example 5.25 computed with the new PML
with ψ(s) = ψ2(s), see (89), at the times t = 15.75, 31.75 and 59.9; the norm of the solution Hz

(inside the physical domain and the perfectly matched layer) with respect to time computed
with different PMLs. The boundary between the domain and the perfectly matched layer is
marked in black.

6. Conclusions and Open Questions

6.1. Open Questions: Stable PMLs in 3D

It is natural to ask whether the suggested PML technique and the analysis can be extended to a more broad
class of problems, in particular, to the wave propagation in 3D. Naively, one would expect that in the simplest
case of the Maxwell equations with a diagonal tensor of the dielectric permittivity and µ(s) = 1, it is sufficient
to study the well-posedness of the PML (39) applied to the acoustic dispersive 3D wave equation (written in
the Laplace domain)

a(s)∂2xu+ b(s)∂2yu+ c(s)∂2zu− s2d(s)u = 0. (93)

This is, however, not the case. One should rather consider the vector equation

curl curl E + s2ε(s)E = 0,

with ε being a diagonal matrix. This leads to several difficulties, both analytic and conceptual. First of all,

when ε = Id, it is well-known that the standard PMLs are stable. However, proving the coercivity of the

corresponding sesquilinear form with the PML in C+, as we have done in 2D, is no longer trivial, because the
corresponding spatial operator looses its self-adjoint nature. On the other hand, it is still possible to prove very
special inf-sup conditions. This is a subject of future research.

Second, it is not always possible to stabilize the PML for 3D dispersive problems using the change of variables
as in this article. In particular, in [7], one considers the 3D wave propagation in cold strongly magnetized

plasmas. There ε(s) = diag
(

1, 1, 1 +
ω2
p

s2

)
, with ωp ∈ R being a plasma frequency, and µ(s) = 1. However,

even in this very simple case the system cannot be reduced to the form (93). Moreover, one can demonstrate
that the dispersion relation is not of the form

a(s)k2x + b(s)k2y + c(s)k2z + s2d(s) = 0, (94)

but is a product of two such terms. The first term corresponds to isotropic non-dispersive waves (i.e. a =
b = c = d = 1 in (94)), which are absorbed by the classical PMLs (i.e. the choice ψ(s) = 1 would be stable).

Whereas the second term is of the form (94) with a(s) = b(s) =
(

1 +
ω2
p

s2

)−1
and c(s) = d(s) = 1, for which the
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choice ψ(s) = a(s) =
(

1 +
ω2
p

s2

)−1
is stable. Nevertheless, since both kinds of waves are present simultaneously

for the same frequency, none of these choices is suitable. It is possible to show that there exists no ψ(s) satisfying
assumptions of Section 5 that would lead to a stable 3D PML system in this case. The construction of stable
PMLs for cold plasmas requires a more elaborate treatment, and constitutes the subject of [7]. However, the
method of this article serves as an important component of the technique suggested in [7].

To summarize, the new PML change of variables (39) does not provide a general method for the stabilization
of the PMLs for a 3D anisotropic dispersive Maxwell system, however, serves as a component for stabilizing the
PMLs for such systems.

6.2. Conclusions

In this work we have shown how to construct stable perfectly matched layers for a class of anisotropic
dispersive models described in the Laplace domain by the wave equation with frequency-dependent coefficients

a(s)∂xxu+ b(s)∂yyu− s2c(s) = 0, s ∈ C+,

where the coefficients a(s), b(s), c(s) are analytic in C+, and satisfy Re (s̄a(s)) > 0, Re (s̄b(s)) > 0, Re (sc(s)) >
0, for s ∈ C+. Following [9], in order to construct the PML in one direction (assuming the PML layer is located
in a half-plane x > 0), we suggest to use the following change of variables:

x→ x+
ψ(s)

s

x∫
0

σ(x′)dx′, x > 0,

where ψ(s) satisfies Re (s̄ψ(s)) > 0, s ∈ C+. This article provides choices of ψ(s) that would stabilize the
PMLs. Based on the Laplace domain analysis in the free space for σ = const, we claim that the following
choices of ψ(s) would result in stable PMLs in the x-direction:

(1) for arbitrary passive models: ψ(s) = a(s);

(2) for isotropic passive models (where a(s) = b(s)): ψ(s) =
(
αc(s) + (1− α)a−1(s)

)−1
, 0 ≤ α ≤ 1;

(3) in the case when a(s)−1, b(s)−1, c(s) correspond to generalized Lorentz models, one can choose ψ(s),
s.t. ψ(s)−1 is Lorentz and which would satisfy the following condition for all ω ∈ R:

ã(ω)b̃(ω) < 0 or ã(ω)c̃(ω) > 0 =⇒ ã(ω)ψ̃(ω) ≥ 0.

Moreover, if b(s) = c(s)−1 (2D uniaxial cold plasma model (8)), the only possible choice among passive
ψ(s)−1 satisfying Assumption 4.1 is ψ(s) = a(s).

We confirm the obtained results with the help of numerical experiments, including examples with dissipation.
Indeed, there are many open questions remaining which are the subject of the future work. In particular, they
include the construction of stable PMLs for 3D anisotropic Maxwell’s equations, even in the simplest case of a
diagonal tensor of dielectric permittivity (where, as we discussed earlier, the instabilities cannot be overcome
by the use of a special frequency-dependent change of variables). Another important question is a construction
of stable PMLs for nonpassive materials, which is also a subject of the future research.
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Appendix A. Proof of Lemma 2.2

Define z = is, s ∈ C+, and recall that fc(z) := zc(−iz) is a Herglotz function. The upper bound on |f(z)|
can be deduced e.g. from [28, Theorem 8’, p. 18]. For consistency we show another way of computing it, using
the methods of [60], which will serve as a basis to compute the lower bound for Im fc(z) as well.

The main idea is to construct a function on the unit circle to which the Schwarz’s lemma [60, Chapter
4, Theorem 1] can be easily applied. Let us set h(s) = sc(s). Taking s0 ∈ C+, we define the Moebius
transformation [60, p.43,44]

r :=
s− s0
s+ s0

, |r| < 1, s ∈ C+,

g

(
s− s0
s+ s0

)
:=

h(s)− h(s0)

h(s) + h(s0)
.

The function g(r) is analytic inside the unit circle |r| < 1; g(0) = 0 and |g(r)| < 1. Then, thanks to the
Schwarz’s lemma, |g(r)| ≤ |r| inside the unit circle. Hence,∣∣∣∣∣h(s)− h(s0)

h(s) + h(s0)

∣∣∣∣∣ ≤
∣∣∣∣s− s0s+ s0

∣∣∣∣ . (95)

(1) The proof of the upper bound on |h(s)|. From (95) it follows

|h(s)h(s0)−1 − 1| ≤
∣∣∣∣s− s0s+ s0

∣∣∣∣ ∣∣∣h(s)h(s0)−1 − h(s0)h(s0)−1
∣∣∣ ≤ ∣∣∣∣s− s0s+ s0

∣∣∣∣ (∣∣h(s)h(s0)−1
∣∣+ 1

)
.

Using |h(s)h(s0)−1 − 1| ≥ |h(s)h(s0)|−1 − 1, and recalling that r =
∣∣∣ s−s0s+s0

∣∣∣, and |r| < 1, we get the

following bound

|h(s)| ≤ |h(s0)| (1 + r) (1− r)−1 = |h(s0)| (1 + r)
2 (

1− r2
)−1 ≤ 4|h(s0)|

(
1− r2

)−1
. (96)

Notice that the function (1 − r2)−1 grows in r; hence, let us obtain the upper bound on r in terms of
Re s and |s|:∣∣∣∣s− s0s+ s0

∣∣∣∣2 =
|s|2 − 2 Re (ss0) + |s0|2
|s|2 + 2 Re (ss0) + |s0|2

= 1− 2 Re (ss0) + 2 Re (ss0)

|s|2 + 2 Re (ss0) + |s0|2
= 1− 4 Re sRe s0

|s|2 + 2 Re (ss0) + |s0|2
. (97)

The lower bound for

Re sRe s0
|s+ s0|2

≥ 1

2

Re sRe s0
|s|2 + |s0|2

. (98)

Therefore, using (96), we obtain

|h(s)| ≤ 2|h(s0)|(Re sRe s0)−1
(
|s|2 + |s0|2

)
≤ C ′

(
|s|2 + |s0|2

)
(Re s)

−1
,

for some C ′ > 0. From this we immediately obtain, for some C > 0,

|sc(s)| ≤ C ′|s|2
(
1 + |s0|2|s|−2

)
(Re s)

−1 ≤ C|s|2 (Re s)
−1

max
(

1, (Re s)
−2
)
, s ∈ C+.

The same (up to a constant) bound can be obtained with the help of [28, Theorem 8’, p. 18].
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(2) The proof of the lower bound on Reh(s), s ∈ C+. We rewrite (95) as follows, with the use of (97):

|h(s)|2 − 2 Re(h(s0)h(s)) + |h(s0)|2
|h(s)|2 + 2 Re(h(s0)h(s)) + |h(s0)|2 = 1− 4 Reh(s) Reh(s0)

|h(s) + h(s0)|2
≤ 1− 4 Re sRe s0

|s|2 + 2 Re(s0s) + |s0|2
.

This gives, with the use of (98),

Reh(s) Reh(s0)

|h(s) + h(s0)|2
≥ 1

2

Re sRe s0
|s|2 + |s0|2

.

Next, notice that |h(s)+h(s0)|2 ≥
(

Reh(s) + Reh(s0)
)2
≥ (Reh(s0))

2
. Using |s|2+|s0|2 ≤ C0 max(|s|2, 1), C0 >

0, we obtain the desired bound:

Reh(s) ≥ C min(|s|−2, 1) Re s ≥ C|s|−2 Re smin(1, (Re s)2).
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Appendix B. Proof of Corollary 3.9

First, let us prove the result for arbitrary materials. Notice that for any a(s), ψ(s) satisfying the conditions
of the corollary, the bound (42) holds with the following parameters, see Corollary 2.4,∣∣∣∣ψ(s)

a(s)

∣∣∣∣ =

∣∣∣∣ s̄ψ(s)

s̄a(s)

∣∣∣∣ ≤ |s||ψ(s)| (Re (s̄a(s)))
−1 ≤ C|s|4 (Re s)

−2
max(1, (Re s)

−4
), C > 0.

For the Lorentz materials, let us bound a(s)−1 which has an expansion (9), i.e. a(s)−1 = 1 +
na∑̀
=0

a`
s2+ω2

`
, with

a` > 0 and ω` ∈ R. Notice that for all ω ∈ R and s ∈ C+, it holds that∣∣∣∣ 1

s2 + ω2

∣∣∣∣ =
1

|s− iω||s+ iω| ≤
1

|s|Re s
. (99)

Then, for some C, C̃ > 0, the modulus |a(s)−1| ≤ 1 + C
|s|Re s ≤ C̃ max

(
1, (Re s)

−2
)

. Thanks to the inequality

Re(sψ(s)−1) > Re s, cf. Theorem 4.4, we obtain∣∣∣∣ψ(s)

a(s)

∣∣∣∣ ≤ ∣∣∣∣ sa(s)−1

sψ(s)−1

∣∣∣∣ ≤ C̃|s|max
(

1, (Re s)
−2
) (

Re sψ(s)−1
)−1 ≤ C̃|s|max

(
1, (Re s)

−3
)
.
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Appendix C. Construction of a Function ψ(s) Satisfying Conditions of
Theorem 5.12

In [9], the authors have proposed a procedure to construct the function ψ(s) that results in stable perfectly
matched layer for isotropic dispersive systems, based on a result similar to Theorem 5.12. Let us briefly comment
on the extension (and a minor modification) of their procedure to anisotropic dispersive systems in question.
Consider a passive sesquilinear form A(u, v) that satisfies Assumption 5.1. Let us describe a procedure of
choosing a function ψ(s) for the PML change of variables that satisfies conditions of Theorem 5.12.

The condition (NSC1) of Theorem 5.12 can be rewritten alternatively in the following form. Either the sign

of ψ̃ is constant on the real axis (and thus is positive, since ψ̃(ω) → 1 as ω → ∞), or there exists a set of
intervals Ik = (ω2k−1, ω2k), k = 1, . . . ,m, with 0 ≤ ω1 < ω2 ≤ ω3 < . . . ≤ ω2k−1 < ω2m = +∞, s.t. the sign of

the function ψ̃(ω) on an interval Ik is opposite to the sign of ψ̃(ω) on the intervals Ik−1 and Ik+1. These signs
are defined by the signs of ã(ω). Let us remark that ω2m = +∞, since as ω → +∞, c̃(ω)ã(ω) > 0, and thus,

ψ̃(ω) > 0.

The case when the sign of ψ̃ is constant on R, is trivially reduced to using the Bérenger’s PML ψ̃ = 1.
Otherwise, following [9], we consider two cases:

(1) m = 2` − 1, ` > 1. In this case the sign of ψ̃(ω) on I1 coincides with the sign of ψ̃(ω) on (ω2m,+∞),
i.e. is positive. One can verify that the following holds true:

ω ∈ (ω4k−3, ω4k−2) =⇒ ψ̃(ω) ≥ 0,

ω ∈ (ω4k−1, ω4k) =⇒ ψ̃(ω) ≤ 0.
(100)

Thus, one of the choices of ψ̃(ω) is given by

ψ̃(ω) =

`−1∏
k=1

(ω2 − r2k)

(ω2 − p2k)
, rk ∈ [ω4k−2, ω4k−1], pk ∈ [ω4k, ω4k+1].

First of all, notice that for all k = 1, . . . , `−2, the following interlacing property holds true: rk ≤ ω4k−1 <
ω4k ≤ pk ≤ ω4k+1 < ω4k+2 ≤ rk+1. Applying Lemma 4.10, we see that ψ̃(ω) satisfies Re (s̄ψ(s)) > 0

in C+. It remains only to verify that ψ̃ defined as above satisfies the sign conditions (108). Taking
ω∗ ∈ (ω4j−3, ω4j−2), we can split

ψ̃(ω) =

j−1∏
k=1

(ω2 − r2k)

(ω2 − p2k)

`−2∏
k=j

(ω2 − r2k)

(ω2 − p2k)
= ψ̃

(1)
j (ω)ψ̃

(2)
j (ω).

One sees that all the poles and zeros of ψ̃
(1)
j (ω) are smaller than ω∗ (notice that pj−1 ≤ ω4j−3), hence

ψ̃
(1)
j (ω∗) > 0. Similarly, all the poles and zeros of ψ̃

(2)
j (ω) are larger than ω∗ (since rj ≥ ω4j−2), hence

by direct computation ψ̃
(2)
j (ω∗) > 0. Therefore, ψ̃(ω∗) > 0.

Similarly one can verify the validity of (108) for ω∗ ∈ (ω4j−1, ω4j).

(2) m = 2`, ` > 1. In this case the sign of ψ̃(ω) on I1 is negative. One can verify that the following holds
true:

ω ∈ (ω4k−3, ω4k−2) =⇒ ψ̃(ω) ≤ 0,

ω ∈ (ω4k−1, ω4k) =⇒ ψ̃(ω) ≥ 0.
(101)
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One of the choices of ψ̃(ω) is provided by

ψ̃(ω) =

`−1∏
k=1

(ω2 − r2k)

(ω2 − p2k)
, r1 ∈ [0, ω1], rk ∈ [ω4k, ω4k+1], p1 ∈ [ω2, ω3], pk ∈ [ω4k+2, ω4k+3].

As before, the condition Re (s̄ψ(s)) > 0 for s ∈ C+, and the sign conditions (109) can be ensured by
the direct use of Lemma 4.10 and computations as in the previous case.
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Appendix D. Proof of Equivalence in Lemma 5.16

Lemma D.1. Let a(s), ψ(s), c(s) satisfy Assumption 5.11. Assume (NSC2)-(a) holds true, i.e. c(s)a(s)−1ψ(s)

is passive. Then (NSC1)-(a) holds, i.e. for all ω ∈ Ωac>0
p the product ψ̃(ω)ã(ω) ≥ 0.

Proof. First of all, in ω = 0, due to Theorem 4.5, it holds that ψ̃(0)ã(0) ≥ 0. Due to the equivalence of the

positivity of the derivative (ωf̃(ω))′ > 0, ω ∈ R, and the property Re (sf(s)) > 0 in C+, the following derivative

is strictly positive for ω ∈ R with the exception of poles of c̃ψ̃ã−1:(
ωc̃(ω)ψ̃(ω)ã(ω)−1

)′
= (ωc̃(ω))′ψ̃(ω)ã(ω)−1 + ωc̃(ω)ψ̃(ω)′ã(ω)−1 + ωc̃(ω)ψ̃(ω)(ã(ω)−1)′ > 0. (102)

Take ω s.t. c̃(ω)ã(ω) > 0 and assume that ã(ω)ψ̃(ω) < 0. Using the equation (14), which shows the passivity
of a(s)−1, and Lemmas 4.8 and 4.9 about the signs of the derivatives of the passive functions, we obtain that
each term of the above is strictly negative, and thus the contradiction. �

Remark D.2. One could try proving Lemma 5.16 by examining the sign of the derivative (102); however, when

c̃(ω)ã(ω) < 0, and ψ̃(ω)ã(ω) is of any sign, one does not see immediately that the expression (102) is strictly
positive.
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Appendix E. Dispersion Relation for Anisotropic Lorentz Materials

In this section we provide some details on a computation of the dispersion relation of the Lorentz system
(60). For simplicity, we will compute it for the corresponding 1D formulation (in the 2D case the computation
remains the same):

∂tEx +

nx∑
`=0

εx`jx` = ∂yHz,

∂tHz +

nµ∑
`=0

µ`jµ` = ∂yEx,

∂tjx` + ω2
x`px` = Ex, ∂tpx` = jx`, ` = 0, . . . , nx,

∂tjµ` + ω2
µ`pµ` = Hz, ∂tpµ` = jµ`, ` = 0, . . . , nµ.

We consider the plane-wave solutions of the above system in the form Ve−iωt+ik·x, where V ∈ C2(nx+1)+2(nµ+1)+2

is a constant vector. There exists such a solution with V 6= 0 if and only if the determinant of the following
block matrix vanishes:

U =

UExEx UExHz

UHzEx UHzHz

 , UExHz = diag (−iky, 0, . . . , 0) ∈ C(2nx+1)×(2nµ+1),

UHzEx = diag (−iky, 0, . . . , 0) ∈ C(2nx+1)×(2nµ+1),

UExEx =

 −iω εx0 0 εx1 0 . . . εxnx 0

v2(nx+1)×1 Ωx

 ,

UHzHz =

 −iω µ0 0 µ1 0 . . . µnµ 0

v2(nµ+1)×1 Ωy

 ,

where

Ωα =



−iω ω2
α0 0 0 . . . 0 0

−1 −iω 0 0 . . . 0 0

0 0 −iω ω2
α1 . . . 0 0

0 0 −1 −iω . . . 0 0
...

0 0 0 0 . . . −iω ω2
αnα

0 0 0 0 . . . −1 −iω


, α ∈ {x, µ}, (103)

v2m×1 is a vector of size 2m× 1, (v2m×1)k =

 −1 k is odd,

0 k is even.

To compute the determinant of U , we multiply each of its 2(k + 1) + 1st column, with k = 0, . . . , nx, by
(−iω)−1 and add it to the 2(k + 1)st column. Next, we repeat the same procedure for 2(nx + 1) + 4 + 2m and
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2(nx + 1) + 3 + 2mth columns correspondingly, where m = 0, . . . , nµ. This results in the following expression
for the determinant of the matrix U :

detU = det

ŨExEx UExHz

UHzEx ŨHzHz

 ,

ŨExEx =

 −iω εx0 0 εx1 0 . . . εxnx 0

v2(nx+1)×1 Ω̃x

 ,

ŨHzHz =

 −iω µ0 0 µ1 0 . . . µnµ 0

v2(ny+1)×1 Ω̃y

 ,

Ω̃α =



−iω
(

1− ω2
α0

ω2

)
ω2
α0 0 0 . . . 0 0

0 −iω 0 0 . . . 0 0

0 0 −iω
(

1− ω2
α1

ω2

)
ω2
α1 . . . 0 0

0 0 0 −iω . . . 0 0
...

0 0 0 0 . . . −iω
(

1− ω2
αnα

ω2

)
ω2
αnα

0 0 0 . . . 0 −iω


, α ∈ {x, µ}.

This, in turn can be rewritten as

|detU | =
∣∣(−iω)nx+nµ+2

∣∣ ∣∣∣∣∣∣det

Ũ ′ExEx Ũ ′ExHz

Ũ ′HzEx Ũ ′HzHz

∣∣∣∣∣∣ , (104)

Ũ ′ExEx =

 −iω εx0 εx1 . . . εxnx

−1(nx+1)×1 Ω̃′x

 , Ũ ′HzHz =

 −iω µ0 µ1 . . . µnµ

−1(nµ+1)×1 Ω̃′y

 ,

where

Ω̃′α =



−iω
(

1− ω2
α0

ω2

)
0 . . . 0

0 −iω
(

1− ω2
x1

ω2

)
. . . 0

...

0 0 . . . −iω
(

1− ω2
xnx

ω2

)


, α ∈ {x, µ}, (105)

1m×1 is a vector of size m× 1, 1m×1 = (1, . . . , 1)
T
, (106)

and Ũ ′ExHz ∈ C(nx+2)×(nµ+2), Ũ ′HzEx ∈ C(nµ+2)×(nx+2) are such that (Ũ ′ExHz )11 = (Ũ ′HzEx)11 = −iky. Next,

for k = 0, . . . , nx, scale k + 1st row by −
(
−iω

(
1− ω2

xk

ω2

))−1
εxk and add the result to the first row. Ev-

ery nx + 4 + mth row, for m = 0, . . . , nµ scaled by −
(
−iω

(
1− ω2

µm

ω2

))−1
µm we add to the nx + 4th
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row. Notice that the entry (1, 1) of the matrix Ũ ′ExEx becomes −iω +
nx+1∑
k=1

(
−iω

(
1− ω2

xk−1

ω2

))−1
εxk−1 =

−iω
(

1−
nx+1∑
k=1

(
ω2 − ω2

xk−1
)−1

εxk−1

)
= −iωε̃1(ω). Similarly, the entry (1, 1) of the matrix ŨHzHz becomes

−iωµ̃(ω). After this procedure, it remains to compute the following:

|detU | =
∣∣(−iω)nx+nµ+2

∣∣ ∣∣∣∣∣∣det

 ˜̃U ′ExEx Ũ ′ExHz

Ũ ′HzEx
˜̃U ′HzHz

∣∣∣∣∣∣ ,
˜̃U ′ExEx =

 −iωε̃1(ω) 0 0 . . . 0

−1(nx+1)×1 Ω̃′x

 , ˜̃U ′HzHz =

 −iωµ̃(ω) 0 0 . . . 0

−1(nµ+1)×1 Ω̃′µ

 ,

from which it immediately follows that

|detU | =
∣∣∣∣∣ωnx+nµ+2ωnx+nµ+2

nµ∏
`=0

(
1−

ω2
µ`

ω2

)
nx∏
`=0

(
1− ω2

x`

ω2

)∣∣∣∣∣×
∣∣∣∣∣∣det

−iωε̃1(ω) −iky
−iky −iωµ̃(ω)

∣∣∣∣∣∣ (107)

=

∣∣∣∣∣
nµ∏
`=0

(
ω2 − ω2

µ`

) nx∏
`=0

(
ω2 − ω2

x`

)∣∣∣∣∣× ∣∣−ω2ε̃1µ̃+ k2y
∣∣

=

∣∣∣∣∣
nµ∏
`=0

(
ω2 − ω2

µ`

) nx∏
`=0

(
ω2 − ω2

x`

)
ε̃1

∣∣∣∣∣× ∣∣−ω2µ̃+ k2y ε̃
−1
1

∣∣
We can generalize the above result to two dimensions; the dispersion relation for the system (60) reads (an
extra factor ω comes from iωε̃2(ω) in the corresponding matrix in the final computation (107):

F (ω,k) =

nµ∏
`=0

(
ω2 − ω2

µ`

) nx∏
`=0

(
ω2 − ω2

x`

) ny∏
`=0

(
ω2 − ω2

y`

)
ε̃1(ω)ε̃2(ω)ω

(
k2xε̃
−1
2 + k2y ε̃

−1
1 − ω2µ̃(ω)

)
= 0.
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Appendix F. Dispersion Relation for Anisotropic Lorentz Materials with the
PML

In this appendix we briefly comment on how to compute the dispersion relation for the system (62).
Let us for simplicity assume that nx = ny = nµ = nψ = 0. Following the procedure of Appendix E, we

require that the determinant of the following matrix vanishes:

detV = det



VExEx VExEy VExHz VExE∗
y

VExH∗
z

VEyEx VEyEy VEyHz VEyE∗
y

VEyH∗
z

VHzEx VHzEy VHzHz VHzE∗
y

VHzH∗
z

VE∗
yEx

VE∗
yEy

VE∗
yHz

VE∗
yE

∗
y

VE∗
yH

∗
z

VH∗
zEx

VH∗
zEy

VH∗
zHz

VH∗
zE

∗
y

VH∗
zH

∗
z


,

where

VEαEα =


−iω εα0 0

−1 −iω ω2
α0

0 −1 −iω

 , α ∈ {x, y}, VHzHz =


−iω εµ0 0

−1 −iω ω2
µ0

0 −1 −iω

 ,

VE∗
yE

∗
y

= VH∗
zH

∗
z

=


−iω + σ cψ0 0

−1 −iω r2ψ0

0 −1 −iω



and the following matrices are empty or diagonal with a non-vanishing entry (1, 1) (the size of these matrices
can be deduced from the size of the diagonal matrices which are given in a more explicit manner further):

VExEy = VEyEx = 0, VExE∗
y

= VE∗
yEx

= 0, VExH∗
z

= VH∗
zEx

= 0, VEyH∗
z

= VH∗
zEy

= 0,

VExHz = VHzEx =


−iky 0 0

0 0 0

0 0 0

 , VEyHz = VHzEy =


ikx 0 0

0 0 0

0 0 0

 , VEyE∗
y

= VHzH∗
z

=


σ 0 0

0 0 0

0 0 0

 ,

VE∗
yEy

= VH∗
zHz

= 0, VE∗
yHz

= VH∗
zEy

=


ikx 0 0

0 0 0

0 0 0

 , VE∗
yH

∗
z

= VH∗
zE

∗
y

= VHzE∗
y

= VEyH∗
z

= 0.

We perform the following operations (numbering of rows/lines starts with 1)
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(1) 3kth row multiply by (−iω)−1, add to the 3k − 1st row, for k ≤ 5. This results in

detV = detV (1) = det



V
(1)
ExEx

VExEy VExHz VExE∗
y

VExH∗
z

VEyEx V
(1)
EyEy

VEyHz VEyE∗
y

VEyH∗
z

VHzEx VHzEy V
(1)
HzHz

VHzE∗
y

VHzH∗
z

VE∗
yEx

VE∗
yEy

VE∗
yHz

V
(1)
E∗
yE

∗
y

VE∗
yH

∗
z

VH∗
zEx

VH∗
zEy

VH∗
zHz

VH∗
zE

∗
y

V
(1)
H∗
zH

∗
z


,

where

V
(1)
EαEα

=


−iω εα0 0

−1 −iω
(

1− ω2
α0

ω2

)
ω2
α0

0 0 −iω

 , α ∈ {x, y}, V
(1)
HzHz

=


−iω εµ0 0

−1 −iω
(

1− ω2
µ0

ω2

)
ω2
µ0

0 0 −iω

 ,

V
(1)
E∗
yE

∗
y

= V
(1)
H∗
zH

∗
z

=


−iω + σ cψ0 0

−1 −iω
(

1− r2ψ0

ω2

)
r2ψ0

0 0 −iω

 .

(2) for k ≤ 7, multiply the 2k-th row by the element (V
(1)
2k,2k)−1, add to the (2k − 1)st row. This results in

the following

detV = detV (2) = det



V
(2)
ExEx

VExEy VExHz VExE∗
y

VExH∗
z

VEyEx V
(2)
EyEy

VEyHz VEyE∗
y

VEyH∗
z

VHzEx VHzEy V
(2)
HzHz

VHzE∗
y

VHzH∗
z

VE∗
yEx VE∗

yEy VE∗
yHz V

(2)
E∗
yE

∗
y

VE∗
yH

∗
z

VH∗
zEx

VH∗
zEy

VH∗
zHz

VH∗
zE

∗
y

V
(2)
H∗
zH

∗
z


,

V
(2)
EαEα

=


−iωε̃α(ω) εα0 0

0 −iω
(

1− ω2
α0

ω2

)
ω2
α0

0 0 −iω

 , α ∈ {x, y}, V
(2)
HzHz

=


−iωµ̃(ω) εµ0 0

0
(

1− ω2
µ0

ω2

)
ω2
µ0

0 0 −iω

 ,

V
(2)
E∗
yE

∗
y

= V
(2)
H∗
zH

∗
z

=


−iωψ̃(ω)−1 + σ cψ0 0

0 −iω
(

1− r2ψ0

ω2

)
r2ψ0

0 0 −iω

 .
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This determinant can be simplified to the following explicit expression

det V = (−1)5(ω2 − ω2
x0)(ω2 − ω2

y0)(ω2 − ω2
µ0)(ω2 − r2ψ0)2

× det



−iωε̃x(ω) 0 −iky 0 0

0 −iωε̃y(ω) ikx σ 0

−iky ikx −iωµ̃(ω) 0 σ

0 0 ikx −iωψ̃(ω)−1 + σ 0

0 ikx 0 0 −iωψ̃(ω)−1 + σ


.

Substracting from the second row the 4th row multiplied by σ(−iωψ̃−1 + σ)−1, and from the third row

the fifth row multiplied by σ(−iωψ̃−1 + σ)−1, we obtain

det V = (−1)5(ω2 − ω2
x0)(ω2 − ω2

y0)(ω2 − ω2
µ0)(ω2 − r2ψ0)2

× det



−iωε̃x(ω) 0 −iky 0 0

0 −iωε̃y(ω) ikx

(
1− σ

−iωψ̃−1+σ

)
0 0

−iky ikx

(
1− σ

−iωψ̃−1+σ

)
−iωµ̃(ω) 0 0

0 0 ikx −iωψ̃(ω)−1 + σ 0

0 ikx 0 0 −iωψ̃(ω)−1 + σ


.

From this, immediately,

det V = (−1)5(ω2 − ω2
x0)(ω2 − ω2

y0)(ω2 − ω2
µ0)(ω2 − r2ψ0)2(−iωψ̃−1 + σ)2

× det


−iωε̃x(ω) 0 −iky

0 −iωε̃y(ω) ikx

(
1− σ

−iωψ̃−1+σ

)
−iky ikx

(
1− σ

−iωψ̃−1+σ

)
−iωµ̃(ω)


= −iωε̃−1x ε̃−1y (−1)5(ω2 − ω2

x0)(ω2 − ω2
y0)(ω2 − ω2

µ0)(ω2 − r2ψ0)2(−iωψ̃−1 + σ)2

ω2µ̃− ε̃−1y k2x

(
1− σψ̃

iω

)−2
− ε̃−1x k2y

 .
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Appendix G. Construction of a Function ψ(s) Satisfying Conditions of
Theorem 5.12

In [9], the authors have proposed a procedure to construct the function ψ(s) that results in stable perfectly
matched layer for isotropic dispersive systems, based on a result similar to Theorem 5.12. Let us briefly comment
on the extension (and a minor modification) of their procedure to anisotropic dispersive systems in question.
Consider a passive sesquilinear form A(u, v) that satisfies Assumption 5.1. Let us describe a procedure of
choosing a function ψ(s) for the PML change of variables that satisfies conditions of Theorem 5.12.

The condition (NSC1) of Theorem 5.12 can be rewritten alternatively in the following form. Either the sign

of ψ̃ is constant on the real axis (and thus is positive, since ψ̃(ω) → 1 as ω → ∞), or there exists a set of
intervals Ik = (ω2k−1, ω2k), k = 1, . . . ,m, with 0 ≤ ω1 < ω2 ≤ ω3 < . . . ≤ ω2k−1 < ω2m = +∞, s.t. the sign of

the function ψ̃(ω) on an interval Ik is opposite to the sign of ψ̃(ω) on the intervals Ik−1 and Ik+1. These signs
are defined by the signs of ã(ω). Let us remark that ω2m = +∞, since as ω → +∞, c̃(ω)ã(ω) > 0, and thus,

ψ̃(ω) > 0.

The case when the sign of ψ̃ is constant on R, is trivially reduced to using the Bérenger’s PML ψ̃ = 1.
Otherwise, following [9], we consider two cases:

(1) m = 2` − 1, ` > 1. In this case the sign of ψ̃(ω) on I1 coincides with the sign of ψ̃(ω) on (ω2m,+∞),
i.e. is positive. One can verify that the following holds true:

ω ∈ (ω4k−3, ω4k−2) =⇒ ψ̃(ω) ≥ 0,

ω ∈ (ω4k−1, ω4k) =⇒ ψ̃(ω) ≤ 0.
(108)

Thus, one of the choices of ψ̃(ω) is given by

ψ̃(ω) =

`−1∏
k=1

(ω2 − r2k)

(ω2 − p2k)
, rk ∈ [ω4k−2, ω4k−1], pk ∈ [ω4k, ω4k+1].

First of all, notice that for all k = 1, . . . , `−2, the following interlacing property holds true: rk ≤ ω4k−1 <
ω4k ≤ pk ≤ ω4k+1 < ω4k+2 ≤ rk+1. Applying Lemma 4.10, we see that ψ̃(ω) satisfies Re (s̄ψ(s)) > 0

in C+. It remains only to verify that ψ̃ defined as above satisfies the sign conditions (108). Taking
ω∗ ∈ (ω4j−3, ω4j−2), we can split

ψ̃(ω) =

j−1∏
k=1

(ω2 − r2k)

(ω2 − p2k)

`−2∏
k=j

(ω2 − r2k)

(ω2 − p2k)
= ψ̃

(1)
j (ω)ψ̃

(2)
j (ω).

One sees that all the poles and zeros of ψ̃
(1)
j (ω) are smaller than ω∗ (notice that pj−1 ≤ ω4j−3), hence

ψ̃
(1)
j (ω∗) > 0. Similarly, all the poles and zeros of ψ̃

(2)
j (ω) are larger than ω∗ (since rj ≥ ω4j−2), hence

by direct computation ψ̃
(2)
j (ω∗) > 0. Therefore, ψ̃(ω∗) > 0.

Similarly one can verify the validity of (108) for ω∗ ∈ (ω4j−1, ω4j).

(2) m = 2`, ` > 1. In this case the sign of ψ̃(ω) on I1 is negative. One can verify that the following holds
true:

ω ∈ (ω4k−3, ω4k−2) =⇒ ψ̃(ω) ≤ 0,

ω ∈ (ω4k−1, ω4k) =⇒ ψ̃(ω) ≥ 0.
(109)
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One of the choices of ψ̃(ω) is provided by

ψ̃(ω) =

`−1∏
k=1

(ω2 − r2k)

(ω2 − p2k)
, r1 ∈ [0, ω1], rk ∈ [ω4k, ω4k+1], p1 ∈ [ω2, ω3], pk ∈ [ω4k+2, ω4k+3].

As before, the condition Re (s̄ψ(s)) > 0 for s ∈ C+, and the sign conditions (109) can be ensured by
the direct use of Lemma 4.10 and computations as in the previous case.
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