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Reduced Model for Control in a Hydroelectric Unit at Off-Design
Operation

Simon Gerwig, Bilal Sari, Federica Garin and Carlos Canudas-de-Wit

Abstract— This paper describes the development of a
reduced-order linear mathematical model of a hydroelectric
unit subject to pressure perturbations in the draft tube of the
hydraulic turbine, as it is the case at off-design operation (par-
tial load or full load). The objective behind this development is
to design a control algorithm able to attenuate the effect of these
hydraulic pressure oscillations on the hydroelectric unit. First,
we develop the reduced-order linear hydraulic model of the
turbine and the pipes. Then this hydraulic model is combined
with a reduced order model of a single machine infinite bus
(SMIB) system. Finally we present simulation results of a
controller designed with this model.

I. INTRODUCTION

Hydroelectric power plants contribute to the stability of
the electrical network thanks to their fast time response in
comparison to other electricity sources. The hydraulic turbine
converts the potential energy of water stored in natural or
artificial reservoirs into rotating mechanical energy, which is
then converted to electricity by the electric generator. Fig. 1
is a drawing of a two-units hydroelectric powerplant showing
two reaction type turbines with their draft tubes and the
generators.

Typical Francis or pump turbines are designed for an
optimal flow and are operated around this point. With the
increase use of intermittent energy sources such as solar
panels and wind turbines, the operating range of the turbines
is extended. At off-design operation of the hydraulic turbine
(when the flow through the turbine is smaller or larger than
the optimal flow), some hydraulic phenomena set up in the
draft tube and produce pressure oscillations. At partial load,
for example, a helical vortex rope builds up in the draft
tube and induces pressure oscillations in the hydraulic system
with a frequency in the range of 0.2 to 0.4 times the turbine
rotational frequency [1]. These pressure oscillations are con-
verted into mechanical torque oscillations and eventually into
electric power oscillations. Therefore the idea is to design a
control algorithm able to attenuate the effect of these pressure
oscillations on the hydroelectric unit. An important effort
towards this aim is to find a suitable model of the physical
system, simple enough to make the control design effective,
but rich enough to capture the system behavior.
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Fig. 1. Hydroelectric power plant picture with 1) the hydraulic turbine, 2)
the turbine draft tube and 3) the synchronous generator.

A. State of the Art

The primary focus of the control literature of hydraulic
turbine is to tackle the two main features of the hydraulic
system, the non-minium phase characteristic and the nonlin-
earities of the turbine [2] [3]. Therefore mathematical models
have been developed to represent these two aspects and [4] is
the result of a working group on turbine modeling, where the
authors develop several models of nonlinear ideal turbines
along with models of pipes taking into account traveling
waves or not through the use of hyperbolic functions.

Several strategies have been developed to design a con-
troller able to control the nonlinear turbine, such as PID gain
scheduling [5] which uses linearized characteristic curves for
the turbine model, robust control [6] with the linear ideal
model described in [4] and adaptive control [7].

Predictive control has been developed on a six-units power
plant in [8] where the authors have developed a linear model
of the hydraulic turbines sharing a common penstock and a
linear model of the electric generator. They compare their
proposed algorithm with the classical PI controller in terms
of cross-coupling between the units.

One-dimensional dynamic models of pressure perturba-
tions occurring at partial or full load exist in the hydraulic
literature [9], [10] which rely on two parameters character-
izing the vortices. A more simpler approach is to represent
the pressure oscillations as an external perturbation as in [1].
The latter will be used here.

Some authors have considered the partial vortex effects on
the active power. In [11], they consider torque oscillations
at partial load and tune the power system stabilizer (PSS)



of a the synchronous machine to damp the active power
oscillations. In a similar manner, the author in [12] tunes
the PSS of the unit to damp the effect of the vortex rope
oscillations considering that there is an external perturbation
acting on the mechanical torque.

B. Paper Contribution

In this paper, we develop a reduced order mathematical
model of a hydroelectric unit subject to off-design pressure
oscillations. We consider that an external perturbation is
entering the system in the draft tube of the turbine, with the
perturbation modeled as a sine function of known frequency.
The hydraulic sub-system is represented by a linear model
taking into account travelling pressure waves into the pipes
using the finite elements method and the turbine is modeled
by a linearization of its characteristic curves. After an order
reduction, this hydraulic model is combined with a linear
third order model of a synchronous generator connected to
an infinite bus. We finally present simulation results of a
controller designed with this model.

II. NOTATIONS AND DEFINITIONS

TABLE I
HYDRAULIC NOTATIONS

q(x, t) Water flow in pipe at section x and time t (m3/s)
qt Water flow through the turbine (m3/s)

h(x, t) Water head at section x and time t (m)
hn Water head difference between inlet and outlet of the turbine (m)
α Guide vane opening angle (degrees)

Tm Mechanical torque produced by the turbine
x Linear abscissa along the pipe (m)
t Time (s)
g Acceleration of gravity = 9.81 m/s2

L Pipe length (m)
A Pipe area (m2)
D Pipe diameter (m)
a Wave propagation velocity = 1200 m/s
f Head loss constant

III. SYSTEM DESCRIPTION AND MATHEMATICAL MODEL

A. System Physical Description

We consider a hydroelectric unit where a penstock is
providing water from an upstream reservoir to a reaction tur-
bine (Francis for example), from which the turbine produces
mechanical torque. This mechanical energy is then converted
to electricity by a synchronous generator connected to the
electrical network.

Mathematical dynamic models for off-design pressure
oscillations in the draft tube have been developed in the
hydraulic literature [10]. While these models are useful to
understand the phenomena, they are too complicated for
control design purposes. This is the reason why we consider
a simpler approach where the pressure oscillations induced
by off-design hydraulic phenomena are considered to be an
external perturbation. This external perturbation hw will be
mathematically represented by a sine function:

hw = Ah sinωht, (1)

TABLE II
ELECTRO-MECHANICAL NOTATIONS

Pt, Qt
Active and reactive powers transmitted
to the grid at machine terminals (p.u.)

Et, It Voltage and current at machine terminals (p.u.)
Efd Excitation voltage (p.u.)

Φ Power factor angle (rad)
δi Internal angle (rad)
ωr Rotational speed (p.u.)
KD Friction coefficient (p.u.)
H Inertia constant (p.u.)

ed, eq Terminal voltage d, q-axis components (p.u.)
id, iq Terminal current d, q-axis components (p.u.)

EBd, EBq Bus voltage d, q-axis components (p.u.)
δ Load angle (rad)

EB Bus voltage (p.u.)
ifd Rotor field current (p.u.)

Ψad,Ψaq d, q-axis flux linkage (p.u.)
Xds, Xqs d, q-axis saturated reactances (p.u.)

Ra Stator resistance (p.u.)
Ladu, Lads Unsat. and saturated mutual inductance in d-axis (p.u.)
XE , RE Line reactance and resistance (p.u.)
Lfd, Rfd Rotor field leakage inductance (p.u.) and resistance

Ll Leakage inductance (p.u.)
X′ds Transient d-axis saturated reactance (p.u.)

TurbinePenstock PS Downstream
ReservoirReservoir

Upstream

Draft tube

Pipe 1 Pipe 2

Generator Line Infinite
Bus

Inertia

Fig. 2. Hydroelectric system schematic diagram. The hydraulic subsystem
consists of an upstream reservoir, a penstock, a pump turbine which draft
tube is modeled by two pipes in series with a pressure source (PS), and a
downstream reservoir. The turbine provides rotating mechanical energy to
the synchronous generator which is connected to the electrical grid through
a line impedance.

where Ah is the amplitude of the perturbation in meters, ωh

its frequency in rad/s and t the time in seconds. With labo-
ratory and on-site measurements, it is possible to determine
ωh. The amplitude Ah is difficult to determine because this
model of the perturbation is not directly measurable in reality
and because it depends on the operation point, it should be
treated as an unknown parameter.

B. Hydraulic Subsystem Mathematical Model

Turbine: The hydraulic turbine mathematical model is
made of characteristic curves [2]. These charts are built from
laboratory measurements and consist of nonlinear mappings:

qt = f1(hn, ωr, α)

Tm = f2(hn, ωr, α).
(2)

Where qt, hn, ωr, α and Tm are given in Table I and Table II.
We can linearize these equations around an operating point
(qt0 , hn0

, ωr0 , α0, tm0
) and we get

∆qt = α1∆hn + α2∆ωr + α3∆α

∆Tm = β1∆hn + β2∆ωr + β3∆α,
(3)

where the αi, βi are the tangents of curve at the considered
operating point.



Pipes: The dynamics of the conduits is described by the
hyperbolic partial differential equations:

a2
∂q(x, t)

∂x
+ gA

∂h(x, t)

∂t
= 0

∂q(x, t)

∂t
+ gA

∂h(x, t)

∂x
+

f

2DA
q(x, t)|q(x, t)| = 0.

(4)

We discretize these equations by using the finite elements
method, we now consider that the pipe of length L is made
of Nb pipe elements of length dx = L/Nb. The number
of elements Nb has to be arbitrarily high to be as close as
possible to reality. We can apply (4) on each small element
and linearize around the operating point (h0, q0). For i =
1, . . . , Nb we obtain:

∆qi+1 −∆qi + σ1
d∆hi+1/2

dt
= 0

∆hi+1/2 −∆hi−1+1/2 + σ2
d∆qi

dt
+ σ3∆qi = 0,

(5)

where

σ1 =
Agdx

a2
, σ2 =

dx

Ag
, σ3 =

f |q0|dx
2gDA2

. (6)

Finally, the full model of a pipe discretized in Nb elements
can be expressed by

Λ
d

dt



∆q1
∆h1+1/2

∆q2
...

∆qNb

∆hNb+1/2

∆qNb+1


+ Σ



∆q1
∆h1+1/2

∆q2
...

∆qNb

∆hNb+1/2

∆qNb+1


=



∆hin
0
0
...
0
0

−∆hout


,

(7)
where Λ and Σ are defined by

Λ = diag (
1

2
σ2, σ1, σ2, ..., σ2, σ1,

1

2
σ2) (8)

Σ =



1
2σ3 1 0
−1 0 1 0
0 −1 σ3 1 0

. . .
0 −1 σ3 1 0

0 −1 0 1
0 −1 1

2σ3


. (9)

Full reduced-order hydraulic subsystem: We use 40
elements for each pipe of the hydraulic system using (7) to
have a good accuracy for the low frequency eigenvalues, and
combine these equations with the turbine equations (2). This
high order nonlinear model is implemented in the software
package Simsen [13] and will be used later for the numerical
simulations.

This model is linearized around the operating point q0 =
0.5 p.u. where we observe the partial vortex rope. The head
deviations at the upstream and downstream reservoirs are
neglected and the external perturbation adds a difference in
head between the outlet and the inlet of pipe 1 and pipe 2
respectively, see Fig. 2.

TABLE III
PARAMETERS OF THE CONSIDERED SYSTEM

Rated active power 130 MW
Rotational speed 136.36 rpm

Rated head 71 m
Rated flow 200 m3/s

Penstock length 400 m

Perturbation frequency 0.5 Hz
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Fig. 3. Bode diagram comparison between the high order and the reduced
order models for the transfer function from the perturbation in the draft tube
to the mechanical torque.

The hydraulic model obtained has 241 states hence we
need a reduced-order model more suitable to control design.
We carry out a frequency analysis of the transfer functions
from the guide vane opening α and the perturbation hw to the
mechanical torque Tm. For this purpose numerical values of
a physical system are needed, and as an example, the data of
a real project developed by Alstom are considered. We also
have used the laboratory and on-site measurements at off-
design operation of the turbine necessary to characterize the
perturbation. The main specifications of the physical system
can be found in Table III.

For the model reduction, we make the assumption that
the actuator bandwidth is limited to 5 Hz, and the pressure
perturbation induced by the partial load vortex rope has a
frequency, ωh = 0.5 Hz in (1). Hence, we keep the poles and
zeros of the system in this frequency range. Fig. 3 shows the
Bode diagram comparison for the transfer function between
the perturbation input hw and the mechanical torque Tm.

The resulting state-space hydraulic model of order 7 is
represented by

Ẋh = AhXh +Bhα+Bheωr +Bhwhw

Yh = Tm = ChXh +Dh

(
α
ωr

)
,

(10)

where Xh is the state vector, α the guide vane opening
(control input), ωr the rotational frequency, hw the head
perturbation from (1) and Yh the output. All these variables
are deviations around an operating point.



The matrix entries of Ah, Bhe, Bhw, Ch and Dh can be
found in Appendix I.

C. Electro-Mechanical Subsystem Mathematical Model

We model the generator and the electrical network as the
well known SMIB (Single Machine Infinite Bus) [3]. The
third order nonlinear model is linearized around an operating
point (Pt0 , Et0 , Qt0 ). The resulting linear state-space system
is described by

Ẋe = AeXe +Be

(
∆Tm
∆Efd

)
Ye = CeXe.

(11)

where the algebraic expressions of the variables are defined
as follows:

Xe =

 ∆ωr

∆δ
∆Ψfd

 , Ye =


∆ωr

∆Pt

∆Qt

∆Et

 ,

Ae =

a11 a12 a13
a11 0 0
0 a12 a13

 , Be =

b11 0
0 0
0 b32

 ,

Ce =


1 0 0
0 c22 c23
0 c32 c33
0 c42 c43

 .

The expressions of the aij , bij and cij constants and of
the initial conditions can be found in Appendix II and the
numerical values in Appendix I.

D. Full Hydroelectric Mathematical Model

We aggregate the two subsystems together to obtain a
state-space model of a hydroelectric unit with a hydraulic
perturbation in the draft tube:

ẋ = Ax+Bu+Bwhw

y = Cx,
(12)

where the state vector x is a concatenation of the hydraulic
state vector Xh and the electric state vector Xe, y is the
output vector, u is the control input and hw is the hydraulic
perturbation input.

x =

(
Xh

Xe

)
, y = Ye, u =

(
α
Efd

)
.

The concatenated matrices are defined as follows:

A =



0 0 0

Ah Bhe

...
...

0 0 0
b11Ch

0 · · · 0 Ãe

0 · · · 0


,

Ãe = Ae +

b11Dh2 0 0
0 0 0
0 0 0

 ,

B =



0

Bh

...
0

b11Dh1 0
0 0
0 b32


, C =

(
04,7 Ce

)
.

IV. MODEL SIMULATION

We now compare our developed 10th order model to the
full nonlinear model through simulation in closed-loop with
the system subject to a pressure perturbation in the draft tube
represented by (1) with Ah = 0.055 p.u. and ωh = π which
corresponds to a perturbation frequency of 0.5 Hz. This
comparison is done with the classical controllers designed
to have both good tracking and regulation performance on
the active power for the turbine and the voltage for the
generator. The full nonlinear model is implemented in the
software package Simsen [13], which has been validated with
on-site measurements to simulate the hydraulic subsystem.
The turbine is modeled with the nonlinear hill charts (2)
and the hydraulic subsystem is modeled with a high number
of pipe elements in each pipe using (7). The generator
mathematical model is the 7-th order nonlinear model with
damper windings along with the second order network model
[3] with XE = 0.3. The resulting model has an order 130.
The same controller topologies are used for both models,
the results are displayed in Fig. 4 for the active power and
the voltage. The deviations of the reduced model from the
full model are displayed in Fig. 5. Wee see that our reduced
model is close to the full model in this case.

V. CONCLUSION

We developed a 10th order model of a hydroelectric
unit subject to hydraulic perturbations in the draft tube,
for example pressure oscillations induced by partial or full
load vortex rope. This model captures the dynamics of the
water-hammer effet (travelling waves) in the pipes, we used
the finite element method in this purpose and the model
was reduced by keeping poles and zeros in the frequency
region of interest for the control loop. Finally, simulation
results were presented of our designed model compared
to the full nonlinear model when the system is subject to
pressure perturbation in the draft tube. The details of a
control algorithm designed with this model will be published
in a forthcoming paper.
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APPENDIX I
NUMERICAL VALUES

A. Hydraulic Subsystem

The hydraulic subsystem is linearized around the operating
point Tm0 = 0.5 p.u. with the parameters given in Table IV.
The numerical values of the matrices of (10) are given here:

TABLE IV
HYDRAULIC NUMERICAL VALUES

Penstock Pipe 1 & 2 Turbine

L1 = 400 m L2 = 13 m α1 = 0.39 β1 = 1.11

Nb = 40 α2 = 1.34 β2 = 1.36

D = 7.90 m α3 = −1.64 β3 = −11.29

f = 10−2 γmax = 35.5◦

Ah =
−0.81 13.1 −7.4 0.52 1.1 5.1 5.8
−12.9 −1.0 3.1 1.8 5.2 4.0 −1.7
7.6 −3.4 −0.59 22.1 5.4 6.1 2.1
−0.7 −1.8 −22.2 −0.77 4.1 −8.4 −2.8
−0.94 −5.2 −5.0 −3.8 −1.2 4.6 −4.3
−5.3 −4.2 −6.1 8.6 −4.9 −1.1 −1.2
−6.2 2.0 −2.9 3.0 4.4 1.1 −1.1



Bh =


−0.33
−0.99
0.18
−1.6
1.2
−1.0
−2.8

 Bhe =


0.027
1.1

−0.68
1.9
−1.1
0.92
2.9



Bhw =


−0.15
−0.14
−0.10
0.040
−0.50
0.10
0.40


Ch =

(
1.4 −2.0 1.9 −3.5 2.8 −0.93 −5.2

)
Dh =

(
−2.3 −4.6

)
B. Electrical Subsystem

The electrical subsystem is linearized around the oper-
ating point Pt0 = 0.5 p.u., Et0 = 1 p.u. and Qt0 =
0 p.u. which is equivalent to considering the bus voltage
EB0 = 1 p.u.. The matrices of (11) are expressed below.

Ae =

( 0 −0.18 −0.11

314 0 0

0 −0.073 −0.27

)
Be =

(
0.16 0

0 0

0 0.13

)

Ce =


1 0 0

0 1.10 0.69

0 0.14 1.39

0 −0.0044 0.40


With the synchronous machine parameter numerical values

detailed in Table V.

TABLE V
ELECTRICAL NUMERICAL VALUES

Xds = 0.971 Ll = 0.175

Xqs = 0.682 Ra = 2.58 × 10−3

Ladu = 0.918 X′ds = 0.277

Lads = 0.796 Laqs = 0.507

Lfd = 0.155 Rfd = 3.92 × 10−4

XE = 0.3 RE = 0.03

APPENDIX II
ELECTRO-MECHANICAL MODEL

In this section, we define the matrices of the electro-
mechanical state-space model as well as the expressions to
calculate the initial conditions of the machine. Table II is the
nomenclature of all electro-mechanical variables.

A. Matrix Constants
We develop here the expressions for the matrix constants

of (11), [3].

a11 = −KD

2H
a12 = −K1

2H
a13 = −K2

2H



a21 = ω0 = 2πf0 a32 = −ω0Rfd

Lfd
m1L

′
ads

a33 = −ω0Rfd

Lfd

[
1− L′ads

Lfd
+m2L

′
ads

]
b11 =

1

2H
b32 =

ω0Rfd

Ladu

c22 = n1(Ψad0 + Laqsid0 −Raiq0)

−m1(Ψaq0 + L′adsiq0 +Raid0)

c23 = n2(Ψad0 + Laqsid0 −Raiq0)

−m2(Ψaq0 + L′adsiq0 +Raid0) +
L′ads
Lfd

iq0

c32 = m1(Ψad0 − (Ll + L′ads)id0)

+ n1(Ψaq0 − (Ll + Laqs)iq0)

c33 = m2(Ψad0 − (Ll + L′ads)id0)

+ n2(Ψaq0 − (Ll + Laqs)iq0) +
L′ads
Lfd

id0

c42 =
ed0
Et0

(−Ram1 + Lln1 + Laqsn1)

+
eq0
Et0

(−Ran1 + Llm1 + L′adsm1)

c43 =
ed0
Et0

(−Ram2 + Lln2 + Laqsn2)

+
eq0
Et0

(
−Ran2 + Llm2 + L′ads

[
1

Lfd
−m2

])
K1 = n1(Ψad0 + Laqsid0)−m1(Ψaq0 + L′adsiq0)

K2 = n2(Ψad0 + Laqsid0)−m2(Ψaq0 + L′adsiq0)

+
L′ads
Lfd

iq0

m1 =
EB(XTq

sin δ0 −RT cos δ0)

D

n1 =
EB(RT sin δ0 +XTd

cos δ0)

D

m2 =
XTq

D

Lads

(Lads + Lfd)
n2 =

RT

D

Lads

(Lads + Lfd)

XTq
= XE + (Laqs + Ll) = XE +Xqs

XTd
= XE + (L′ads + Ll) = XE +X ′ds

D = R2
T +XTq

XTd
RT = Ra +RE

L′ads =
1

1

Lads
+

1

Lfd

B. Initial Conditions

Pt0, Qt0 and Et0 at the operating point are fixed and
the following expressions are used to compute the initial
conditions [3].

It =

√
P 2
t +Q2

t

Et
Φ = cos−1

(
Pt

EtIt

)
δi = tan−1

(
XqsIt cos Φ−RaIt sin Φ

Et +RaIt cos Φ +XqsIt sin Φ

)

ed0
= Et sin δi eq0 = Et cos δi

id0
= It sin(δi + Φ) iq0 = It cos(δi + Φ)

EBd0
= ed0

−REid0
+XEiq0

EBq0 = eq0 −REiq0 −XEid0

EB0
=
√
E2

Bd0
+ E2

Bq0
δ0 = tan−1

(
EBd0

EBq0

)
ifd0

=
eq0 +Raiq0 + Ldsid0

Lads
Efd0

= Laduifd0

Ψad0
= Lads(−id0

+ ifd0
) Ψaq0 = −Laqsiq0
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