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Abstract In the field of sensitivity analysis, Sobol’ indices
are sensitivity measures widely used to assess the impor-
tance of inputs of a model to its output. The estimation of
these indices is often performed trough Monte Carlo or quasi-
Monte Carlo methods. A notable method is the replication
procedure that estimates first-order indices at a reduced cost
in terms of number of model evaluations.

An inherent practical problem of this estimation is how
to quantify the number of model evaluations needed to en-
sure that estimates satisfy a desired error tolerance. This pa-
per addresses this challenge by proposing a reliable error
bound for first-order and total effect Sobol’ indices. Start-
ing from the integral formula of the indices, the error bound
is defined in terms of the discrete Walsh coefficients of the
different integrands.

We propose a sequential estimation procedure of Sobol’
indices using the error bound as a stopping criterion. The
sequential procedure combines Sobol’ sequences with either
Saltelli’s strategy to estimate both first-order and total effect
indices, or the replication procedure to estimate only first-
order indices.
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1 Introduction

Let f represent a deterministic numerical model in r0,1sd ,
d ě 1. Sensitivity measures, also known as Sobol’ indices,
are used to assess which inputs of f are influential for the
output. The normalized indices are scalars between 0 and 1
whose values are interpreted as follows: the closer to 1 the
more influential the index. Alternatively, they can be inter-
preted as the percentage of the variance explained by the
inputs. Among all Sobol’ indices one can distinguish first-
order and total effect indices. The first measure the effect
of a single input, while the second measure the effect of a
single input plus all its interactions with other inputs.

When dealing with complex numerical models, analyti-
cal expressions of Sobol’ indices are often inaccessible. In
such cases, one must rely on an estimation of these indices.
The original estimation procedure is due to Sobol’ [17]. How-
ever, this procedure requires several model evaluations which
are usually expensive. Later on, Saltelli [15] proposed strate-
gies to estimate sets of Sobol’ indices at once through the
use of a combinatorial formalisms. While elegant, these strate-
gies still require a large number of model evaluations. A cost
efficient alternative to estimate first-order indices was intro-
duced in [10]. This alternative, called the replication proce-
dure, has recently been further studied in [18] and general-
ized to the estimation of closed second-order indices.

A practical problem concerning the use of these meth-
ods is how to quantify the number of model evaluations re-
quired to ensure that Sobol’ estimates are accurate enough.
This article addresses this challenge by proposing a reliable
error bound for Sobol’ indices based on digital sequences.
The error bound is defined in terms of the discrete Walsh
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coefficients of the integrands involved in the Sobol’ indices
definition. We propose a sequential estimation procedure of
Sobol’ indices using the error bound as our stopping crite-
rion. The procedure operates under the assumption that all
integrands lie inside a particular cone of functions (see [4]).

Firstly, Section 2 introduces Sobol’ indices and reviews
both Saltelli’s strategy to estimate first-order and total ef-
fect Sobol’ indices, and the replication procedure. Our main
contribution is detailed in Section 3. There, we review the
construction of the error bound proposed in [4] for the esti-
mation of integrals based on digital sequences, and then we
generalize it for Sobol’ indices. Section 4 is devoted to ana-
lyze the cost in terms of model evaluations of our sequential
estimation algorithm. It combines the error bound in Section
3 and either one of the two estimation procedures of Section
2. We also discuss a potential improvement to estimate small
first-order indices according to [14]. Finally, examples and
illustrations of our procedure are presented in Section 5.

2 Background on Sobol’ indices

2.1 Definition of Sobol’ indices

Denote by x“ px1, . . . ,xdq the vector of inputs of f . We as-
sume that f is in some subset of PL2pr0,1sdq for which f pxq
is defined for all x P r0,1sd , and D “ t1, . . . ,du the set of di-
mension indexes. Let u be a subset of D ,´u its complement
and |u| its cardinality. Then, xu represents a point in r0,1s|u|

with components x j, j P u. Given two points x and x1, the
hybrid point w “ pxu : x1´uq is defined as w j “ x j if j P u
and w j “ x1j if j R u.

The uncertainty on x is modeled by a uniform random
vector, namely x iid

„ U pr0,1sdq. The Hoeffding decomposi-
tion [6,17] of f is:

f pxq “ f∅`
ÿ

uĎD ,u‰∅
fupxq, (1)

where:

f∅ “ Er f pxqs “ µ,

fupxq “
ż

r0,1s|u|
f pxqdx´u´

ÿ

vĂu
fvpxq.

Due to orthogonality, the variance of equation (1) leads to
the variance decomposition of f :

σ
2 “ Varr f pxqs “

ÿ

uĎD ,u‰∅
σ

2
u , with σ

2
u “

ż

r0,1s|u|
fupxq2dxu.

From this decomposition, one can define the following two
quantities:

τ
2
u “

ÿ

vĎu
σ

2
v , τ

2
u “

ÿ

vXu‰∅
σ

2
v , uĹD .

These two quantities τ2
u and τ

2
u measure the importance

of variables xu: τ2
u quantifies the main effect of xu, that is

the effect of all interactions between variables in xu, and τ
2
u

quantifies the main effect of xu plus the effect of all interac-
tions between variables in xu and variables in x´u.

Both τ2
u and τ

2
u satisfy the following relations: 0ď τ2

u ď

τ
2
u and τ2

u “ σ2´ τ
2
´u. These two measures are commonly

found in the literature in their normalized form: Su “ τ2
u{σ

2

is the closed |u|-order Sobol’ index for inputs u, while Su “

τ
2
u{σ

2 is the total effect Sobol’ index of order |u|.

In our framework, we are only interested in single input
indices, namely |u| “ 1. The computation of the normalized
indices is performed based on the following integral formu-
las for their numerators:

τ
2
u “

ż

r0,1s2d

`

f pxq´ f pxu : x1´uq
˘

f px1qdxdx1, (2)

τ
2
u “

1
2

ż

r0,1sd`1
p f px1q´ f pxu : x1´uqq

2dxudx1, u PD , (3)

while variance and mean of f are evaluated as:

σ
2 “

ż

r0,1sd
f pxq2dx´µ

2,

µ “

ż

r0,1sd
f pxqdx,

(4)

Usually the complexity of f causes the solution of integrals
(2), (3) and (4) to be intractable. In such cases, one can in-
stead estimate these quantities.

2.2 Estimation of Sobol’ indices

In this section we review two Monte Carlo procedures for
the estimation of Sobol’ indices. A design is a point set
P “ txiu

n´1
i“0 where each point is obtained by sampling each

variable x j n times. Each row of the design is a point xi in
r0,1sd and each column of the design refers to samples of a
variable x j. Consider P “ txiu

n´1
i“0 and P 1 “ tx1iun´1

i“0 two

designs where pxi,x1iq
iid
„ U pr0,1s2dq. One way to estimate

the two quantities (2) and (3) is via:

pτ2
u “

1
n

n´1
ÿ

i“0

`

f pxiq´ f pxi,u : x1i,´uq
˘

f px1iq, (5)

p

τ
2
u “

1
2n

n´1
ÿ

i“0

p f px1iq´ f pxi,u : x1i,´uqq
2, u PD , (6)

using for σ2:

pσ
2 “

1
n

n´1
ÿ

i“0

f pxiq
2´ pµ

2, with pµ “
1
n

n´1
ÿ

i“0

f pxiq. (7)
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Then, the Sobol’ indices estimators are:

pSu “
pτ2
u{pσ

2, pSu “
p

τ
2
u{pσ

2. (8)

Using this method, the estimation of a single pair (pSu, pSu) re-
quires 3n evaluations of the model f . Thus, for all first order
and total effect indices, one would need 3nd model eval-
uations. Using a combinatorial formalism, in [15] Saltelli
proposes the following estimation strategy:

Theorem 1 The d`2 designs txi,u : x1i,´uu
n´1
i“0 constructed

for u P t∅,t1u, . . . , tdu,Du allow to estimate all first-order
and total effect Sobol’ indices at a cost of npd` 2q evalua-
tions of the model.

The main idea of the theorem is that there is no need to
reevaluate f pxiq and f px1iq for each u. Hence, we can simply
evaluate f pxiq n times, f px1iq n times, and f pxi,u : x1i,´uq nd
times, which accounts for the npd`2q evaluations.

The d ` 2 designs of Theorem 1 are obtained by sub-
stituting columns of P for columns of P 1 accordingly to
u. While elegant, this approach requires a number of model
evaluations that grows linearly with respect to the input space
dimension.

A more efficient alternative to evaluate all first-order in-
dices was proposed in [10] and only requires 2n model eval-
uations. This alternative relies on the construction of two
replicated designs. The notion of replicated designs was first
introduced by McKay through his replicated Latin Hyper-
cubes in [11]. In order to apply this definition to other types
of points, in [3] we generalized this notion to the following.

Definition 1 Let P “ txiu
n´1
i“0 and P 1 “ tx1iun´1

i“0 be two
point sets in r0,1sd . Let Pu “ txi,uu

n´1
i“0 (resp. P 1u), uĹD ,

denote the subset of dimensions of P (resp. P 1) indexed by
u. We say that P and P 1 are two replicated designs of order
a P t1, . . . ,d´1u if for any uĹD such that |u| “ a, Pu and
P 1u are the same point set in r0,1sa. We define by πu the
permutation that rearranges the rows of P 1u into Pu.

The method introduced in [10] allows to estimate all first-
order Sobol’ indices with only two replicated designs of or-
der 1. The key point of this method is to use the permutations
resulting from the structure of the two replicated designs to
mimic the hybrid points in equation (5).

More precisely, let P “ txiu
n´1
i“0 and P 1 “ tx1iun´1

i“0 be
two replicated designs of order 1. Denote by tyiu

n´1
i“0 “

t f pxiqu
n´1
i“0 and ty1iu

n´1
i“0 “ t f px1iqun´1

i“0 the two sets of model
evaluations obtained with P and P 1. From Definition 1, we
know that x1πupiq,u “ xi,u. Then,

y1
πupiq “ f px1

πupiq,u : x1πupiq,´uq

“ f pxi,u : x1πupiq,´uq.

Hence, each τ2
u can be estimated via formula (5) by us-

ing y1
πupiq instead of f pxi,u : x1i,´uq without requiring further

model evaluations for each u. This estimation method has
been studied deeply and generalized in Tissot et al. [18] to
the case of closed second-order indices. In the following we
will refer to this method as the replication procedure.

2.3 Towards a reliable estimation

The aim of this article is to propose a sequential procedure to
estimate first-order and total effect Sobol’ indices. A prac-
tical problem concerning the estimation of these indices is
how large to choose the number of evaluations to ensure
that Sobol’ estimates are accurate enough. Asymptotical re-
sults show that Sobol’ estimates are normally distributed ([7,
Proposition 2.2], [18, Proposition 3.5]). As a consequence,
errors can be estimated through confidence intervals. How-
ever, these error estimates are only guaranteed asymptoti-
cally as the number of model evaluations goes to infinity.

Additional sequential procedures are the replicated pro-
cedure and McKay’s procedure respectively proposed in [2]
and [19]. Nevertheless, in those two cases, the stopping cri-
terion is a purely empirical quantity of interest, built di-
rectly upon the estimates. Such stopping criteria often in-
volve hyper-parameters that are difficult to tweak but more
importantly, fail to guarantee any error bound on the esti-
mates.

Our sequential procedure stands apart from others since
it proposes a robust stopping criterion, not costly to com-
pute. This criterion is an error bound based on the Walsh se-
ries decomposition of the integrands in (2), (3) and (4), and
exploits the group properties of digital nets. As such, our
procedure relies on an iterative construction of Sobol’ se-
quences. This construction is performed accordingly to the
multiplicative approach presented in [3].

The description of the error bound is introduced in the
following section and our sequential procedure is detailed
in Section 4.

3 Reliable error bound for Sobol’ indices

We start by reviewing the construction of the error bound
proposed in [4] for the estimation of d-dimensional inte-
grals. Then, we present an extension of this error bound for
normalized Sobol’ indices. This extension is built upon the
integral formula of a Sobol’ index.

3.1 Reliable integral estimation using digital sequences

We assume we have an embedded sequence of digital nets
in base b as in [4, Sec. 2-3],

P0 “ t0u Ă ¨ ¨ ¨ ĂPm “ txiu
bm´1
i“0 Ă ¨¨ ¨ ĂP8 “ txiu

8
i“0.
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Each Pm has a group structure under the digitwise addition:

x‘ t“

˜

8
ÿ

`“1

rpx j`` t j`q mod bsb´` pmod 1q

¸d

j“1

,

where x j` and t j` are the b-adic decompositions of the jth

component of points x and t.
To relate the group structure of Pm with the integration

error, we introduce the dual net which establishes the rela-
tionship between any digital net and the wavenumber space
of non-negative integers Nd

0 . A dual net is

PK
m “ tk P Nd

0 : xk,xy “ 0, x PPmu,

xk,xy “
d
ÿ

j“1

8
ÿ

`“0

k j`x j,``1 pmod bq,

and inherits the same embedded structure as for digital nets,

PK
0 “ Nd

0 Ą ¨¨ ¨ ĄPK
8 “ t0u. (9)

As shown in [4, Sec. 3], the group structure of digital nets
guarantees the property below affecting any Walsh basis
ϕkpxq “ e2π

?
´1xk,xy{b,

1
bm

ÿ

xPPm

ϕkpxq “

#

1, k PPK
m ,

0, k RPK
m .

(10)

Therefore, considering the Walsh decomposition of any
f P L2pr0,1sdq:

f pxq “
ÿ

kPNd
0

f̂kϕkpxq,

and,

I “
ż

r0,1sd
f pxqdx,

property (10) leads to∣∣∣∣∣I´ 1
bm

ÿ

xPPm

f pxq

∣∣∣∣∣“
∣∣∣∣∣∣ f̂0´

1
bm

ÿ

xPPm

ÿ

kPNd
0

f̂kϕkpxq

∣∣∣∣∣∣ ,
“

∣∣∣∣∣∣
ÿ

kPPK
m zt0u

f̂k

∣∣∣∣∣∣
ď

ÿ

kPPK
m zt0u

∣∣ f̂k
∣∣ . (11)

Based on the size of
∣∣ f̂k

∣∣ and the structure of dual nets (9), in
[4, Sec. 4.1] we proposed an ordering of the wavenumbers
kp¨q : N0 Ñ Nd

0 . Defining f̂κ “ f̂kpκq, the error bound (11)
becomes,∣∣∣∣∣I´ 1

bm

ÿ

xPPm

f pxq

∣∣∣∣∣ď 8
ÿ

λ“1

∣∣ f̂λbm
∣∣ . (12)

Nonetheless, because the knowledge of the Walsh coeffi-
cients f̂κ is not assumed, we will estimate them using the

fast transform obtained with the precomputed function val-
ues, and refer to them as rfm,κ ,

rfm,κ “ rfm,kpκq “
1

bm

ÿ

xPPm

f pxqϕkpκqpxq.

Note that for function values evaluated at Pm, one only gen-
erates bm discrete Walsh coefficients rfm,κ .

For `,m P N0 and `ď m we introduce the following no-
tation,

Smp f q “
bm´1
ÿ

κ“tbm´1u

∣∣ f̂κ

∣∣ , pS`,mp f q “
b`´1
ÿ

κ“tb`´1u

8
ÿ

λ“1

∣∣ f̂κ`λbm
∣∣ ,

qSmp f q “ pS0,mp f q` ¨ ¨ ¨` pSm,mp f q “
8
ÿ

κ“bm

∣∣ f̂κ

∣∣ ,
rS`,mp f q “

b`´1
ÿ

κ“tb`´1u

∣∣∣rfm,κ

∣∣∣ .
Finally, we define the set of functions C ,

C :“ t f PL2pr0,1sdq : pS`,mp f q ď pωpm´`qqSmp f q, `ďm,

qSmp f q ď ω̊pm´ `qS`p f q, `˚ ď `ď mu. (13)

for `˚ PN, pω and ω̊ two non-negative valued functions with
limmÑ8 ω̊pmq “ 0, and such that pωprqω̊prq ă 1 for some
fixed r P N.

In [4, Sec. 4.2] it is shown that for any f P C ,∣∣∣∣∣I´ 1
bm

ÿ

xPPm

f pxq

∣∣∣∣∣ď rS`,mp f q
pωpmqω̊pm´ `q

1´ pωpm´ `qω̊pm´ `q
looooooooooooomooooooooooooon

Cpmq

“ ε
pI ,(14)

where one may increase m until the error bound εI is small
enough.

Details concerning the algorithm, the mapping of the
wavenumber space, or the meaning and properties of C , are
provided in [4].

For our problem, only Sobol’ sequences [16] have been
considered. Their major interest comes from their fast and
easy implementation. Further details concerning Sobol’ se-
quences can be found in [9,12].

3.2 Extension to Sobol’ indices

The idea here is to extend the definition of the error bound
(14) to Sobol’ indices. To achieve this goal, we consider
the two integral formulas of the first-order and total effect
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Sobol’ indices with |u| “ 1:

SupIq “

ş

r0,1q2d p f pxq´ f pxu : x1´uqq f px1qdxdx1

ş

r0,1qd f pxq2dx´
´

ş

r0,1qd f pxqdx
¯2 ,

SupIq “
I1

I3´pI4q2
,

SupIq “
1
2

ş

r0,1qd`1p f px1q´ f pxu : x1´uqq
2dxudx1

ş

r0,1qd f pxq2dx´
´

ş

r0,1qd f pxqdx
¯2 ,

SupIq “
I2

I3´pI4q2
,

where I “ pI1, I2, I3, I4q is a vector of integral values. In-
dices SupIq and SupIq are defined as functions over the vec-
tor I. If we estimate I by pI with vector of error bounds ε

pI “

pε
pI1
,ε

pI2
,ε

pI3
,

ε
pI4
q according to (14), we know that I P Bε

pI
ppIq “ rpI´ ε

pI,
pI`

ε
pIs.

Then, as an alternative to the common Sobol’ indices
estimators (8), we can define the following two estimators
with their respective error bounds:

pSu “
1
2

¨

˝min
´

max
IPBε

pI
ppIq

SupIq,1
¯

`max
´

min
IPBε

pI
ppIq

SupIq,0
¯

˛

‚

ε
pSu
“

1
2

¨

˝min
´

max
IPBε

pI
ppIq

SupIq,1
¯

´max
´

min
IPBε

pI
ppIq

SupIq,0
¯

˛

‚

(15)

and,

pSu “
1
2

¨

˝min
´

max
IPBε

pI
ppIq

SupIq,1
¯

`max
´

min
IPBε

pI
ppIq

SupIq,0
¯

˛

‚

ε
pSu
“

1
2

¨

˝min
´

max
IPBε

pI
ppIq

SupIq,1
¯

´max
´

min
IPBε

pI
ppIq

SupIq,0
¯

˛

‚

(16)

Because numerator and denominator are both known to be
positive, maximizing SupIq (resp. SupIq) is done through max-
imizing the numerator I1 (resp. I2) and minimizing the de-
nominator I3 ´ I2

4 . Analogously, to minimize SupIq (resp.
SupIq) one minimizes the numerator I1 (resp. I2) and max-
imizes the denominator I3´ I2

4 . As an example, Figure 1 il-
lustrates the region of possible values of S2pIq given the true
value of I1 for the test function of Bratley et al. [1]. This
function is further described in Section 5.

Under the assumption that each integrand in Su and Su
lies inside C , these new estimators satisfy:

Su P

”

pSu´ ε
pSu
,pSu` ε

pSu

ı

, Su P

”

pSu´ ε
pSu
,pSu` ε

pSu

ı

.

For the rest of the paper, we will consider pSu and pSu as de-
fined in formulas (15) and (16).

Fig. 1 The delimited region on the figure represents the values S2
in I P Bp0,0,0.05,0.1qppIq for the Bratley et al. function. There, Smin

2 “

max
´

minIPBεI p
pIq S2pIq,0

¯

and Smax
2 “min

´

maxIPBεI p
pIq S2pIq,1

¯

, and
pS2 “ pS

min
2 `Smax

2 q{2.

4 Sequential estimation procedure

The sequential estimation procedure we propose combines
error bounds ε

pSu
and ε

pSu
presented in the previous section

with either one of the two estimation strategies of Section
2.2: Saltelli’s strategy and the replication procedure.

We start by detailing our procedure under the form of
an algorithm. Then, we discuss a possible improvement by
considering a new estimator introduced in [14] for the esti-
mation of first-order indices.

4.1 Sequential algorithm and cost

Algorithm 1 summarizes the main steps of our sequential
procedure. First, one must fix the tolerance ε ą 0 at which
Sobol’ indices must be estimated, and set m“ `˚` r, where
`˚ and r are the two hyper-parameters defined in (13). Then,
one must construct the two designs Pm“txiu

2m´1
i“0 and P 1

m“

tx1iu
2m´1
i“0 at Step 5 according to the multiplicative approach

detailed in [3]. The choice of `˚ must be large enough to
ensure that each integrand of Su and Su (Section 3.2) is in C
(see (13)).

Under this construction, Pm and P 1
m correspond to the

first 2m points of two independent Sobol’ sequences. Fur-
thermore, they possess the structure of two replicated de-
signs of order 1, as shown in [3]. In addition, Pm and P 1

m
can also be scrambled as long as both point sets share the
same scrambling dimensionwise.
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The sets Pm and P 1
m can be used with Saltelli’s strat-

egy to estimate all first-order indices and total effect Sobol’
indices. This option is referred as Variant A in Algorithm 1.

Alternatively, Pm and P 1
m can be used with the replica-

tion procedure to estimate all first-order Sobol’ indices. This
option is referred as Variant B in Algorithm 1.

In both cases we always check if the respective error
bounds ε

pSu
and ε

pSu
are lower than the tolerance ε . For Vari-

ant A the stopping criterion is ε
pSu
ď ε and ε

pSu
ď ε for all

u PD . For Variant B it is ε
pSu
ď ε for all u PD .

If the stopping criterion is satisfied, the algorithm stops
and Sobol’ estimates are returned. Otherwise, m is incre-
mented by one to perform a new estimation.

Algorithm 1 Sequential estimation of Sobol’ indices

1: choose ε ą 0
2: set: mÐ `˚` r
3: bool Ð f alse
4: while !bool do
5: Pm ÐPm´1YBm

P 1
m ÐP 1

m´1YB1m
6: for u“ 1, . . . ,d do
7: if Variant A then
8: if !boolu then
9: compute pSu and pSu with formulas (15) and (16), and

Saltelli’s strategy
10: boolu Ð ε

pSu
ď ε & ε

p

pSu
ď ε

11: mu Ð m
12: end if
13: end if
14: if Variant B then
15: if !boolu then
16: estimate pSu with formula (15) and the replication

procedure
17: boolu Ð ε

pSu
ď ε

18: mu Ð m
19: end if
20: end if
21: end for
22: bool Ð@u : boolu
23: mÐ m`1
24: end while
25: return the Sobol’ estimates.

The cost of our algorithm, in terms of model evaluations,
varies whether Variant A or Variant B is selected. To discuss
this cost we note by m‹ the ending iteration. If Variant A is
selected, the cost of our algorithm is:
ÿ

uPD

2mu `2ˆ2m‹ , m‹ “max
uPD

mu,

where:

‚ 2mu is the number of evaluations f pxi,u : x1i,´uq used to
estimate both the first-order index Su and the total effect
index Su,

‚ 2ˆ 2m‹ is the number of evaluations f pxiq and f px1iq
used in the estimation of each first-order and total effect
indices.

If all mu are equal, the cost of Variant A becomes 2m‹pd`2q
and we recover the cost specified in Theorem 1 with n“ 2m‹ .

If Variant B is selected, the cost of our algorithm equals
2ˆ 2m‹ . This cost corresponds to the one of the replication
procedure introduced in Section 2.2, where 2n “ 2ˆ 2m‹

independent of d.

4.2 Improvement

When Su is small, it usually becomes harder to estimate. For
this reason, we consider the use of a new estimator to eval-
uate small first-order Sobol’ indices in Variant A. This esti-
mator called “Correlation 2” has been introduced by Owen
in [14]. In this article, he discussed and highlighted the effi-
ciency of “Correlation 2” when estimating small first-order
indices. Our aim is to show that the use of “Correlation 2” in
Variant A may reduce the total number of model evaluations.
This new estimator is,

pτ2
u “

1
n

n´1
ÿ

i“0

p f pxiq´ f pzi,u : xi,´uqqp f pxi,u : x1i,´uq´ f px1iqq,

where pxi,x1i,ziq
iid
„U pr0,1sq3d . It requires an additional set

of n model evaluations to estimate τ2
u.

We discuss below the potential improvement brought by
using “Correlation 2” in Variant A. The idea is to replace
the current estimator (5) by “Correlation 2” for each small
first-order index.

Assume that the number of small first-order indices is
known and equals γ . We denote by u1, . . . ,uγ the indices
of the corresponding inputs and Γ “ t1, . . . ,γu. The cost of
Variant A including “Correlation 2” becomes,
ÿ

jPΓ

2m2u j `
ÿ

jPΓ

2m1u j `
ÿ

jPDzΓ

2mu j `2ˆ2m‹ , (17)

where:

‚ for j P Γ , 2m2u j is the number of evaluations
f
`

zi,u j : xi,´u j

˘

to estimate Su j
,

‚ for j P Γ , 2m1u j is the number of evaluations
f
`

xi,u j : x1i,´u j

˘

to estimate both Su j
and Su j ,

‚ likewise, for j PDzΓ , 2mu j is the number of evaluations
f
`

xi,u j : x1i,´u j

˘

to estimate both Su j
and Su j ,

‚ 2ˆ 2m‹ is the number of evaluations f pxiq and f px1iq
used in the estimation of each first-order and total effect
index.
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We recall the cost of Variant A without “Correlation 2”,
ÿ

jPΓ

2mu j `
ÿ

jPDzΓ

2mu j `2ˆ2m‹ . (18)

The difference (17) ´ (18) equals:
ÿ

jPΓ

2mu j
´

2m2u j
´mu j `2m1u j

´mu j ´1
¯

“
ÿ

jPΓ

c j. (19)

Hence, the sign of this difference indicates whether or not
using “Correlation 2” brings an improvement to Variant A.
We distinguish two cases :

1) for j P Γ , if the total effect index Su j requires as much
or more evaluations than the first-order index Su j

. Since
the total effect estimator is the same, as a consequence
we have m1u j

“ mu j and c j ą 0.
2) for j P Γ , if the total effect index Su j requires less evalu-

ations than the first-order index Su j
. In this case, if both

m2u j
ă mu j and m1u j

ă mu j then c j ď 0.

Overall we expect to observe case 2q more often than case
1q. Indeed, the numerator of Su requires to estimate 2d di-
mensional integrals against only d`1 dimensional integrals
for the numerator of Su. Hence, it seems reasonable to ex-
pect that it will take less points to estimate Su than Su.

Furthermore, in case 2q, we expect the two conditions
m2u j

ă mu j and m1u j
ă mu j to usually hold as in [14], “Cor-

relation 2” is shown to perform better for small first-order
indices. To support this discussion, numerical examples are
presented in Section 5.

In practice, one does not know which are the small Sobol’
indices (u1, . . . ,uγq. To overcome this issue, we propose the
following alternative for Variant A. If at the end of the first
iteration pSu is smaller than a threshold (in our case 0.1, as
suggested by Owen), then the estimator (5) is switched to
“Correlation 2” for this particular u and a third Sobol’ se-
quence P2

m “ tziu
2m´1
i“0 is constructed to obtain the corre-

sponding evaluations f pzi,u : xi,´uq.

5 Applications

We illustrate our sequential estimation procedure with two
classical test functions and one real example. In each case,
Sobol’ indices are estimated with the following three vari-
ants:

‚ Variant A.a as Variant A without using “Correlation 2”.
‚ Variant A.b as Variant A using “Correlation 2”.
‚ Variant B.

The threshold to decide whether or not a first-order index is
small is set to 0.1.

For the two test functions, results of the three variants
are compared based on the true estimation errors. These er-
rors correspond to the absolute difference between the true

values and their estimates:

δSu “

∣∣∣Su´
pSu

∣∣∣ , δSu
“

∣∣∣Su´
pSu

∣∣∣ .
We also compare the total number of evaluations of each
variant. Results are averaged over 100 repetitions using Owen’s
scrambled Sobol’ sequences [5,13]. For each repetition, we
fix the tolerance ε “ 5.10´3, set `˚ “ 5, and r “ 4 (the al-
gorithm starts with 512 Sobol’ points). The algorithm error
bound factor described in (14) is set to Cpmq “ 10ˆ2´m.

The failure rates rδSu
and rδSu

of each estimate are evalu-
ated over the 100 repetitions. These rates are the proportion
of the repetitions in which the true estimation errors failed to
satisfy δSu ď ε and δSu ď ε . When δSu ą ε and δSu ą ε , we
can infer that our algorithm parameters that define the cone
are not conservative enough and the integrands fall outside
the cone (13).

5.1 Classical test functions

The two classical test functions considered in this article
are the g-function introduced by Sobol’ [17], and the func-
tion introduced by Bratley et al. [1]. The idea is to test our
method over two categories of functions: additive (Bratley
et al. function) and multiplicative (g-function).

5.1.1 Sobol’ g-function

The g-function is defined as follows:

f pxq “
d
ź

j“1

g jpx jq, g jpx jq “
|4x j´2|`a j

1`a j
, a j ě 0.

Each value a j determines the relative importance of the x j.
When the value of a j gets closer to zero the variable x j be-
comes more influent. For this example, we chose d “ 6 and
a1 “ 0,a2 “ 0.5,a3 “ 3,a4 “ 9,a5 “ 99, and a6 “ 99.

Table 1 shows the averaged estimation errors obtained
with Variant A.a as well as the averaged total number of
evaluations performed. Table 2 shows the same results ob-
tained with Variant A.b.

Table 1 Averaged estimation errors δSu , δSu
and total number of eval-

uations for Variant A.a.

input Su δSu rδSu
Su δSu

rδSu

x1 0.5868 0.0004 0.02 0.6901 0.0005 0.02

x2 0.2608 0.0006 0.02 0.3562 0.0004 0

x3 0.0367 0.0011 0.03 0.0563 0.0008 0

x4 0.0058 0.0012 0.02 0.0092 0.0003 0

x5 5.10´5 0.0003 0 9.10´5 ă 10´4 0

x6 5.10´5 0.0003 0 9.10´5 ă 10´4 0

Total number of evaluations: 63 088
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Table 2 Averaged estimation errors δSu , δSu
and total number of eval-

uations for Variant A.b.

input Su δSu rδSu
Su δSu

rδSu

x1 0.5868 0.0005 0.03 0.6901 0.0006 0.02

x2 0.2608 0.0007 0.03 0.3562 0.0003 0

x3 0.0367 0.0015 0.05 0.0563 0.0009 0

x4 0.0058 0.0003 0 0.0092 0.0003 0

x5 5.10´5 ă 10´4 0 9.10´5 ă 10´4 0

x6 5.10´5 ă 10´4 0 9.10´5 ă 10´4 0

Total number of evaluations: 62 703

The main observation is that both approaches give sim-
ilar results both in terms of estimation errors, failure rates
and total number of evaluations. The use of “Correlation 2”
in Variant A.b to estimate the four small first-order Sobol’
indices S3,S4,S5,S6 does not seem to bring much improve-
ment. We propose to draw boxplots of the estimation errors
to further investigate the results.

Figure 2 shows boxplots of the 100 estimation errors δSu

obtained with both Variant A.a and Variant A.b for the four
inputs x3,x4,x5,x6. The dashed horizontal line marks the tol-
erance ε “ 5.10´3.

Fig. 2 Boxplots of estimation errors δSu for the four inputs x3,x4,x5,x6
obtained with both Variant A.a and Variant A.b. The dashed horizontal
line marks the tolerance ε “ 5.10´3.

1e
-0
7

δSu

1e
-0
5

1e
-0
3

inputs

x3 x4 x5 x6

Variant A.a
Variant A.b

As expected, we observe that the use of “Correlation 2”
in Variant A.b results in lower estimation errors for these
four inputs. The discrepancy observed does not stand out in
Table 2 due to its low magnitude (10´4 „ 10´5).

Table 3 shows averaged estimation errors δSu and total
number of evaluations for Variant B. The results show that
the use of Variant B leads to slightly higher estimation errors
and higher failure rates than those obtained with Variant A.a

Table 3 Averaged estimation errors δSu and total number of evalua-
tions for Variant B.

input Su δSu rδSu

x1 0.5868 0.0011 0.07

x2 0.2608 0.0013 0.08

x3 0.0367 0.0018 0.09

x4 0.0058 0.0013 0.1

x5 5.10´5 0.0031 0.04

x6 5.10´5 0.0036 0.05

Total number of evaluations: 32 768

or Variant A.b. However, the total number of evaluations is
twice as small. As such, this approach remains interesting
when one wants to estimate only first-order indices.

5.1.2 Bratley et al. function

In this second example, we consider the Bratley et al. func-
tion defined by,

f px1, . . . ,xdq “

d
ÿ

i“1

p´1qi
i

ź

j“1

x j .

The importance of each variable x j depends on their own
rank. More explicitly, x1 is more influent than x2 that is re-
spectively more influent than x3 and so on.

As for the g-function, Tables 4 and 5 show averaged es-
timation errors and total number of evaluations for Variant
A.a and Variant A.b.

Table 4 Averaged estimation errors δSu , δSu
and total number of eval-

uations for Variant A.a.

input Su δSu rδSu
Su δSu

rδSu

x1 0.6529 0.0004 0 0.7396 0.0003 0.

x2 0.1791 0.0006 0 0.2659 0.0004 0

x3 0.0370 0.0058 0.71 0.0764 0.0012 0.02

x4 0.0133 0.0022 0.12 0.0343 0.0020 0.07

x5 0.0015 0.0024 0.11 0.0062 0.0014 0

x6 0.0015 0.0021 0.06 0.0062 0.0010 0.03

Total number of evaluations: 70 129

Variant A.b gives lower estimation errors and fewer fail-
ure rates than Variant A.a on the four small first-indices S3,
S4,S5, S6 which highlights the performance of “Correlation
2”. The discrepancy is particularly notable for input x3 where
Variant A.a reaches a failure rate of 71% against only 4% for
Variant A.b. Furthermore, Variant A.b requires less evalua-
tions than Variant A.a. The boxplots represented in Figure 3
emphasize the latter observations.

Table 6 shows averaged estimation errors δSu and total
number of evaluations for Variant B.
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Table 5 Averaged estimation errors δSu , δSu
and total number of eval-

uations for Variant A.b.

input Su δSu rδSu
Su δSu

rδSu

x1 0.6529 0.0004 0 0.7396 0.0003 0

x2 0.1791 0.0006 0 0.2659 0.0005 0

x3 0.0370 0.0019 0.04 0.0764 0.0013 0.01

x4 0.0133 0.0016 0.01 0.0343 0.0017 0.02

x5 0.0015 0.0003 0 0.0062 0.0015 0.04

x6 0.0015 0.0004 0 0.0062 0.0011 0

Total number of evaluations: 68 045

Fig. 3 Boxplots of estimation errors δSu for the four inputs x3,x4,x5,x6
obtained with both Variant A.a and Variant A.b. The dashed horizontal
line marks the tolerance ε “ 5.10´3.

1e
-0
5

5e
-0
5

δS
u

5e
-0
4

5e
-0
3

inputs

x3 x4 x5 x6

Variant A.a
Variant A.b

Table 6 Averaged estimation errors δSu and total number of evalua-
tions for Variant B.

input Su δSu rδSu

x1 0.6529 0.0003 0

x2 0.1791 0.0006 0

x3 0.0370 0.0010 0

x4 0.0133 0.0038 0.25

x5 0.0015 0.0024 0

x6 0.0015 0.0026 0

Total number of evaluations: 65 536

The estimation errors are lower than those of Variant A.a
but higher than those of Variant A.b. Failure rates are similar
to those of Variant A.b. Since the total number of evaluations
is close to the one of Variant A.b, the conclusion is that Vari-
ant B does not bring much improvement for this example.

From the results on these two test functions, the main
conclusion is that Variant A.b performs the best. This high-
lights the efficiency of “Correlation 2” to estimate small
first-order indices with quasi-Monte Carlo methods. Even if

“Correlation 2” originally requires more model evaluations,
this drawback is completely overridden when this estimator
is included into a sequential procedure such as ours. For the
case where we are only interested in estimating first-order
indices, Variant B should be the best choice as illustrated
with the g-function.

5.2 Real case model

As a real case example, we will study the payoff function
of an arithmetic mean Asian call option. For a discretized
Brownian motion B“pBt1 ,Bt2 , . . . ,Btd q at times ti“ Tˆ i{d,
the payoff of the option is:

fpayoffpBq “ e´ρT max

˜

1
d

d
ÿ

i“1

S0epρ´σ2{2qti`σBti ´K,0

¸

where T is the maturity of the option, S0 is the initial stock
price, σ the volatility of the stock, ρ the interest rate, and K
the strike price.

The discretized Brownian motion B follows a multivari-
ate normal distribution with mean 0 and covariance matrix
Σ, with Σi j “minpti, t jq. If Y„Np0, Idq, then for any matrix
M, MY„Np0,Σq where Σ“MMt . Hence, we can generate
the discretized Brownian motion using the inverse normal
cumulative distribution function φ´1: B „ Mφ´1pXq with
φ´1pXq“ pφ´1pX1q, . . . ,φ

´1pXdqq
t and X„U pr0,1sdq. Thus,

we can estimate the Sobol’ indices over fpayoffpMφ´1pXqq.
In this particular application, the choice of M is pivotal to
reduce the effective dimensionality of the model. In this re-
gard, Sobol’ indices can help us assess whether we reduce
the effective dimensionality. We will compare the case with
either the Cholesky decomposition or the PCA construction.

We propose to analyze the results with averaged Sobol’
estimates and averaged total number of evaluations over 100
repetitions. The tolerance ε and parameters `˚, r and Cpmq
are set as previously.

Tables 7, 8, and 9 show the results when M corresponds
to the Cholesky decomposition of Σ.

Table 7 Averaged values of pSu, pSu, and total number of evaluations of
Variant A.a with Cholesky decomposition.

input pSu
pSu

x1 0.2120 0.5650

x2 0.1370 0.4420

x3 0.0820 0.3150

x4 0.0408 0.1950

x5 0.0142 0.0944

x6 0.0048 0.0257

Total number of evaluations: 648 821
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Table 8 Averaged values of pSu, pSu and total number of evaluations of
Variant A.b with Cholesky decomposition.

input pSu
pSu

x1 0.2120 0.5650

x2 0.1370 0.4420

x3 0.0822 0.3150

x4 0.0434 0.1950

x5 0.0169 0.0944

x6 0.0049 0.0259

Total number of evaluations: 699 487

Table 9 Averaged values of pSu and total number of evaluations of Vari-
ant B with Cholesky decomposition.

input pSu

x1 0.2120

x2 0.1350

x3 0.0774

x4 0.0338

x5 0.0149

x6 0.0028

Total number of evaluations: 262 144

It turns out that Variant A.b does not perform better than
Variant A.a. Averaged Sobol’ estimates are similar but the
average total number of model evaluations is slightly worse.
The explanation is that total effect Sobol’ indices require
more evaluations than their corresponding first-order indices.
As such, “Correlation 2” falls into case 1) explained in Sec-
tion 4.2. Variant B shows a drastic improvement on the total
number of evaluations with the drawback of a false estima-
tion for input x4. Its discrepancy is higher than ε when com-
paring to the other two variants.

Tables 10, 11, and 12 show the results when M corre-
sponds to the PCA decomposition of Σ.

Table 10 Averaged values of pSu, pSu and total number of evaluations of
Variant A.a with PCA decomposition.

input pSu
pSu

x1 0.9800 0.9960

x2 0.0037 0.0172

x3 0.0016 0.0023

x4 0.0014 0.0005

x5 0.0005 0.0001

x6 0.0002 0.0000

Total number of evaluations: 396 221

Variant A.a performs as well as Variant A.b in terms of
average total number of evaluations. However, Variant A.a
is most probably giving worse estimates for the small first-

Table 11 Averaged values of pSu, pSu and total number of evaluations of
Variant A.b with PCA decomposition.

input pSu
pSu

x1 0.9800 0.9960

x2 0.0034 0.0172

x3 0.0004 0.0023

x4 0.0001 0.0005

x5 0.0000 0.0001

x6 0.0000 0.0000

Total number of evaluations: 398 648

Table 12 Averaged values of pSu and total number of evaluations of
Variant B with PCA decomposition.

input pSu

x1 0.9800

x2 0.0037

x3 0.0028

x4 0.0029

x5 0.0017

x6 0.0029

Total number of evaluations: 262 144

order indices. Table 10 shows that averaged pS4 is greater

than pS4, pS5 greater than pS5, and pS6 greater than pS6, which is
inconsistent with the property Su ď Su. Once again, variant
B shows an improvement on the total number of evaluations
with the drawback of slightly overestimating the small first-
order indices.

Overall, each variant captures well how the PCA Brow-
nian motion construction reduces the high effective dimen-
sionality of the payoff function, in contrast to the initial
Cholesky decomposition.

6 Conclusion

When estimating Sobol’ indices, the question of how many
evaluations must be performed to reach a desired precision
is often raised by practitioners. This question is difficult to
address mostly because the number of evaluations needed
depends on the complexity of the model studied. As such, it
is hard to bring out a general rule of thumb.

The sequential estimation procedure proposed in this ar-
ticle offers a practical solution with the construction of an
estimator and error bound for Sobol’ indices. The number of
points is progressively augmented until the error bound be-
comes lower than a user specified tolerance. The procedure
presented combines Sobol’ sequences with either Saltelli’s
strategy to estimate both first-order and total effect indices,
or the replication procedure to estimate only first-order in-
dices. Furthermore, we investigated the use of a recent es-
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timator well-suited to the estimation of small first-order in-
dices using quasi-Monte Carlo methods. The efficiency of
this estimator, called “Correlation 2”, was assessed and high-
lighted on two test functions. Overall, the variant combining
Saltelli’s strategy and “Correlation 2” gave the best results,
with low failure rates across all indices.

As a future project, the same estimators and algorithms
can be designed for rank-1 lattices using the results in [8],
and noticing that rank-1 lattices of the same size are also
replicated designs of order 1.
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4. Hickernell, F.J., Jiménez Rugama, Ll.A.: Reliable Adaptative Cu-
bature Using Digital Sequences: Monte Carlo and Quasi-Monte
Carlo Methods, vol. 163, 367-383 (2016)

5. H.S. Hong, F.J. Hickernell.: Algorithm 823: Implementing scram-
bled digital nets, ACM Trans. Math. Software, vol. 29, 95-109,
(2003)

6. Hoeffding, W.F.: A class of statistics with asymptotically normal
distribution, Ann. Math. Stat. 19(3), 293-325 (1948)

7. Janon, A., Klein, T., Lagnoux A., Nodet, M., Prieur C.: Asymp-
totic normality and efficiency of two Sobol’ index estimators,
ESAIM Probab. Stat. 18, 342-364 (2014)
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