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Abstract—Contemporary large-scale Partial Differential Equa-
tion (PDE) simulations usually require the solution of large
and sparse linear systems. Moreover, it is often needed to
solve these linear systems with different or multiple Right-
Hand Sides (RHSs). In this paper, various strategies will be
presented to extend the scalability of existing multigrid or
domain decomposition linear solvers using appropriate recycling
strategies or block methods—i.e., by treating multiple right-hand
sides simultaneously.
The scalability of this work is assessed by performing simulations
on up to 8,192 cores for solving linear systems arising from
various physical phenomena modeled by Poisson’s equation, the
system of linear elasticity, or Maxwell’s equation.
This work is shipped as part of on open-source software, readily
available and usable in any C/C++, Python, or Fortran code.
In particular, some simulations are performed on top of a well-
established library, PETSc, and it is shown how our approaches
can be used to decrease time to solution down by 30%.

Index Terms—Iterative methods, distributed algorithms,
Maxwell’s equation

I. INTRODUCTION

Discretizations of PDEs used to model physical phenomena

typically lead to larger and larger systems that cannot be

solved directly and require both 1) advanced preconditioning

techniques and 2) efficient iterative methods. In recent years,

a lot of efforts have been made to design highly scalable pre-

conditioners for computational fluid dynamics [1], [2] or solid

mechanics [3], [4], for example with multigrid [5] or domain

decomposition [6] methods. Most of these advanced precondi-

tioners, however, rely on basic iterative methods, such as the

Generalized Minimal RESidual method [7] (GMRES) or the

Preconditioned Conjugate Gradient [8] (PCG). Still, numerous

new or modified iterative methods have been developed to:

pipeline reductions [9], [10], avoid synchronizations [11],

[12], decrease the number of iterations by means of multiple

search directions [13], [14] or Krylov subspace recycling [15],

[16]. Iterative methods tailored to tackle efficiently problems

with multiple right-hand sides have also blossomed [17]–[19].

Finally, it can also be beneficial to couple block methods and

recycling [20], [21].

The contribution of this paper is threefold, we present:

• a uniform implementation of a pseudo-block1 and block

Krylov solver based on an existing theoretical work [22],

1method were operations for each RHS are fused together, cf. section V-B1

• large-scale experiments using the aforementioned imple-

mentation on top of a well-established parallel library,

PETSc [23], [24],

• a scalable solver for Maxwell’s equation with multiple

right-hand sides using overlapping Schwarz methods with

optimized boundary conditions [25], [26].

The paper is organized as follows. In section II, we present

related work and limitations of current implementations of

(pseudo-)block iterative methods with or without recycling.

In section III, we analyze the theoretical work presented

by Parks et al. [22] in the context of high-performance

computing. We also extend this study to the case of non-

variable sequence of linear systems—i.e., when only right-

hand sides are changing but not the linear operator itself—and

to variable preconditioning, as already done theoretically [27],

[28]. In section IV, we use PETSc to generate large linear

systems on up to 8,196 cores. We then compare our open-

source implementation2 against existing subspace recycling

strategies already implemented in the framework and we show

that our approach can be used to decrease time to solution

down by 30%. In section V, we investigate the potential of

(pseudo-)block iterative methods over standard methods when

direct solvers are used to define a preconditioner, for example

in the context of domain decomposition methods. Eventually,

we integrate these block methods inside a solver for Maxwell’s

equation and show a relative speedup of up to 450% against

more traditional solvers.

II. RELATED WORK

A. Subspace recycling

The work presented in this paper is mostly based on the

Generalized Conjugate Residual method with inner Orthogo-

nalization and Deflated Restarting method [22] (GCRO-DR),

which itself is an extension of a prior work by de Sturler [29].

GCRO-DR was developed in the context of fatigue and frac-

ture modeling via finite element analysis where it is usually

required to solve a sequence of linear systems:

AiXi = Bi i = 1, 2, . . . (1)

where the coefficient matrices Ai ∈ Kn×n and the right-hand

sides Bi ∈ Kn×p might change from one index i to the next.

2available at https://github.com/hpddm/hpddm
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In the original paper, each linear system is solved with a

single right-hand side, i.e. p = 1. A MATLAB implementation

has ever since been available to try this method, with either

left or right preconditioning. A flexible variant of GCRO has

then been proposed [27], and eventually a flexible variant

of GCRO-DR was derived [28]. In the latter reference, it

is proved that under certain circumstances, FGCRO-DR is

algebraically equivalent to FGMRES-DR [30], another flexible

variant of well-established iterative method that uses recycling

to improve the numerical efficiency of restarted GMRES [31].

The main advantage of the class of GCRO-DR based methods

over the class of GMRES-DR based methods is that they may

be used for the solution of sequences of linear systems.

B. Block iterative methods

One of the first iterative methods to be adapted to handle

multiple right-hand sides at once, i.e. p > 1, was the Conjugate

Gradient method [32]. A first study of the Block GMRES was

proposed in the thesis of Vital [33], followed by new theoret-

ical results [17]. Plenty of applications of these methods have

been proposed since then [34], [35], mainly for the simulation

of wave propagation phenomena [36], [37] or lattice quantum

chromodynamics [38] with multiple sources. Since each of

these sources may yield a different right-hand side, efficient

block methods are needed to handle demanding simulations

with sequences of tall and skinny right-hand sides Bi.

C. Distributed iterative methods

In the context of large-scale distributed sparse linear algebra,

there are multiple libraries available for solving linear systems

with iterative methods:

• hypre [39], DUNE [40], and PARALUTION [41] are all

shipped with standard iterative methods like GMRES or

CG, but they lack recycling strategies and cannot handle

linear systems with multiple right-hand sides.

• PETSc [23] comes with more advanced iterative methods

like Loose GMRES [42] and Deflated GMRES [43], [44],

but as implemented, these methods cannot be used to

recycle Krylov subspace from one linear system solve

to the next. The two aforementioned iterative methods

cannot handle variable preconditioning as implemented

in PETSc.

• Trilinos [45], through its Belos package [46], is the

library that provides some of the most advanced iter-

ative methods, and in particular: (pseudo-)Block GM-

RES, GCRO-DR, Block GCRO-DR. Note however some

limitations of the package: no support of pseudo-Block

GCRO-DR, no support of variable preconditioning with

subspace recycling, and there is no binding to languages

other than C++. Finally, it is not possible to speed up

the recycling process when using non-variable linear

systems—i.e., in eq. (1), ∀i ∈ J1, 2, . . .K, Ai = A1. In

section III-B, it will be shown that this should be used

whenever possible in order to increase performance.

III. ITERATIVE METHODS WITH RECYCLING

In this section, we will describe some interesting details of

the GCRO-DR method introduced by Parks et al. [22] and

share some insights into our implementation. We will also

present how to deal efficiently with non-variable linear systems

and variable preconditioning.

A. Generalized Conjugate Residual method with inner Or-

thogonalization and Deflated Restarting

In order to keep this paper as self-contained as possible,

we recall in fig. 1 the original GCRO-DR of Parks et al. [22],

extended to the case of multiple right-hand sides. The notations

for GMRES(m) and GCRO-DR(m, k) are as follows:

• n is the size of all linear systems,

• p is the number of right-hand sides,

• m is the maximum dimension of Krylov subspaces,

• k is the dimension of recycled Krylov subspaces,

• Vm+1 is an Arnoldi basis of m + 1 blocks of dimen-

sion n× p,

• Hm is a block Hessenberg matrix of dimension

p · (m+ 1)× p ·m with blocks {hi,j} 16i6m+1
i6j+16m+1

of

size p× p, Hm is the restriction of Hm to its first p ·m
rows.

The QR decomposition of a single-column matrix—i.e., a

vector—Rj = QR is unique and defined as Q =
Rj

||Rj ||
and

R = ||Rj || (line 11 and line 24 are the traditional way of

defining the first vector of the Arnoldi basis for GMRES). The

main difference between GMRES (resp. Augmented GMRES)

and GCRO-DR is the solution of the eigenvalue problem line

16 (resp. generalized eigenvalue problem line 33).

In the original paper, as well as in Belos, the left-hand side

of the eigenvalue problem (line 16) is defined as:

H = Hm +H−H
m

[

0p·(m−1)×p·(m−1) 0p·(m−1)×p

0p×p·(m−1) hH
m+1,mhm+1,m

]

.

Since our implementation of (Block) GMRES computes the

QR factorization of Hm incrementally—i.e., p column(s) of

Q and R are determined per iteration—we prefer to compute

the following left-hand side, which is cheaper to evaluate:

H = Hm +QR−H

[

0p·(m−1)×p·(m−1) 0p·(m−1)×p

0p×p·(m−1) hH
m+1,mhm+1,m

]

.

(2)

Note that when p = 1, H is a Hessenberg matrix, and the

eigenvalue problem Hzλ = θλzλ can be solved with the

specialized LAPACK routines ?hseqr and ?hsein instead

of—as done in Belos—the general routine ?geev.

The generalized eigenvalue problem (line 33) may be de-

fined with the following matrix pair:

T = GH
mGm,

W = GH
m

[

CH
k Uk 0p·k×p·(m−k)

V H
m−k+1Uk Ip·(m−k+1)×p·(m−k)

]

, (3a)



where the matrix Gm is defined as:

Gm =

[

Dk Ek

0p·(m−k+1)×p·k Hm−k

]

.

Dk is a diagonal matrix whose entries are the p ·k coefficients

used to scale Uk (line 32). We will see in section III-C that

alternative definitions of the right-hand side matrix W in

eq. (3) are possible and may yield better performance.

Like in some communication-avoiding iterative methods,

GCRO-DR requires the orthogonalization of p · k vectors at

once (line 4). When it comes to subspace recycling methods

or block iterative methods, Gram-Schmidt schemes are often

used to perform this [37]. Belos uses by default the Iterated

Modified Gram-Schmidt method, but it is also possible to

switch to the TSQR method, first studied in the context of

CA-GMRES [47]. In our implementation, we propose to use

the CholQR method [48] since its efficiency has already been

proved—once again in the context of CA-GMRES [49].

B. Non-variable linear systems

For some time-dependent PDEs, it is necessary to solve

sequences of linear systems where the operator is the same

throughout the sequence, and only the right-hand sides are

varying. E.g., when solving the heat equation implicitly:

∂u

∂t
−∆u = f, (4)

where f is a source term, or when solving the Navier–

Stokes equation using projection methods [50]. In fig. 1, the

conditional statements line 3 and line 31 were not part of the

original GCRO-DR method, but introduced afterwards [51].

When GCRO-DR is called with a sequence of identical linear

operators Ai+1 = Ai, there is indeed no need to compute the

original distributed QR decomposition (lines 4–6), and it is not

mandatory to update the recycled subspace Uk (line 37). The

additional computations of GCRO-DR compared to GMRES

after the first cycle are thus:

• the initial orthogonalization of the residual matrix (line

9) and the update of the initial guess (line 8),

• the orthogonalization w.r.t. (I −CkC
H
k ) at each iteration

(line 26) for generating the Arnoldi basis,

• the update of the approximate solution Xj at the end of

the jth cycle involves more work (lines 28–29).

C. Variable preconditioning

Nonlinear or nondeterministic preconditioners are often

needed, e.g., when using Krylov subspace methods as

smoothers in multigrid preconditioners [52], [53]. As first

proposed by Parks et al. [22], and as implemented in Belos,

GCRO-DR cannot handle variable preconditioning. A first

flexible variant of GCRO-DR was proposed by Carvalho et

al. [28]. In the corresponding Technical Report3, the authors

3http://www.cerfacs.fr/algor/reports/2010/TR PA 10 10.pdf

1: R0 = Bi −AiX0

2: if Uk is defined (from solving a previous system) then

3: if Ai 6= Ai−1 then

4: [Q,R] = distributed qr(AiUk)
5: Ck = Q

6: Uk = UkR
−1

7: end if

8: X1 = X0 + UkC
H
k R0

9: R1 = R0 − CkC
H
k R0

10: else

11: [V1, S1] = distributed qr(R0)
12: perform m steps of (Block) GMRES, thus generating

Vm+1 and [Q,R] = qr(Hm)

13: find Ym such that RYm = Q−1

[

S1

0p·(m−1)×p

]

14: X1 = X0 + VmYm

15: R1 = Bi −AiX1

16: solve Hzλ = θλzλ ⊲ cf. eq. (2)

17: store the k eigenvectors zλ associated to the smallest

eigenvalues in magnitude in Pk

18: [Q,R] = qr(HmPk)
19: Ck = Vm+1Q

20: Uk = VmPkR
−1

21: end if

22: j = 1
23: while EPS(Rj , ε) do

24: [Vk, Sk] = distributed qr(Rj)
25: j += 1
26: perform m − k steps of (Block) GMRES with the

linear operator (I − CkC
H
k )Ai, thus generating Vm+1−k,

[Q,R] = qr(Hm−k), and Ek = CkAiVm−k

27: find Ym−k such that RYm−k = Q−1

[

Sk

0p·(m−k−1)×p

]

28: Yk = CH
k Rj−1 − EkYm−k

29: Xj = Xj−1 + UkYk + Vm−kYm−k

30: Rj = Bi −AiXj

31: if Ai 6= Ai−1 then

32: scale the columns of Uk so that they are of unit norm

33: solve Tzλ = θλWzλ ⊲ cf. eq. (3)

34: store the k eigenvectors zλ associated to the smallest

eigenvalues in magnitude in Pk

35: [Q,R] = qr(HmPk)
36: Ck =

[

Ck Vm−k+1

]

Q

37: Uk =
[

UkPk Vm−kPk

]

R−1

38: end if

39: end while

40: function EPS(R, ε)

41: for each column r of R do

42: if ||r|| > ε then

43: return true

44: return false

45: end function

Fig. 1. (Block) GCRO-DR as drafted by Parks et al. [22].

http://www.cerfacs.fr/algor/reports/2010/TR_PA_10_10.pdf


propose an alternative right-hand side matrix for the general-

ized eigenvalue problem (line 33). Instead of defining W as

in eq. (3a), they use:

W = GH
mV H

m+1Vm,

= GH
m

[

Ip·m×p·m

0p×p·m

]

.
(3b)

We will see why this is attractive in practice in the following

paragraph.

D. Cost analysis

For conciseness, no preconditioner has been mentioned

in this section. However, when one is used, part of the

initialization process (lines 4–6) must be adapted so that the

preconditioner must be applied to the block of p vectors Uk

(resp. AiUk) when using right (resp. left) preconditioning

(line 4). This remark only holds when using a non-variable

preconditioner.
The memory cost and the FLOP count of (Block)

GCRO-DR and its flexible variant have already been studied

in some of the aforementioned papers. We want to focus

here on the synchronization and communication overhead

introduced by these methods in the context of large-scale

distributed computing. Our implementation uses the Message

Passing Interface, and, as done frequently in implementations

of Krylov subspace methods, we store:

• in a distributed fashion, matching the distribution of the

linear systems Ai, all variables of the size of the system,

i.e., Rj , Uk, Ck, and Vk. Persistent memory for the recy-

cled vectors Uk and Ck between cycles is allocated using

a singleton class.

• redundantly on each MPI process all variables

of the dimension of the Krylov subspace, i.e.,

Hm, Pk, Ek, and Ym.

All additional communications in GCRO-DR are reductions

that scale logarithmically with the number of processes:

• the distributed QR factorizations (line 11 and line 24)

require a single reduction when using the CholQR or

TSQR methods, or k reductions when using the Classical

Gram-Schmidt method,

• the update of the first guess (line 8) requires once again

a single reduction (resp. k reductions) when using the

Classical (resp. Modified) Gram-Schmidt method,

• once a subspace is recycled, each (Block) GMRES cycle

(line 26) requires one additional reduction per iteration

in order to orthogonalize against Ck each vector in

the Arnoldi basis. Notwithstanding preconditioning that

might require global communications, the number of

reductions per GCRO-DR cycle is then 2(m−k) instead

of m for GMRES. A typical value chosen for k is then

k = m
2 to ensure the same number of reductions per

cycle, but this is not a golden rule.

• the solution of the least square problem (line 27) must

be updated with a reduction (line 28).

All other additional operations are performed redundantly on

each process, using BLAS or LAPACK routines. However,

the assembly of the right-hand side matrix of the generalized

eigenvalue problem eq. (3) may require another reduction.

Indeed, when using the original formulation of W recalled

eq. (3a), there are two matrix–matrix products that can be

computed simultaneously and reduced once. When using the

formulation eq. (3b), there is no global communication. The

best choice (in terms of number of iterations) of eigenvalue

problems between eq. (3a) and eq. (3b) is problem-dependent,

as observed in the Technical Paper previously cited1.

IV. LARGE-SCALE EXPERIMENTS

The purpose of this section is to show 1) how recycling

may improve the efficiency of two toy problems, 2) that our

framework may easily interact with most existing C/C++,

Python, or Fortran applications. We will be using PETSc to

generate our problems and to define preconditioners, that will

then be passed to our implementation of GCRO-DR using

callback functions. When GMRES or GCRO-DR are used as

the outer iterative methods, we use the default value of PETSc

of 30 to be the maximum dimension of Krylov subspaces

before the methods restart.

A. Hardware and software settings

Results were obtained on Curie, a system composed of

5,040 nodes with two eight-core Intel Sandy Bridge clocked

at 2.7GHz. The interconnect is an InfiniBand QDR full fat

tree and the MPI implementation exploited was BullxMPI ver-

sion 1.2.9.2. All binaries and shared libraries were compiled

with Intel compilers and Math Kernel Library support (for

dense linear algebra computations). The latest available release

of PETSc was used (version 3.7.3).

B. Poisson’s equation

This PDE may be used to model many physical phenomena,

for example in computational fluid dynamics [54]. It can also

be seen as the steady-state heat equation, cf. eq. (4):

−∆u = f.

Example number 32 of the PETSc distribution4 discretizes this

continuous problem using a simple two-dimensional Cartesian

grid and a standard five-point stencil. This yields a linear

system A. We slightly modified the example to generate four

successive right-hand sides:

fi(x, y) =
1

νi
e
−

(1−x)2

νi e
−

(1−y)2

νi ,

where {νi} = {0.1, 10, 0.001, 100}. The goal of the script is

now to solve the sequence of four linear systems one after

another, like one would have to do when solving a time-

dependent problem. We will be using the Geometric Algebraic

Multigrid preconditioner [24] (GAMG). It is an implementa-

tion of the smoothed aggregation multigrid method, and is

shipped by default with PETSc. To make the multigrid cycles

nonlinear, three iterations of GMRES are used as a smoother.

4http://www.mcs.anl.gov/petsc/petsc-3.7.3/src/ksp/ksp/examples/tutorials/
ex32.c.html

http://www.mcs.anl.gov/petsc/petsc-3.7.3/src/ksp/ksp/examples/tutorials/ex32.c.html
http://www.mcs.anl.gov/petsc/petsc-3.7.3/src/ksp/ksp/examples/tutorials/ex32.c.html
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Fig. 2. Performance analysis of FGCRO-DR against FGMRES for solving Poisson’s equation
discretized with 283 million unknowns with four varying RHSs on 8,192 processors.

It is likely that there are better setup parameters, but we don’t

want to focus on the performance of the preconditioner, and

rather on the performance of the iterative methods (FGMRES

vs. FGCRO-DR). The command line used to define the linear

systems, setup the preconditioners and the iterative method is:

mpirun -np 8192 ./ex32 -da_grid_x 4210 -da_refine 2

-da_grid_y 4210 -ksp_rtol 1.0e-8 -pc_type gamg

-pc_gamg_threshold 0.0725 -pc_gamg_square_graph 2

-ksp_type fgmres -mg_levels_ksp_type gmres

-mg_levels_ksp_max_it 3

This generates a linear system of 280 million unknowns, for

which the preconditioner is setup in 160 seconds. The matrix

as well as the preconditioner are only assembled for the first

right-hand side. They can be reused as is for successive solves.

We compare the Flexible GMRES method implemented in

PETSc and our implementation of Flexible GCRO-DR, using

a recycled subspace of dimension 10. This dimension was

chosen after some preliminary experiments, but it can be set

between 1 and m − 1. In fig. 2a, the convergence curves of

both methods are displayed. In fig. 2b, the time to solution for

each RHS is displayed. Overall, FGMRES (resp. FGCRO-DR)

performs 124 (resp. 90) iterations. There is almost no restart in

the previous experiment, thanks to the good numerical proper-

ties of the preconditioner. We will now use a slightly cheaper

preconditioner, which induces a lower setup cost at the price of

more iterations. The PETSc option -pc_gamg_threshold—

a parameter to select edges in aggregation graphs—is adjusted

accordingly:

mpirun -np 8192 ./ex32 -da_grid_x 4210 -da_refine 2

-da_grid_y 4210 -ksp_rtol 1.0e-8 -pc_type gamg

-pc_gamg_threshold 0.076 -pc_gamg_square_graph 2

-ksp_type fgmres -mg_levels_ksp_type gmres

-mg_levels_ksp_max_it 1

In fig. 2c, the convergence curves of both methods are

displayed. In fig. 2d, the time to solution for each RHS is

displayed. Overall, FGMRES (resp. FGCRO-DR) performs

172 (resp. 137) iterations. All these numbers are application-

dependent, but it is clear that when using costly precondition-

ers, any decrease in number of iterations is worthwhile. An

important observation that can be made looking at figs. 2b

and 2d is that the cumulative solve time of FGMRES with the

more robust but costlier preconditioner (blue bars in fig. 2b

is greater than the cumulative time of FGCRO-DR with the

less robust but cheaper preconditioner (red bars fig. 2d). Thus,

recycling can also be used to spend less time in assembling

highly robust preconditioners by relaxing setup parameters—

e.g., threshold criterion for multigrid preconditioners, overlap

width for domain decomposition methods, or level of fill-in

for incomplete factorizations.

C. The system of linear elasticity

This PDE is used in computational solid mechanics, for

example to model small deformations of a rigid body. In the
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Fig. 3. Performance analysis of GCRO-DR against FGMRES and Loose GMRES for solving
four varying 3D linear elasticity systems of 192 million unknowns on 8,000 processors.

context of shape optimization, it is often necessary to solve

multiple, slowly varying systems, in order to adapt a shape

so that it minimizes a given shape-dependent cost function

(e.g., the compliance of a structure) [55]. The displacement

formulation of the steady-state system of linear elasticity is:

−∇ · σ = f ,

where σ is the stress tensor, and f represents body forces.

Example number 56 of the PETSc distribution5 discretizes this

PDE on the unit cube with Q1 finite elements. To generate a

sequence of four varying systems—indexed by i ∈ J1, . . . , 4K,

we use a set of five parameters:

{si} = {30, 0.1, 20, 10} {ri} = {0.5, 0.45, 0.4, 0.35}

{xi} = {0.5, 0.4, 0.4, 0.4} {yi} = {0.5, 0.5, 0.4, 0.4}

{zi} = {0.5, 0.45, 0.4, 0.35}

to define parametrically a small, moving, spherical inclusion:

∀(x, y, z) ∈ [0; 1]3, (x− xi)
2 + (y − yi)

2 + (z − zi)
2 < r2i .

In this small inclusion, the material coefficient Ei is defined

as Ei = E
si

, E is the Young modulus everywhere but in

5http://www.mcs.anl.gov/petsc/petsc-3.7.3/src/ksp/ksp/examples/tutorials/
ex56.c.html

the inclusion. Once again, we use a multigrid preconditioner,

equipped with the near-nullspace of the operators made of

six rigid body modes, to solve the linear systems efficiently.

The command line used to define the linear systems, setup the

preconditioners and the iterative method is:

mpirun -np 8000 ./ex56 -ne 399 -ksp_rtol 1.0e-8

-ksp_type fgmres -pc_type gamg

-mg_levels_ksp_type cg -mg_levels_ksp_max_it 4

This generates four linear systems of 283 million unknowns,

for which the preconditioner must be setup for each different

matrix—in average, this takes 50 seconds. We choose once

again on purpose the smoother to be four iterations of CG to

make the multigrid cycles nonlinear. It is unlikely to be the

most efficient smoother, but it makes the use of the flexible

variant of GCRO-DR (which is not implemented inside Belos)

mandatory. In fig. 3a, the convergence curves of FGMRES

and FGCRO-DR methods are displayed. In fig. 3b, the time

to solution for each RHS is displayed. Unlike in the previous

experiment, an eigenvalue problem must be solved at each

restart (lines 31–38 in fig. 1). Likewise, it is costlier to update

the initial guess (line 8) since a distributed QR factorization

must be computed first. Overall, FGMRES (resp. FGCRO-DR)

performs 235 (resp. 189) iterations.

We now propose a comparison of our implementation of

http://www.mcs.anl.gov/petsc/petsc-3.7.3/src/ksp/ksp/examples/tutorials/ex56.c.html
http://www.mcs.anl.gov/petsc/petsc-3.7.3/src/ksp/ksp/examples/tutorials/ex56.c.html


GCRO-DR and Loose GMRES as implemented in PETSc.

Unfortunately, the flexible variant of LGMRES is not in

PETSc, so we precondition the systems on the right instead:

mpirun -np 8000 ./ex56 -ne 399 -ksp_rtol 1.0e-8

-ksp_type lgmres -ksp_pc_side right -pc_type gamg

-ksp_lgmres_augment 10

This time, the multigrid cycles are linear since the default

smoother used by PETSc is the Chebyshev iterative method.

There is no need for the flexible variant of GCRO-DR. In

fig. 3c, the convergence curves of LGMRES and GCRO-DR

are displayed. In fig. 3d, the time to solution for each RHS is

displayed. Clearly, the better numerical properties of GCRO-

DR over LGMRES plays a huge role here, since GCRO-DR

needs 96 fewer iterations to converge (269 LGMRES iterations

vs. 173 GCRO-DR iterations).

V. LARGE-SCALE SOLVER FOR MAXWELL’S EQUATION

Maxwell’s equation describes the propagation of electro-

magnetic waves. Here, we consider a nonmagnetic linear

isotropic medium of dielectric permittivity ε and conductiv-

ity σ. Assuming that the fields behave periodically with respect

to time, for example in the case of a time-periodic incident

signal at angular frequency ω, the complex amplitude E of the

associated electric field E(x, t) = ℜ(E(x)e−iωt) is solution of

the following second order time-harmonic Maxwell equation:

∇× (∇×E)− µ0

(

ω2ε+ iωσ
)

E = 0, (5)

where µ0 is the permeability of free space.

High-order curl-conforming finite elements of Nédélec

type [56] are now well-established in computational elec-

tromagnetism, thanks to their accuracy and low numerical

dispersion and dissipation errors [57]. However, linear systems

arising from such discretizations are ill-conditioned [58]. This,

combined with the fact that the underlying PDE is indefinite,

highlights the need for a robust and efficient preconditioner.

Indeed, we show in fig. 4 that standard preconditioners such

as the Additive Schwarz Method (ASM) or GAMG cannot

solve the linear system arising from our application described

in the next paragraph as rapidly as our preconditioner defined

eq. (6). Moreover, eq. (5) is solved with many right-hand sides

in our application so we will know investigate the efficiency of

block methods in this section. Recycling techniques presented

in the previous paragraph will be also used to combine the

advantages of both approaches.

A. Description of the application

Some of the computational methods described in this paper

have been implemented in the context of an application in

microwave imaging as part of the ANR project MEDIMAX,

which aims at developing a robust and accurate inversion tool

associated with the direct electromagnetic problem modeled

by Maxwell’s equation in the frequency domain in highly

heterogeneous media. The targeted application is medical

imaging, and in particular brain imaging for stroke detec-

tion and diagnosis. By exposing head tissues to low-level
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Fig. 4. GMRES convergence curves of some standard precondi-
tioners, as well as our own described in section V-A, for
solving Maxwell’s equation discretized with 50 million
double-precision complex unknowns on 512 MPI processes.

microwave incident field and capturing the scattered field by

an array of antennas, the estimation of the dielectric properties

of the brain tissues—ε and σ in eq. (5)—can be approximated

by solving an inverse problem and a diagnosis can be inferred.

Simulation results presented in this work have been obtained

on the imaging system prototype developed by EMTensor

GmbH [59]. The system is composed of 160 antennas: 5 rings

of 32 open ceramic-loaded rectangular waveguides around a

cylindrical metallic chamber, depicted in fig. 5a. Each antenna

can act as transmitter and receiver.

The object to be imaged is introduced into the imaging

chamber. Each of the 160 antennas alternatively transmits a

signal.The retrieved data then consist in the reflection and

transmission coefficients measured by the 160 receiving an-

tennas which will be used as input for the inverse problem.

Each transmitting antenna corresponds to a different incident

signal and thus to a different right-hand side in the discretized

system. In section V-C, some numerical results for 32 RHSs,

corresponding to one ring of transmitting antennas, are pre-

sented.

Let us now introduce our domain decomposition precondi-

tioner. First, the mesh T in fig. 5b corresponding to the imag-

ing system in fig. 5a is generated using 18 million tetrahedra. It

is then partitioned in N non-overlapping meshes {Ti}16i6N

using standard graph partitioners, cf. fig. 5c. If δ is a pos-

itive integer, the overlapping decomposition
{

T δ
i

}

16i6N
is

defined recursively as follows: T δ
i is obtained by including

all elements of T δ−1
i plus all adjacent elements of T δ−1

i .

For δ = 0, T δ
i = Ti. Let V be the finite element space

defined on T , and
{

V δ
i

}

16i6N
, the local finite element

spaces defined on
{

T δ
i

}

16i6N
. Now consider the restric-

tions {Ri}16i6N from V to
{

V δ
i

}

16i6N
, and a local partition

of unity {Di}16i6N such that:

N
∑

j=1

RT
j DjRj = In×n.

Algebraically speaking, if n is the global number of unknowns

and {ni}16i6N are the numbers of degrees of freedom in each



local finite element spaces, then Ri is a Boolean matrix of

size ni × n, and Di is a diagonal matrix of size ni × ni, for

all 1 6 i 6 N .

Using the partition of unity, one can define the following one-

level preconditioner as an extension of the Restricted Additive

Schwarz method proposed by Cai and Sarkis [60]:

M−1
ORAS =

N
∑

i=1

RT
i DiB

−1
i Ri, (6)

where the {Bi}16i6N are local operators that resemble the

submatrices
{

RiAR
T
i

}

16i6N
, but with more efficient trans-

mission conditions between subdomains, e.g. [61]. What is

important to notice here, is that when a direct solver is used to

compute the action of B−1
i on multiple vectors, it can be done

in a single forward elimination and backward substitution as

long as the vectors are stored contiguously. In the next section,

it will be shown that this can increase the performance of a

direct solver tremendously, cf. fig. 6.

All operators related to the domain decomposition can be eas-

ily generated using finite element Domain-Specific Languages.

We will be using FreeFem++ [62] since it has already been

proven that it can enable large-scale simulations using over-

lapping Schwarz methods [63], but our framework interacts

with other DSLs such as Feel++ [64].

B. Block iterative methods

1) Pseudo-block and block methods: First introduced in the

thesis of Langou [18], the notion of pseudo-block methods

was formalized in the Belos package from Trilinos in 2007.

The idea behind pseudo-block iterative methods is to fuse

multiple operations to achieve higher arithmetic intensity,

or to decrease the number of global synchronizations. For

example, if one needs to perform m GMRES iterations to

reach convergence for each p RHSs, a naive algorithm would

require m · p dot products for evaluating the norm of each

candidate vector of the Arnoldi basis. If the p GMRES cycles

are fused together, the required number of dot products is

lowered to m instead. Pseudo-block methods are designed to

leverage the computational power of multicore architectures,

while trying to mitigate the overhead of global synchronization

by exchanging more data less often. In contrast, block methods

are mathematical reformulations of standard iterative methods

to handle multiple RHSs. They tend to converge faster at

the cost of more computations and greater volume of data

exchange.

2) Cost analysis: Our implementation can handle right,

left, or variable preconditioning, for (pseudo-)Block GMRES

and (pseudo-)Block GCRO-DR. The algorithm fig. 1 was

written such that it can be used for both standard and Block

GCRO-DR. In terms of memory, pseudo-block methods

require p times more storage. For block methods, Hessenberg

matrices are p × p bigger, and Arnoldi basis and recycled

subspaces are p times thicker, cf. section III-A for the

notations. This high memory cost is the reason why the

restart parameter for BGMRES and BGCRO-DR is usually

lesser than for standard methods. A more thorough analysis is

available for the interested reader [65]. In terms of arithmetic

operations and messages, the most demanding kernels are, as

in any iterative method, sparse matrix–dense matrix products,

i.e. Y = AX and preconditioner–dense matrix operations,

i.e. V = M−1Y . Traditionally, the matrix A is distributed

on the global MPI communicator, and computing sparse

matrix–vector products requires peer-to-peer communications.

It is possible to extend this communication pattern to the

case of sparse matrix–dense matrix products as long as

the MPI buffers are p times bigger. The same goes for

preconditioner–dense matrix operations. Most importantly,

those two kernels are usually based on a combination of MPI

data exchanges and local work. The efficiency of the local

kernels usually scales fairly well with an increasing number

of RHSs, because it means a higher arithmetic intensity.

This especially applies to standard assembled sparse matrix

operations which are almost all memory bound.

3) Scalability of a direct solver with multiple right-hand

sides: As already mentioned, a domain decomposition

(a) Actual system. (b) Corresponding mesh. (c) Decomposition into 128 subdomains.

Fig. 5. Imaging chamber of EMTensor (no copyright infringement intended).
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# of right-hand sides (p)

1 2 4 8 16 32 64 128

P

1 1.58 2.55 5.39 7.74 12.42 21.99 41.89 83.13
2 0.99 1.68 2.69 5.24 7.65 13.92 22.28 42.39
4 0.61 1.83 1.71 2.74 5.36 7.79 12.74 22.96
8 0.53 1.80 1.83 2.07 2.94 5.71 8.36 14.45
16 0.54 1.95 2.05 2.14 2.17 3.43 6.27 9.2

(b) Time of the solution phase (in seconds) TP,p.

Fig. 6. Scalability analysis of PARDISO for solving the same system with varying number of threads and RHSs.

preconditioner will ensure fast convergence of the iterative

solver. Since a direct method is used in each subdomain, it

is interesting to understand how it scales when performing

forward eliminations and backward substitutions with

multiple RHSs. In this small numerical experiment, the three

dimensional Maxwell’s equation is solved in the unit cube

with high-order finite elements [58], [66]. The discrete linear

system is made of approximately 300k unknowns, with

roughly 83 nonzero double-precision complex entries per

row. Since the matrix is symmetric, only its upper triangular

part is stored. Each RHS is generated randomly. The direct

solver used is PARDISO [67], [68] from the MKL, but other

direct solvers might yield better results when solving systems

with multiple RHSs [69]. Once the matrix is factorized, we

solve the linear systems with 2p, p ∈ J0, . . . , 7K, RHSs.

Figure 6 gathers these results, as well as a scalability analysis

of PARDISO when solving these multiple systems with 2P ,

P ∈ J0, . . . , 4K, threads. Timings of fig. 6b are averages of

two consecutive runs. Curie, the machine used in all of our

numerical experiments, is made of nodes with two eight-core

sockets. This means that all these runs are performed on a

single node. In fig. 6a, we plot the efficiency defined as:

EP,p =
p · T1,1

P · TP,p

.

It is interesting to note that even with only one thread (P = 1),

we have a nice superlinear efficiency. This is likely due

to the use of BLAS 3 [70] instead of BLAS 2 routines,

and thus, better arithmetic intensity. When using multiple

threads, having multiple RHSs is sometimes the only way

to achieve reasonable performance. When P = 16, with two

RHSs (p = 2), PARDISO has an abysmal efficiency of 10%.

However, as the number of RHSs increases, it is possible once

again to reach a regime where the efficiency is superlinear (in

this case, p = 64 is the tipping point).

We have thus displayed experimentally one of the advantages

of (pseudo-)block methods when direct solvers are used in

the definition of the global preconditioner. By increasing the

workload, it is possible to achieve higher efficiency. This

remark is also valid for sparse matrix–dense matrix products,

and similar results are obtained when benchmarking, for

example, the ?csrmm routine from Intel MKL [71].

C. Scaling analysis

To assess the efficiency of our preconditioner, we will first

perform a strong scaling analysis. We consider in this test case

that the imaging chamber of fig. 5a is filled with an homoge-

neous dissipative matching solution, suited for brain imaging

applications. Given a global mesh as depicted in fig. 5b, we

increase the number of MPI processes to solve the linear

system of 119 million double-precision complex unknowns

yielded by the discretization of Maxwell’s equation using high-

order edge elements of degree 2. As seen in fig. 4, even

when the problem is relatively small, standard preconditioners

fail to converge or converge slower than M−1
ORAS. Because

we use complex-valued scalars, hypre, and in particular its

Maxwell solver AMS [72], cannot be used. MueLu [73] from
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N Setup Solve # of iterations Speedup

512 456.0 91.8 54 −
1,024 160.7 51.0 61 2.6
2,048 69.7 31.7 73 5.4
4,096 56.2 23.7 94 6.9

(b) Timings (in seconds) of the setup and the solution phases.

Fig. 7. Strong scaling analysis of the Maxwell solver for a sys-
tem of 119 million double-precision complex unknowns.



Trilinos can only solve Maxwell’s equation in eddy current

formulation6, and it is not clear how it handles high-order

edge elements.

Figure 7a is a plot of the time to solution, including both the

setup and the solution phases, for solving the linear system

on 512 up to 4,096 subdomains. The setup time does not

account for the mesh partitioning and the assembly of the finite

element matrices. We map one subdomain per MPI process,

and use one thread per MPI process. The global unstructured

mesh is partitioned using SCOTCH [74], we use a geometric

overlap of two elements (δ = 2), the local solver is PARDISO

from Intel MKL, and the iterative method is the Full GMRES

which is stopped once the relative unpreconditioned residual is

lower than 10−8. The overall speedup is almost optimal, with

a ratio of almost 7 between the time to solution using 512

and 4,096 subdomains, cf. fig. 7b for the exact figures. Since

simple, yet efficient, optimized boundary conditions are used,

the number of iterations slightly increases with the number

of MPI processes. This explains why the fraction of the total

time spent in the solve phase for the run on 4,096 subdomains

(30%) is greater than for the run on 512 subdomains (17%).

We now report results with our solver for 32 RHSs on

a more difficult test case, in order to demonstrate the ef-

ficiency of recycling and block methods. A non-dissipative

plastic cylinder of diameter 12 cm is immersed in the imaging

chamber and surrounded by matching liquid. The 32 RHSs

correspond to the second ring (from the top) of 32 transmitting

antennas. The corresponding linear system has 89 million

unknowns. The results are obtained on 4,096 subdomains,

this time with one subdomain and two OpenMP threads per

MPI process—so we use a total of 8,192 cores on Curie. We

propose eight alternatives to solve the system for all RHSs:

1) 32 consecutive solves with GMRES(50) (reference),

2) 32 consecutive solves with GCRO-DR(50, 10),

3) 1 solve with pseudo-BGMRES(50) and 32 RHSs,

4) 1 solve with BGMRES(50) and 32 RHSs,

5) 4 consecutive solves with pseudo-BGCRO-DR(50, 10)

and 8 RHSs,

6) 1 solve with pseudo-BGCRO-DR(50, 10) and 32 RHSs,

7) 4 consecutive solves with BGCRO-DR(50, 10) and 8

RHSs,

8) 1 solve with BGCRO-DR(50, 10) and 32 RHSs.

Iterative methods are stopped once the relative unprecon-

ditioned residual of each RHS is lower than 10−8. In all

cases, the system matrix is assembled once, as well as

the preconditioner defined eq. (6). For each alternative, the

preconditioner is setup only once. This step lasts 43.2 s. In

fig. 8, the speedup with respect to the naive approach—

alternative 1)—is displayed. Setting up the preconditioner

represents between 1.3% and 6% of the total time to solution

(= 43.2 s + the second column of fig. 8). Thus, it is of

paramount importance to increase the efficiency of the solution

phase. Variants of (pseudo-)block methods guarantee at least a

speedup of nearly 2. We notice that the best approach in terms

6which assumes that µ0ω
2εE = 0 in eq. (5)

Alternative p Solve # of it. per RHS Speedup

1) 1 3,078.4 20,068 627 −
2) 1 1,836.9 10,701 334 1.7
3) 32 1,577.9 653 − 2.0
4) 32 724.8 158 − 4.2
5) 8 1,357.8 1,508 377 2.3
6) 32 1,376.1 469 − 2.2
7) 8 677.6 524 131 4.5
8) 32 992.3 127 − 3.1

Fig. 8. Timings (in seconds) of the solution phase, and speedups relative
to alternative 1). The number of iterations per RHS is an average
over all 32

p
solves (and thus not reported when p = 32).

of computation time is 7), which is a combination of recycling

and block methods. It can be used to decrease the overall time

to solution by 450%. Numerically, the best approach is 8),

which divides the number of iterations by an astonishing factor

of 158. However, the cost of working on the complete block

of 32 RHSs becomes quite high, and it is best to mix recycling

techniques and smaller blocks of 8 RHSs. We currently do not

use block size reduction inside block methods [19], [21], [75],

but we perform rank-revealing CholQR (line 11 and line 24 in

fig. 1) for detecting breakdowns at each restart and residuals

appear to be far from being colinear in our application. It is not

clear to us if the cost of performing deflation at each iteration

would be beneficial, since we already perform a rather low

number of iterations with block methods—alternatives 4), 7),

and 8).

D. Perspectives

The application presented here is a good illustration of the

efficiency of recycling and block methods in speeding up

computations arising in wave scattering and wave propaga-

tion problems, which often involve multiple right-hand sides

corresponding to different angles of incident waves or different

locations of excitation sources. Recycling techniques can also

be applied in optimization problems, which generally consist

in solving a sequence of slowly-varying linear systems, where

the coefficient matrix depends on the choice of parameters.

For such problems, recycling strategies can help in reducing

significantly the total number of iterations over all linear

systems. Incorporating these techniques in the development

of an efficient inversion algorithm in the context of our

application in brain imaging described in this paper is the

focus of an ongoing work [76].

VI. CONCLUSION

In this paper, we have presented various applications using

recycling strategies or block methods. Large-scale experiments

were obtained on 8,192 cores, using either our own application

built on top of a finite element domain-specific language,

or a well-established linear algebra backend: PETSc. Both

of the approaches rely on our open-source framework for

the solution phase. It can currently handle right, left, or



variable preconditioning, for (pseudo-)Block GMRES and

(pseudo-)Block GCRO-DR, and may be called from C/C++,

Python, or Fortran. We have shown experimentally that

recycling is an elegant way to decrease the time to solution

for solving sequence of linear systems with millions of

unknowns. This is especially true when only the right-hand

sides are changing in the sequence. We have also studied the

behavior of linear solvers when systems are made of multiple

right-hand sides available simultaneously in the context of

medical imaging. Using a scalable Maxwell solver based on

optimized Schwarz methods, we have shown that using block

methods can greatly increase the efficiency of both direct

and hybrid direct–iterative solvers. We hope that this work

will motivate developers of linear algebra backends such

as PETSc or hypre to handle linear systems with multiple

right-hand sides.
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versité Rennes 1, 1990.

[34] D. Darnell, R. B. Morgan, and W. Wilcox, “Deflated GMRES for
systems with multiple shifts and multiple right-hand sides,” Linear

Algebra and its Applications, vol. 429, no. 10, pp. 2415–2434, 2008.

http://www.mcs.anl.gov/petsc


[35] J. Meng, H.-B. Li, and Y.-F. Jing, “A new deflated block GCROT(m, k)
method for the solution of linear systems with multiple right-hand sides,”
Journal of Computational and Applied Mathematics, 2016.

[36] R. Yu, E. de Sturler, and D. D. Johnson, “A Block Iterative Solver for
Complex Non-Hermitian Systems Applied to Large-Scale Electronic-
Structure Calculations,” University of Illinois at Urbana-Champaign,
Department of Computer Science, Technical Report UIUCDCS-R-2002-
2299, 2002.

[37] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur, “Flexible
Variants of Block Restarted GMRES Methods with Application to
Geophysics,” SIAM Journal on Scientific Computing, vol. 34, no. 2,
pp. A714–A736, 2012.

[38] T. Sakurai, H. Tadano, and Y. Kuramashi, “Application of block Krylov
subspace algorithms to the Wilson–Dirac equation with multiple right-
hand sides in lattice QCD,” Computer Physics Communications, vol.
181, no. 1, pp. 113–117, 2010.

[39] R. Falgout and U. Yang, “hypre: A library of high performance precon-
ditioners,” Computational Science—ICCS 2002, pp. 632–641, 2002.

[40] P. Bastian, F. Heimann, and S. Marnach, “Generic implementation
of finite element methods in the distributed and unified numerics
environment (DUNE),” Kybernetika, vol. 46, no. 2, pp. 294–315, 2010.

[41] D. Lukarski and N. Trost, “PARALUTION web page,” http://www.
parallution.com, 2016.

[42] A. H. Baker, E. R. Jessup, and T. Manteuffel, “A Technique for
Accelerating the Convergence of Restarted GMRES,” SIAM Journal on

Matrix Analysis and Applications, vol. 26, no. 4, pp. 962–984, 2005.

[43] J. Erhel, K. Burrage, and B. Pohl, “Restarted GMRES preconditioned by
deflation,” Journal of computational and applied mathematics, vol. 69,
no. 2, pp. 303–318, 1996.

[44] D. N. Wakam and F. Pacull, “Memory efficient hybrid algebraic solvers
for linear systems arising from compressible flows,” Computers &

Fluids, vol. 80, pp. 158–167, 2013.

[45] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps
et al., “An overview of the Trilinos project,” ACM Transactions on

Mathematical Software (TOMS), vol. 31, no. 3, pp. 397–423, 2005.

[46] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, “Ame-
sos2 and Belos: Direct and Iterative Solvers for Large Sparse Linear
Systems,” Scientific Programming, vol. 20, no. 3, pp. 241–255, 2012.

[47] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick, “Minimiz-
ing Communication in Sparse Matrix Solvers,” in Proceedings of the

International Conference on High Performance Computing, Networking,

Storage and Analysis, SC09. ACM, 2009.

[48] A. Stathopoulos and K. Wu, “A Block Orthogonalization Procedure with
Constant Synchronization Requirements,” SIAM Journal on Scientific

Computing, vol. 23, no. 6, pp. 2165–2182, 2002.

[49] I. Yamazaki, S. Tomov, and J. Dongarra, “Mixed-Precision Cholesky
QR Factorization and Its Case Studies on Multicore CPU with Multiple
GPUs,” SIAM Journal on Scientific Computing, vol. 37, no. 3, pp. C307–
C330, 2015.

[50] D. L. Brown, R. Cortez, and M. L. Minion, “Accurate Projection
Methods for the Incompressible Navier–Stokes Equations,” Journal of

Computational Physics, vol. 168, no. 2, pp. 464–499, 2001.

[51] L. Feng, P. Benner, and J. G. Korvink, “Parametric model order reduction
accelerated by subspace recycling,” in Proceedings of the 48th IEEE

Conference on Decision and Control. IEEE, 2009, pp. 4328–4333.

[52] H. C. Elman, O. G. Ernst, and D. P. O’Leary, “A Multigrid Method En-
hanced by Krylov Subspace Iteration for Discrete Helmholtz Equations,”
SIAM Journal on Scientific Computing, vol. 23, no. 4, pp. 1291–1315,
2001.

[53] S. Cools, B. Reps, and W. Vanroose, “An Efficient Multigrid Calculation
of the Far Field Map for Helmholtz and Schrödinger Equations,” SIAM

Journal on Scientific Computing, vol. 36, no. 3, pp. B367–B395, 2014.

[54] A. Amritkar, E. de Sturler, K. Świrydowicz, D. Tafti, and K. Ahuja,
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APPENDIX

A. Abstract

This description contains the information needed to launch

some experiments of the SC16 paper “Block Iterative Methods

and Recycling for Improved Scalability of Linear Solvers”.

More precisely, we explain how to compile and run the

modified PETSc examples used in section IV. The results from

section V can be reproduced using a finite element library

interfaced with HPDDM, but this artifact description is not

focused on that part of the paper.

B. Description

1) Check-list (artifact meta information):

• Algorithm: GCRO-DR with right, left, or variable preconditioning
• Program: C binary, C and C++ libraries
• Compilation: icpc version 16.0.2.181 (gcc version 4.9.1 com-

patibility) with the -O3 flag
• Output: time to solution and number of iterations
• Experiment workflow: install PETSc, clone HPDDM, compile

the HPDDM C library, compile the modified PETSc examples,
run the binaries, observe the results

• Experiment customization: number of MPI processes, threads,
and grid points, standard parameters of Krylov methods...

• Publicly available?: yes

2) How delivered: HPDDM can be cloned from GitHub

using the following URL: https://github.com/hpddm/hpddm.

The examples taken from the PETSc distribution are in the

folder examples/petsc.

3) Hardware dependencies: none. Note that we will link

binaries with shared objects. As such, systems with severe

limitations when it comes to dynamic loading—e.g., IBM

BlueGene/Q—are not covered in this document (but it is not

a problem to use static libraries instead).

4) Software dependencies: HPDDM requires a C++11

compliant compiler such as: g++ 4.7.2 and above, clang++

3.3 and above, icpc 15.0.0.090 and above, or pgc++ 15.1 and

above. icpc 16.0.1.150 and below and pgc++ are partially

bugged when activating C++11 support. Please apply the

following patch to the sources of HPDDM first if you are

using one of these compilers:

$ sed -i\ '' 's/type\* = nullptr/type* = (void*)0 \

/g; s/static constexpr const char/const char \

/g' include/*.hpp examples/*.cpp

BLAS and LAPACK are needed for dense linear algebra

computations but can be automatically downloaded by PETSc.

PETSc is available at the following URL: http://ftp.mcs.

anl.gov/pub/petsc/release-snapshots/petsc-lite-3.7.3.tar.gz. Do

not forget to turn off debugging and error detection if

you need to compile PETSc (--with-debugging=0

--with-errorchecking=0).

C. Installation

1) clone HPDDM and enter the newly created directory

$ git clone https://github.com/hpddm/hpddm

$ cd hpddm

2) create an appropriate Makefile.inc by defining:

a) MPICXX, a C++ compiler wrapping an MPI im-

plementation

b) CXXFLAGS, to activate C++11 support and such

c) BLAS_LIBS, to link with BLAS and LAPACK

d) or if you are using Intel Math Kernel Library,

define MKL_INCS and MKL_LIBS instead
Here are some minimalist Makefile.inc examples, be

sure to link PETSc and HPDDM with the same BLAS and

MPI implementations as they are not all ABI compatible:
i. for Linux-based systems with the legacy BLAS

MPICXX = mpic++

CXXFLAGS = -std=c++11 -O3 -fPIC

BLAS_LIBS = -L/usr/lib -lblas -llapack

ii. for Linux-based systems with Intel MKL and GOMP

MPICXX = mpic++

CXXFLAGS = -std=c++11 -O3 -fPIC

MKL_LIBS = -lgomp -L${MKLROOT}/lib/intel64 \

-lmkl_core -lmkl_intel_lp64 -lmkl_gnu_thread

MKL_INCS = -I${MKLROOT}/include

iii. for macOS systems with Apple BLAS

MPICXX = mpic++

CXXFLAGS = -std=c++11 -O3 -fPIC

BLAS_LIBS = -framework Accelerate

iv. for macOS systems with Intel MKL and IOMP

MPICXX = mpic++

CXXFLAGS = -std=c++11 -O3 -fPIC

MKL_LIBS = -L/opt/intel/lib -L/opt/intel/mkl/lib \

-liomp5 -lmkl_core -lmkl_intel_lp64 \

-lmkl_intel_thread

MKL_INCS = -I/opt/intel/mkl/include

3) compile the C library

$ LIST_COMPILATION=c make lib



4) copy the modified PETSc examples into your PETSc

installation

$ cp examples/petsc/ex32.c examples/petsc/ex56.c \

${PETSC_DIR}/src/ksp/ksp/examples/tutorials

5) store the working directory in an environment variable

and make sure that the shared library can be found, e.g.,

for some systems:

$ export HPDDM_DIR=`pwd`

$ export LD_LIBRARY_PATH=`pwd`/lib:\

${LD_LIBRARY_PATH}

D. Experiment workflow

Now that the HPDDM C library is compiled, PETSc

toolchain will be used for generating the binaries. For that

matter, change directory and compile the modified PETSc

examples:

$ cd ${PETSC_DIR}/src/ksp/ksp/examples/tutorials

$ make ex32 ex56 CFLAGS="-I${HPDDM_DIR}/interface \

-L${HPDDM_DIR}/lib -lhpddm_c"

Most HPDDM and PETSc options may be set via command

line, so there is almost no need to recompile either the library

or the binaries. In the rest of the artifact description, we

will explain the most important options to set up in order

to reproduce the results of the paper.

E. Evaluation and expected result

To make sure that everything runs smoothly, here are two

commands (one for each modified PETSc example) that should

run on most platforms (from laptops to supercomputers):

$ mpirun -np 8 ./ex32 -hpddm_recycle_same_system \

-ksp_pc_side right -ksp_rtol 1.0e-6 \

-hpddm_recycle 10 -hpddm_krylov_method gcrodr \

-hpddm_gmres_restart 30 -da_refine 2

$ mpirun -np 8 ./ex56 -ne 9 -ksp_pc_side right \

-ksp_rtol 1.0e-6 -hpddm_gmres_restart 30 \

-hpddm_krylov_method gcrodr -hpddm_recycle 10

The output for example 32 should include the following lines:
PETSc (GMRES)

1 81 0.005241

2 65 0.003395

3 77 0.003898

4 65 0.003308

------------------------

288 0.015842

HPDDM (GCRO-DR)

1 64 0.005964

2 28 0.001851

3 27 0.001860

4 28 0.001987

------------------------

147 0.011662

The first column is the index of the linear system solved, the

second column is the number of iterations needed to reach con-

vergence, and the third column is the time to solution (exclud-

ing setup) in seconds. The last line is the sum of all rows.

The output for example 56 should include the following

lines (which have the same structure as described previously):
PETSc (GMRES)

1 128 0.018176

2 77 0.010872

3 98 0.013834

4 106 0.014781

------------------------

409 0.057663

HPDDM (GCRO-DR)

1 70 0.014209

2 60 0.014578

3 79 0.018486

4 38 0.009578

------------------------

247 0.056851

F. Experiment customization

In the paper, numerical experiments were carried out with

the two previously compiled examples but with the following

adjusted parameters: grid size, preconditioner type, dimension

of recycled Krylov subspaces. All PETSc options were dis-

closed in the paper, but due to double-blind review policy,

HPDDM options were omitted. Here are the exact command

lines including both sets of options:

• for section IV-B

$ mpirun -np 8192 ./ex32 -ksp_rtol 1.0e-8 \

-pc_type gamg -ksp_type fgmres -da_refine 2 \

-mg_levels_ksp_type gmres -da_grid_x 4210 \

-mg_levels_ksp_max_it 3 -da_grid_y 4210 \

-hpddm_krylov_method gcrodr -hpddm_recycle 10 \

-hpddm_gmres_restart 30 -hpddm_tol 1.0e-8 \

-hpddm_variant flexible -pc_gamg_square_graph 2 \

-hpddm_recycle_strategy B \

-hpddm_recycle_same_system \

-pc_gamg_threshold 0.0725

$ mpirun -np 8192 ./ex32 -ksp_rtol 1.0e-8 \

-pc_type gamg -ksp_type fgmres -da_refine 2 \

-mg_levels_ksp_type gmres -da_grid_x 4210 \

-mg_levels_ksp_max_it 1 -da_grid_y 4210 \

-hpddm_krylov_method gcrodr -hpddm_recycle 10 \

-hpddm_gmres_restart 30 -hpddm_tol 1.0e-8 \

-hpddm_variant flexible -pc_gamg_square_graph 2 \

-hpddm_recycle_same_system \

-hpddm_recycle_strategy B \

-pc_gamg_threshold 0.076

• for section IV-C

$ mpirun -np 8000 ./ex56 -ne 399 -ksp_rtol 1.0e-8 \

-ksp_type fgmres -pc_type gamg \

-mg_levels_ksp_type cg -mg_levels_ksp_max_it 4 \

-hpddm_krylov_method gcrodr -hpddm_recycle 10 \

-hpddm_gmres_restart 30 -hpddm_tol 1.0e-8 \

-hpddm_variant flexible -hpddm_recycle_strategy A

$ mpirun -np 8000 ./ex56 -ne 399 -ksp_rtol 1.0e-8 \

-ksp_type lgmres -pc_type gamg \

-ksp_lgmres_augment 10 -ksp_pc_side right \

-mg_levels_ksp_type chebyshev -hpddm_recycle 10 \

-hpddm_krylov_method gcrodr -hpddm_tol 1.0e-8 \

-hpddm_gmres_restart 30 -hpddm_variant flexible \

-hpddm_recycle_strategy A

The list of all available PETSc (resp. HPDDM) options

may be displayed by appending the option -help

(resp. -hpddm_help) to the command line arguments.

Alternatively, these options are also described at the

following URL: http://www.mcs.anl.gov/petsc/documentation

(resp. https://github.com/hpddm/hpddm/blob/master/doc/

cheatsheet.pdf)

G. Notes

For GCRO-DR, -hpddm_recycle_strategy A

(resp. B) means solving the generalized eigenvalue problem

in fig. 1 (line 33) with the right-hand side matrix W defined

eq. (3a) (resp. eq. (3b)).

In the last experiment of section IV-C, we use FGCRO-DR

instead of GCRO-DR with right preconditioning because this

leads to less operations (at a cost of additional storage, which

is typical of flexible iterative methods).
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