
HAL Id: hal-01186381
https://hal.archives-ouvertes.fr/hal-01186381v2

Submitted on 31 Aug 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cell-Kinetics Based Calibration of a Multiscale Model of
Structured Cell Populations in Ovarian Follicles

Benjamin Aymard, Frédérique Clément, Danielle Monniaux, Marie Postel

To cite this version:
Benjamin Aymard, Frédérique Clément, Danielle Monniaux, Marie Postel. Cell-Kinetics Based Cali-
bration of a Multiscale Model of Structured Cell Populations in Ovarian Follicles. SIAM Journal on
Applied Mathematics, Society for Industrial and Applied Mathematics, 2016, 76 (4), pp.1471-1491.
�10.1137/15M1030327�. �hal-01186381v2�

https://hal.archives-ouvertes.fr/hal-01186381v2
https://hal.archives-ouvertes.fr


CELL-KINETICS BASED CALIBRATION OF A MULTISCALE
MODEL OF STRUCTURED CELL POPULATIONS IN OVARIAN

FOLLICLES

B. AYMARD∗†‡ , F. CLÉMENT† , D. MONNIAUX§¶‖, AND M. POSTEL∗

Abstract. In this paper, we present a strategy for tuning the parameters of a multiscale model
of structured cell populations in which physiological mechanisms are embedded into the cell scale.
This strategy allows one to cope with the technical difficulties raised by such models, that arise
from their anchorage in cell biology concepts: localized mitosis, progression within and out of the
cell cycle driven by time- and possibly unknown-dependent, and nonsmooth velocity coefficients.
We compute different mesoscopic and macroscopic quantities from the microscopic unknowns (cell
densities) and relate them to experimental cell kinetic indexes. We study the expression of reaching
times corresponding to characteristic cellular transitions in a particle-like reduction of the original
model. We make use of this framework to obtain an appropriate initial guess for the parameters
and then perform a sequence of optimization steps subject to quantitative specifications. We finally
illustrate realistic simulations of the cell populations in cohorts of interacting ovarian follicles.

Key words. transport equations, parameter calibration, structured cell populations, cell kinetics
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Introduction. In this paper, we deal with the question of the numerical calibra-
tion of an existing multiscale model of cell-structured populations in the physiological
context of ovulation. This model was formulated as a system of weakly coupled, non
conservative transport equations with controlled velocities and sink terms, where the
unknowns are the cell densities in each follicle [9, 8]. A number of theoretical studies
have established the well-posedness of the model [19], examined optimal control prob-
lems related to the ovulatory trajectories in the framework of hybrid optimal control
theory [6], and studied the reachability of final states corresponding to either ovulatory
or atretic cases in the framework of backwards reachable sets [8]. Implementation of
the model in an efficient and reliable computing environment has involved the design
of a finite-volume scheme dealing with the discontinuous coefficients [3], embedding
this scheme within a dedicated adaptive mesh based on a multi-resolution approach
[4], and implementing it on parallel architecture [2]. This has left the question of
model calibration to biological specifications to be resolved.
We have to face a generic, yet unsolved issue in parameter fitting for physiologically-
oriented multiscale mathematical models: although mechanistic knowledge in molec-
ular and cell biology is available on the lower scales, quantitative experimental data
are rather available on the higher scales. In our case, the question is how to infer the
parameters entering the microscopic functions (on the level of the follicular cells) from
mesoscopic (on the level of the individual follicles, i.e. the number of follicular cells) or
macroscopic (on the level of the populations of follicles) information. In addition, even
on the macroscopic level, data remain rather scarce and are rarely obtained directly as
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2 CELL-KINETICS BASED

a function of time (but more often as relationships between different variables). Alto-
gether, these difficulties preclude the exclusive use of standard optimization methods
to obtain the parameter values. We have thus calibrated the model by combining a
priori information on the parameters, deduced from biological knowledge or math-
ematical properties of the model functions, a posteriori diagnostic on some model
outputs, and optimization of the fitting with respect to a training dataset. The res-
olution of this additional question is needed to fully exploit the model potential in
terms of biological interpretation. Due to the anchorage of the model formulation
within the concepts of cell biology, we also believe that our calibration strategy has
a generic interest and could be applied in its principles to other biological situations.
Indeed, even though it is an original character of the model to take into account a
localized mitosis instead of a distributed growth rate -instead of a source term in
the right-hand side as is almost systematically done for renewal equations [16]-, it is
also one of its most generic trait since it is directly related to basic principles of cell
biology. This trait is furthermore accompanied in our framework by time-dependent
phase durations subject to the control of extracellular signals, and combined with cell
death and differentiation in a 2D framework. On a formal ground, some authors have
already proposed to associate the mitosis event with the reaching of a threshold on a
structuring variable [17, 5] in a 1D framework. Yet, to our knowledge, they have not
coped with the numerical problems generated by mitosis-induced discontinuity.
The paper is organized as follows. In section 1, we first recall the formulation of
the multiscale model as weakly-coupled, non conservative transport equations, with
space-dependent velocities and explicit accounting for the mitosis event and then
we introduce macroscopic quantities associated with the microscopic unknowns (cell
densities). Thereafter we present novel results. In section 2, we take advantage
of the realistic (localized) modeling of mitosis to derive a cell kinetics marker (the
mitosis index IM) and to describe the age distribution of cells along the cell cycle in
dynamical frameworks of increasing complexity, paying special attention to the impact
of the contrast in the velocities. In section 3, we introduce a simplified framework
with piecewise constant velocities, that allows us to compute rigorously the reaching
times of some characteristic transition zones in the computation domain. In section 4,
we explain how to tune the parameters of the original model, first in the case of an
ovulatory trajectory, and then in a situation of selection amongst a cohort of growing
follicles. The final section is devoted to a discussion. The paper is accompanied by
supplemental materials dealing with the numerical computation and simulation of cell
kinetics indexes (Appendix A), the derivation of a priori constraints on the velocity
parameters (Appendix B), and specific contextual elements for the application to
ovarian follicles (Appendix C), including the design of specifications on the model
outputs as well as the detailed sequence of the calibration steps reviewed in section 4.
The numerical results are substantiated by companion movies.

1. Main features of a controlled multiscale model for structured cell
populations in ovarian follicles.

1.1. Model formulation. In this section, we recall in a compact way the for-
mulation of the multiscale model representing the terminal development of a cohort
of ovarian follicles and its control by pituitary hormone FSH (follicle-stimulating hor-
mone). A more detailed formulation is provided in the beginning of Appendix B; we
refer the interested reader to more biologically-oriented works [9, 7] for the introduc-
tion of the biological bases underlying the model formulation. We consider a cohort of
F interacting follicles. The cell density (φf (t, x, y))f=1,...,F within each follicle satisfies
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the following system of equations, for f = 1, . . . , F :

∂φf
∂t

+
∂(gf (x, y, uf (t))φf )

∂x
+
∂(hf (x, y, uf (t))φf )

∂y
= −Λ(x, y, U(t))φf , (1.1)

set in the computing domain Ω in the (x, y) plane,

Ω = {(x, y), 0 < x < Nc ×Dc, 0 < y < ymax}

where Nc is the number of cell cycles and Dc is the duration of one cycle, and ymax

a supremum of the maximum maturity that can be reached by the density. The
F equations are linked together through the control variables uf (t) and U(t), that
appear as arguments in the aging gf (x, y, u) and maturation hf (x, y, u) velocity, and
also in the sink term Λ(x, y, U). Both control variables are defined from the first
maturity moment of the densities.
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Figure 1: Left panel: computational domain with the subsequent cell cycles Ωp
1 ∪ Ωp

2,
p = 1, . . . , Nc of length Dc. Ωp

1 corresponds to phase G1, while Ωp
2 aggregates phases

S, G2 and M of the pth cell cycle. Phase Ω3 corresponds to the zone of differentiation,
which cells can enter from any Ωp

1 phase. Right panel: single cell cycle, with the
different phases G1 (Ω1

1), SM (Ω1
2) and D (Ω3). The part of phase SM corresponding

to the mitosis process (Ωmit) is delimited with a dashed line. The zone where cells are
sensitive to apoptosis is highlighted in grey. The direction of the aging and maturation
velocities are sketched with arrows. Periodic boundary conditions (// (per)) based on
flux continuity are applied on the outer boundaries, with the mitosis-induced density
doubling (//(×2))on the vertical boundary at x = Dc for y ≤ ys.

1

Figure 1.1. Left panel: computational domain with the subsequent cell cycles Ωp
1 ∪ Ωp

2, p =
1, . . . , Nc of length Dc. Ωp

1 corresponds to phase G1, while Ωp
2 aggregates phases S, G2 andM of the

pth cell cycle. Phase Ω3 corresponds to the zone of differentiation, which cells can enter from any
Ωp

1 phase. Right panel: single cell cycle, with the different phases G1 (Ω1
1), SM (Ω1

2) and D (Ω3).
The part of phase SM corresponding to the mitosis process (Ωmit) is delimited with a dashed line.
The zone where cells are sensitive to apoptosis is highlighted in grey. The direction of the aging and
maturation velocities are sketched with arrows. Periodic boundary conditions (// per) based on flux
continuity are applied on the outer boundaries, with the mitosis-induced density doubling (// × 2)
on the vertical boundary at x = Dc for y < ys.

As represented in the left panel of Figure 1.1, the domain Ω is divided in 2Nc + 1
zones: Ωp1, Ωp2, for p = 1, . . . , Nc and Ω3, corresponding to different cell states and
hence different definition of the velocities and sink terms. Phase Ωp1 corresponds to
the G1 phase of the cell cycle. Phase Ωp2 aggregates the three latest phases (S, G2,
M) of the pth cell cycle. Phase Ω3 corresponds to a differentiated state, where cells
have exited the cell cycle and undergo terminal differentiation.

Ωp1 = {(x, y) ∈ Ω, pDc < x < pDc + xs, 0 < y < ys}, p = 0, . . . , Nc − 1,

Ωp2 = {(x, y) ∈ Ω, pDc + xs < x < (p+ 1)Dc, 0 < y < ys}, p = 0, . . . , Nc − 1,

Ω3 = {(x, y) ∈ Ω, ys < y}, Θ1 = ∪Nc
p=1Ωp1, Θ2 = ∪Nc

p=1Ωp2.

Each cell cycle consists of the Ωp1 ∪ Ωp2 subdomain and Θi for i = 1, 2 denotes the
disconnected union of the Nc corresponding phases Ωip, for p = 1, . . . , Nc. In Ω1, both
gf and hf are positive functions, monotonically increasing with uf (see details in Eq.
B.1-B.2). In Ω2, the dynamics correspond to a simple horizontal transport, where age
evolves as time (gf = 1 and hf = 0). Due to its quadratic expression in y, hf changes
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sign within Ω3.
The support of the initial condition φf (0, x, y) = φ0f (x, y) has to satisfy

Supp. φ0f =]0, 1[×[µ1, µ2] with 0 < µ1 < µ2 < ys (1.2)

such as in (2.10) for instance. The precise definition of the required transmission
conditions along the successive cell cycles of the domain has been formulated in [19].
For each cycle p = 1, . . . , Nc,

• the flux on the x-axis is continuous on the interface between Ωp1 and Ωp2, for
all p = 1, . . . , Nc

φf (t, x+, y) = gfφf (t, x−, y), x = pDc − xs, 0 < y < ys. (1.3)

• The flux is doubling on the interface between Ωp2 and Ωp+1
1 , which accounts

for the birth of two daughter cells from one mother cell (mitosis) at the end
of each cell cycle, for all p = 1, . . . , Nc − 1

gfφf (t, x+, y) = 2φf (t, x−, y), x = pDc, 0 < y < ys (1.4)

• A homogeneous Dirichlet condition holds to the north of the interface between
Ωp2 and Ω3

φf (t, x, y+
s ) = 0, pDc − xs < x < pDc. (1.5)

In the age variable x, the velocity is always strictly positive, therefore the number of
cell cycles Nc can be tuned so as to cover, in as much as possible, the expected time
horizon of the simulation, so that no cell may reach the right outer boundary before
the end of the simulation. However, to guarantee that the numerical problem be well
defined in all cases, we also set boundary conditions on the vertical outer boundaries
of the domain:

gfφf (t, 0+, y) = 2φf (t,NcD
−
c , y), x = pDc, 0 < y < ys. (1.6)

Combined with a choice of a sufficiently large Nc, condition (1.6) still allows one to
follow the motion and spreading of the density over successive cycles on the unrolled
domain (left panel Figure 1.1) for a while. Once the condition becomes active, the
density reaching the right end on the domain folds itself and starts again from the
left end of the domain. In that case, one can continue to track the cell ages, modulo
NcDc. Alternatively, for the sake of computational purposes, condition (1.6) can be
combined with a single cell cycle domain (right panel Figure 1.1). In that case, the
dynamics remain globally unchanged, and the cell age still remains informative on
the cell progression along the cycle, but it is no more possible to follow the absolute
cell age, since it is reset at the beginning of the cycle, neither the generation lineage
of cells.

1.2. Macroscopic outputs associated with the cell densities. The model
outputs can span several space scales, from the microscopic scale of the local cell
density to the macroscopic scale of moments computed over the whole domain Ω.
The first order moments in maturity are embedded in the model formulation since
they are the basis for the coupling between the PDE corresponding to each follicle
(see details in B.6 and B.7). We distinguish the individual follicular maturity m1

f (t)
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and the global ovarian maturity M(t):

m1
f (t) =

∫ 1

0

∫ NcDc

0

yφf (t, x, y)dxdy,

M(t) =

F∑
f=1

m1
f (t) . (1.7)

Other macroscopic quantities are useful from the calibration viewpoint since they
are directly related to observable variables in the field of experimental cell kinetics.
The total cell number, that can be assessed from sampled countings, is simply the
zero-order moment of the density in both age and maturity m0

f (t)

m0
f (t) =

∫∫
Ω

φf (t, x, y)dxdy. (1.8)

Amongst these cells, the number of cells lying within the proliferating part of the
domain, Ωp1, Ωp2, for p = 1, . . . , Nc, that can also be simply denoted as Ω \ Ω3, allows
us to introduce the growth fraction GF , which is the proportion of proliferating cells
amongst the whole population. The growth fraction can be assessed by means of cell
labeling protocols that detect the passages of cells throughout the S phase of DNA
replication [13].

GF (t) =

∫∫
Ω\Ω3

φf (t, x, y)dxdy∫∫
Ω

φf (t, x, y)dxdy
. (1.9)

1.3. Dealing with the coupling terms. The coupling of equations through
moments adds to the difficulty of calibrating the parameters. In the next sections, we
will thus consider alternatively different situations

• the uncoupled case with no cell death, considering a single best-case, ovu-
latory trajectory that can be studied in the absence of cell death, with an
open-loop control term as that defined in (2.9). This situation captures the
switch from proliferation to differentiation to follow the increase and subse-
quent stabilization of the total cell number, as the result of a speed compo-
sition problem ruling the final total cell number and the time when all cells
have exited the cell cycle (Te).

• the auto-coupled case, where a single ovulatory follicle is considered, but the
weak nonlinearity of the model is preserved (moment-dependent expressions
of the velocities and sink term). In this situation, the apoptotic process
interacts with proliferation and cell cycle exit and the increase in follicular
maturity has to be balanced in a timely way to avoid premature cell loss.

• the original case considering a cohort of F interacting follicles, which embeds
all the model specificities and where any follicle trajectory is impacted by the
pressure exerted by the rest of the cohort.

2. Computation of cell-kinetics indexes from the model outputs.

2.1. Definition of the mitotic index and age distribution within the cell
cycle. To follow the progression of cells along the cell cycle in more detail, we can
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also compute the distribution in age within the proliferative part of the domain ψ(t, x)
(we drop the f index to simplify notations):

ψ(t, x) =

∫
Ω\Ω3

φf (t, x, y)dy.

This distribution notably gives information about the degree of between-cells syn-
chronization. For instance, a fully desynchronized cell population with GF=1 will be
distributed according to an exponential distribution with twice as many “young” cells
(that have just entered the G1 phase after mitosis) as “old” cells (that are about to
divide at the end of the mitosis phase) [1].
From the age distribution, we can compute the mitotic index (MI), which assesses the
proportion of cells undergoing mitosis. For the sake of concision, we will introduce
the principles of MI computation from the age distribution ψ(x, t) and express the
MI as the proportion of mitotic cells within the population of proliferating cells

MI(t) =

∫∫
Ωmit

φf (t, x, y)dxdy∫∫
Ω\Ω3

φf (t, x, y)dxdy
. (2.1)

Expression with respect to the total cell population can be simply obtained by mul-
tiplying the MI value by the growth fraction defined in (1.9).
In the model, the mitosis phase is embedded within the SM phase, but we can never-
theless delimit a subpart of the SM phase corresponding specifically to mitosis (Ωmit
in right panel of Figure 1.1). Since the aging velocity is constant in phase SM, and
equals 1 (the cell age evolves as time), the relative length of the M phase subpart
within the SM phase can be deduced from the relative duration of mitosis Tm (on the
order of 30 min) with respect to the whole duration of the SM phase TSM (on the
order of 8 hours [11]). From the numerical viewpoint, the assessment of MI, origi-
nal in this paper, requires to identify the meshes of the computation domain whose
intersection with Ωmit = {(x, y), p − Tm < x < p, for p = 1, . . . Nc, 0 < y < ys} is
non void (see right panel Figure 1.1). It can happen that such meshes overlap only
partially with Ωmit. In such a case, the contribution of a mesh to the numerator of
the index is proportional to the mesh area included within Ωmit, and we can compute
an approximation MIn of MI at any time step tn as:

MIn :=

∑
Ωi,j∩Ωmit 6=∅

|Ωi,j ∩ Ωmit|φni,j∑
Ωi,j⊂Ω\Ω3

|Ωi,j |φni,j
.

2.2. Simple exponential cell dynamics. We introduce here the computation
of the MI in the simplest case of a desynchronized and fully proliferating cell pop-
ulation, with a constant velocity g of progression along the cell cycle, and without
any cell cycle exit process such as differentiation or apoptosis. In the 2D framework
described by the master equation (1.1), we thus remove the sink term, set the matura-
tion function to a constant null value, and initialize the density uniformly in maturity
over the whole first cell cycle. With these assumptions, the 2D framework, in which
the maturity distribution is uniform in space and constant over time, amounts to a
1D framework,

∂tψ(x, t) + ∂x(gψ(x, t)) = 0, (2.2)
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but we can still follow the progression of the cell density on the 2D domain (rather
than on a line), which makes the visualization easier. In this simple framework, we
can derive directly the computation of the MI. Starting from an exponential initial
condition ψ0(x) = Ce−kx, C and k are chosen such that ψ0(0+) = ψ0(D−c ) and∫Dc

0
ψ0(x)dx = 1, which leads to k = ln 2

Dc
and C = 2 ln 2

Dc
.

The simplified transport equation (2.2) with periodically-doubling boundary condi-
tions ψ(t, 0+) = 2ψ(t,D−c ) provides the solution for the density at all time

ψ(t, x) = Ce− ln 2 gt
Dc e−kx = 2

gt
Dc ψ0(x), (2.3)

which highlights the stationary nature of the age distribution. From this formula,
we can recover the macroscopic outputs, defined earlier, which come into play in the
definition of the MI. The total cell number at time t is

N(t) =

∫ Dc

0

ψ(t, x)dx =

∫ Dc

0

2
gt
Dc ψ0(x)dx = 2

gt
Dc
C

k

(
e−kDc − 1

)
= 2

gt
Dc .

The number of cells within Ωmit at time t is

Nmit(t) =

∫ Dc

Dc−Tm

ψ(t, x)dx = 2
gt
Dc

(
ekTm − 1

)
.

Therefore, for all t, 0 ≤ gt ≤ 1 the mitotic index (2.1) is constant and equal to

MI(t) = ekTm − 1 = e
ln 2
Dc

Tm − 1 , (2.4)

which is a classical formula (see e.g. [20]). The x, y functional domain can also be
used to illustrate the progression from one cell cycle to the subsequent one; instead of
a periodic domain in x we unfold the subsequent cell cycles in order to keep track of
the cell generation (see Figure A.1 in Appendix A.1 for a comparison of the domains).
Redefining the initial condition as

ψ0(x) =

{
Ce−kx for 0 < x ≤ Dc

0 for Dc < x
,

the solution is transported with velocity g and doubled when it crosses the mitosis
interface x = nDc, n = 1, 2, . . .. A simple recursion leads to the general solution, for
t ≥ 0, x ≥ 0

ψ(t, x) =

{
2nCe−k(x−gt) for nDc < x < (n+ 1)Dc and (x−Dc)/g ≤ t ≤ x/g
0 elsewhere .(2.5)

2.3. Phase dependent cell dynamics: impact on the progression of cells
along the cell cycle. We now consider the case of a cell cycle with piecewise con-
stant, phase-specific velocities: g 6= 1 in G1 phase and g = 1 in SM phase. To
take into account the velocity discontinuity on the interface between the G1 and SM
phase, we introduce a discontinuous initial condition,

ψ(0, x) = ψ0(x) =

{
M0CG1e

−kxs for 0 < x ≤ xs
M0CSMe

−kxs for xs < x < Dc
, (2.6)
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subject to the normalization condition∫ Dc

0

ψ0(x)dx = M0 . (2.7)

We impose conditions of flux continuity at x = xs and flux doubling on the periodic
boundary x = 0 and x = Dc

gCG1e
−kxs = CSMe

−kxs gCG1 = 2CSMe
−kDc

from which we obtain

k = ln(2)/Dc, CG1 =
2 ln(2)

Dc(2 + 2
1−xs
Dc (g − 1)− g)

, CSM = gCG1

and, replacing in (2.6),

ψ0(x) =

{
M0CG12−x/Dc for 0 < x ≤ xs
M0CSM2−x/Dc for xs < x < Dc

. (2.8)

The solution to (2.2) is no longer explicit but can be derived recursively, as done in [4]
and recalled in Appendix A.2. We have computed numerically the master equation
from this recursiveness approach, with vp = 1/2 for odd p indexes and vp = 1 for
even p indexes to mimic the alternation between G1 and SM phases. To simplify
we set xs = 1/2 and Dc = 1. The solution is displayed in Figure 2.1. The density
is displayed at initial time (left panel) and after one cell cycle (center panel) with a
color code highlighting the discontinuity at xs = 0.5. The right panel displays the time
evolution of macroscopic outputs (total cell number and mitotic index) in the case
when the solution is computed from the recursiveness formula (A.5) (green lines) or
from the Finite Volume method (blue lines). The lines are almost superimposed, which
highlights the very good accuracy of the Finite-Volume numerical approximation.

 1
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Figure 2.1. Left panel: snapshots of the cell density φ(t, x, y) over the 2D domain (color-code
panels) in the case of a fully proliferating, desynchronized cell population, with velocity contrast
between the G1 (g = 0.5) and SM (g = 1) phases, at t = 0.0 (top) and t = 1 (bottom). Notice the
discontinuity in the initial age distribution coming from (2.6). Center panel: age density ψ(t, x) at
t = 0 and t = 1. The shape of the density is periodically recovered after one cell cycle, and the cell
number has doubled. Right panel: macroscopic outputs, total cell number (red) and mitotic index
(blue). The dashed lines (computed from the Finite Volume method) and the solid lines computed
from the recursiveness formula (A.5) are superimposed.
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2.4. Microscopic and macroscopic outputs in the case of cell cycle exit
induced by differentiation and/or apoptosis. In our multiscale model, there is
not only a contrast in the velocities according to the phases of the cell cycles, but also,
due to the control terms, the velocities are time-varying. Moreover, cells are subject
both to differentiation and apoptosis in phase G1, which affects the age distribution
of cells within the cell cycle, hence the kinetics indexes such as MI and GF.
In this section, we design the simplest setup that can account for these facts and
can help illustrate the changes observed in the model outputs, without coping yet
with the full complexity of the model. To this end, we have to consider the genuine
2D character of the model, and introduce the time-varying and maturity-dependent
expression for hf , as defined in (B.2), and we need to deal with the sink term and
the apoptosis rate formulated in (B.5), but we can bypass the closed-loop definition
of U(t) in (B.6), to impose instead a simple open-loop time pattern to U(t). In
addition, we forget about the distinction between U(t) and the local control uf (t).
More precisely, we consider the following piecewise constant function of time:

uf (t) = U(t) = Uol :=

{
Umax, for t ≤ Ts
Umin, for > Ts

,where Ts is the switching time. (2.9)

Also, in this setup, the parameter values are not intended to take realistic values
(i.e. values that would lead to model outputs meeting the quantitative biological
specifications), but they are chosen so that a complete cell cycle exit can occur rapidly
and be observed as soon as after 2 cell cycles have elapsed. The aging velocity is kept
unchanged with respect to the former subsections, with g 6= 1 in phase G1 and g = 1
in SM. The initial condition (1.2) is now uniformly spread over the initial maturity
range [µ1, µ2]

φ0(x, y) =
1

µ2 − µ1
ψ0(x)1[s1,s2](y) (2.10)

where ψ0 is defined by (2.8).
We comment in Appendix A.3 on a detailed simulation corresponding to this dy-
namical framework∗ and illustrating the impact of cell cycle exit and apoptosis on
the model outputs on different scales and exhibiting the long time behavior of the
solution theoretically studied in [14].

3. Characteristic times of the cell dynamics. We address here the problem
of computing critical times corresponding to the sequential reaching of the different
zones that structure the domain vertically, within a simplified dynamical framework
consisting in a particle-like reduction of the original PDE model. The results of this
section will be exploited as a central step in our calibration strategy (see section 4.1
completed by Appendix C.3.1) to obtain an appropriate initial guess of the whole
parameter set despite little a priori information.
For the sake of convenience, we will design by “P+A”, the zone where apoptosis
is superimposed with proliferation, and “D+A” that where it is superimposed with
differentiation. We are specially interested in times TP+A of entry into the apoptosis-
sensitive area, TD+A of exit from the apoptosis-sensitive area and Te of exit from
the cell cycle. Between TP+A and Te, cells are both still proliferating and possibly
subject to apoptosis, while, between Te and TD+A, cells have exited the cell cycle and

∗An animation displaying the cell density evolution is also available in the supplementary mate-
rial.



10 CELL-KINETICS BASED

proliferation cannot compensate even partially for possible cell loss through apoptosis.
As we will see, these times do not only depend on the initial maturity, but also on the
initial age for cells sharing the same maturity, as a consequence of the drift transport
dynamics in phase SM (subpart Ω2 in the domain).
To make possible the direct computation of the cell travel times, we bypass the closed-
loop definition of U(t) in (B.6), to impose instead a simple open-loop expression similar
as the piecewise-constant pattern already introduced in (2.9)

U(t) = Uol :=

{
Umax, for t ≤ Ts2

Umin, for > Ts2
. (3.1)

The time-evolution of the local control uolf (t) is defined within the Umin and Umax
bounds of U(t) as

uolf (t) =

 b1Umax, for t ≤ Ts1
β2Umax, for Ts1 < t ≤ Ts2
Umin, for t > Ts2

, (3.2)

where b1 is the same parameter as in the bf function (see Eq. B.7), β2 controls the
height of the second plateau (b1 < β2), Ts1 and Ts2 are switching times. This piecewise
constant pattern amounts to an open-loop approximation of the pattern followed by
uf (t) in the closed-loop situation, as illustrated in left panel of Figure 3.1.

Figure 3.1. Left panel: piecewise constant approximation of the uf (t) input, as defined in Eq.
(B.6)-(B.7), characterized by 3 different plateaus (sequentially b1Umax, β2Umax and Umin). Between
the 2 switching times Ts1 and Ts2, the area under the curve is similar in the closed-loop original
setup (dashed and solid blue lines) and the approximation (dashed and solid red lines). Right panel:
behavior of the maturation function h(y, u), as defined in Eq. (B.2) for extremal control values as
a function of maturity y for parameter values c1 = 0.3, c2 = 0.9, ū = 0.1, τh = 0.12, b1 = 0.2,
Umax = 0.15. The green filled area indicates the extremal positions of initial condition µ1 = 0.1,
µ2 = 0.2.

Since the cell density is spread out over a range of maturity values at initial time, we
assume that the maturation velocity remains positive over the whole range of y for
the control values that we consider (it is indeed possible to find parameters ensuring
these properties, as shown in the right panel of Figure 3.1). Hence the entry (resp.
exit) times can be ordered as first entry (resp. exit) time for the cells having the
highest initial maturity (µ2) and last entry (resp. exit) time for the cells having the
lowest initial maturity (µ1). Note that, due to the spreading of initial age over the
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whole first cycle, the characteristic times computed from a same initial maturity can
be different from one initial age to another.
If Ts1 and Ts2 are given fixed a priori values, the question raises of how characteristic
times computed as explained below from a pair (x0, y0) are ordered with respect to
them. Alternatively, Ts1 and Ts2 can be defined as being coincident with specific
characteristic times and their values assessed accordingly.
To derive the expression of a chosen characteristic time, we will solve one or both of
the following elementary problems, enunciated for constant control values, depending
on whether the value of uf remains constant all over the trajectory or if we have to
take into account a switch in the value of uf .

1. Free time elementary problem E1:
Starting from the initial age and maturity (x0, y0) and given a target maturity
y1, compute the time T (y1) needed to reach y1, with associated age x1(T )

(x1, T ) = E1(y1;x0, y0, u), y0 < y1. (3.3)

2. Fixed time elementary problem E2:
Starting from the initial age and maturity (x0, y0) and given a fixed time
interval T , compute the maturity y1(T ) and corresponding age x1(T ) reached
after T

(x1, y1) = E2(T ;x0, y0, u). (3.4)

3.1. Solving the free time elementary problem. We assume that the aging
velocity gf in phase G1 or D, is constant between y0 and y1. We consider two cases
Case 1 If y0 < y1 ≤ ys, gf is a positive valued function of the constant control uf

(as defined for instance in Eq. (B.6)-(B.7)).
Case 2 If ys ≤ y0 < y1, gf = 1.
The case y0 < ys < y1 can be handled by combining Case 1 to compute the time
needed to reach ys (and corresponding xs), starting from (x0, y0), with Case 2 to
compute the time needed to reach y1 (and corresponding x1), starting from (xs, ys).
In both cases, we can compute the time spent in G1 or D, needed to increase the
maturity from y0 to y1 as

Thf
(y0, y1) =

∫ y1

y0

dy

hf (y, u)
. (3.5)

In Case 2, Thf
is directly the solution of the elementary problem, with x1(Thf

) =
x0 + Thf

.
In Case 1, things are a little bit more tricky, since the increase in maturity only
occurs during phase G1, so that Thf

corresponds only to the time spent in successive
G1 phases (TG1), while the solution time T has also to account for the time spent
in phase SM , where maturity remains constant (so that the target maturity y1 is
necessarily reached during phase G1).
Hence, TG1 = Thf

and T = TSM + TG1.
Given that the length of phase G1 is 0.5 and its duration is tG1 = 0.5/gf , the number
of successive G1 phases covered in TG1 is the integer part bTG1/tG1c. Each G1 phase
is separated from the previous one by a SM phase lasting tSM = 0.5. The total time
T depends on the initial age x0, or more precisely the age modulo the length of the
cell cycle (Dc = 1), α0 = x0 − bx0c (see left panel of Figure 3.2).
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Figure 3.2. Left panel: notations and setup for the free time elementary problem with y0 = 0.2

and y1 = 0.25, and γ1 = 1.48, γ2 = 0.38 in gf = γ1u+ γ2 (such as defined in Eq. (B.1)), and other
parameter values defined as in Figure 3.1. The blue path corresponds to a cell starting from phase
G1, with x0 = α0 = 0, that reaches y1 after T = 2.58 at age x1 = 1.33. The cyan path corresponds
to a cell starting from phase G1, with x0 = α0 = 0.4, that reaches y1 after T = 3.08 at age x1 = 2.23.
The pink path corresponds to a cell starting from phase SM , with x0 = α0 = 0.8, that reaches y1
after T = 2.78 at age x1 = 2.33. Right panel: density clouds at time 0 (in yellow) and at time
T = 2.58 (in green). Solid lines represent paths followed from different initial ages x0 and same
maturity y0 = µ1 = 0.1, during the fixed time T . The initial and final positions of a given path are
materialized with the same symbol. One can see that, if the cells starting from phase SM follow
identical trajectories, they stop at different maturities y according to their initial age x.

• if α0 < 0.5 the cell starts from phase G1. It takes it tini = (0.5 − α0)/gf to
complete the remaining part of phase G1, then 0.5 to cover the SM phase of
the first cycle. Then the remaining time (TG1− tini) in phase G1 corresponds
to b2(TG1 − tini)gfc complete G1 phases and as many complete SM phases,
plus a remaining uncomplete G1 phase

T (x0, y0, y1) = TG1 + 0.5 (1 + b2(TG1 − tini)gfc)
= TG1 + 0.5 (1 + b2TG1gf − 1 + 2α0c) (3.6)

The corresponding age is

x1 = TG1gf + 0.5 (1 + b2TG1gf − 1 + 2α0c) + x0 (3.7)

• if 0.5 ≤ α0 < 1 the cell starts from phase SM . It takes it first 1 − α0 to
reach the beginning of the next cycle. Then it covers the TG1 in G1 which

corresponds to bTG1

tG1
c = b2TG1gfc complete G1 phases and as many complete

SM phases

T (x0, y0, y1) = TG1 + 1− α0 + 0.5b2TG1gfc (3.8)

The corresponding age is

x1 = TG1gf + 1− α0 + 0.5b2TG1gfc+ x0 (3.9)

3.2. Solving the fixed time elementary problem. In the case where y1 < ys
(as illustrated on right panel of Figure 3.2), the time T can be broken down as before
into the sum of the times spent in several G1 and SM phases

T = TG1 + TSM = DG1/gf +DSM . (3.10)
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The distance DG1 (resp. DSM ) covered all along G1 (resp. SM) depends on the
starting position in the cycle

if 0 ≤ α0<0.5,DG1 =k/2− α0 + min(α1, 0.5),DSM =k/2 + (α1−0.5)+, (3.11)
if 0.5 ≤ α0<1,DG1 =(k−1)/2 + min(α1, 0.5),DSM =(k+1)/2−α0+(α1−0.5)+,(3.12)

where α1 = x1 − bx1c, k = (bx1c − bx0c) ∈ N, and x1 is the unknown.
There is a 4 case combinatorial choice for the (α0, α1) pair, depending on whether the
starting and arrival position lie in phase G1 or SM . After some algebra, we end up
with

1. if 0 ≤ α0 < 0.5

k = bxc, with x =
2(Tgf + α0)

1 + gf

α1 =


(1 + gf )(x− k)

2
if k ≤ x < k +

1

1 + gf
(1 + gf )(x− k) + gf − 1

2gf
if k +

1

1 + gf
≤ x < k + 1.

(3.13)

2. if 0.5 ≤ α0 < 1

k = bxc, with x =
2gf (T + α0 − 1) + 1− gf

1 + gf

α1 =


(1 + gf )(x− k)

2
if k ≤ x <k +

1

1 + gf
(1 + gf )(x− k) + gf − 1

2gf
+ 1 if k +

1

1 + gf
≤ x < k + 1.

(3.14)

From k and α1, we derive x1 = bx0c + k + α1, compute DG1 using (3.11) or (3.12),
and then TG1 = DG1/gf . We obtain y1 by inverting the integral equation (3.5) and
substituting Thf

= TG1.
If the resulting value y1 is such that y1 ≤ ys, we are done (see an illustration on Figure
3.2).
If y1 > ys, we have to proceed in 2 steps. First we compute from the free time
elementary problem the time Te taken to reach ys and the corresponding age xs(Te).
Then we solve the fixed time elementary problem with fixed time T −Te and starting
point (xs,ys), by substituting T − Te instead of TG1 in (3.5).
The case y0 ≥ ys is treated similarly by using (3.5) with T instead of TG1.

3.3. Combining the two elementary problems. We can now compute any
characteristic time TP+A, Te and TD+A from given initial conditions, and more specif-
ically:
TP+A(µ), defined as the minimum time taken by cells starting from a given maturity
µ to reach the lowest boundary y−s of the apoptosis zone

TP+A(µ) =

 minx{T1, (x1, T1) = E1(y−s ;x, µ, b1Umax)} if TP+A ≤ Ts1
Ts1 + minx{T1, (x1, T1) = E1(y−s ;x0, y0, β2Umax),

(x0, y0) = E2(Ts1;x, µ, b1Umax))} otherwise.
(3.15)
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Te(µ), defined as the maximum time taken by cells starting from a given maturity µ
to reach the differentiation threshold ys

Te(µ) =


Ts2+ maxx {τ3, (x3, τ3) = E1(ys;x2, y2, Umin),

(x2, y2) = E2(Ts2 − Ts1;x1, y1, β2Umax),
(x1, y1) = E2(Ts1;x, µ, b1Umax)} if Ts2 ≤ Te,

Ts1+ maxx {τ2, (x2, τ2)=E1(ys;x1, y1, β2Umax),
(x1, y1)=E2(Ts1;x, µ, b1Umax)} otherwise.

(3.16)

In both cases, the computation has to take into account the possible changes in the
control value if Ts1 (and possibly Ts2 for Te(µ1)) occurs before the target maturity is
reached. The characteristic time TD+A(µ1), defined as the maximum time taken by
cells starting from the lowest maturity µ1 to reach the upper bound of the apoptosis
area y+

s , is computed similarly as Te(µ1).
Remark This particle-like approach only deals with time and the cell position within
the spatial domain, but it skips out the cell number, since particles are not endowed
with any weight linked to the local cell number. Yet, a rough approximation of the
time evolution of the global cell number can be derived from assessing the number
of complete cell cycles performed by a single particle starting from an average (and
median, since the distribution in maturity is uniform) initial maturity (µ1 + µ2)/2:

m0
f (t) = M02b

a(t)
Dc
c = M02ba(t)c, for t ≤ Te. (3.17)

4. Application to the calibration of the original model.

4.1. Calibration of a single ovulatory trajectory. To perform numerical
simulations of the model, we have to instance the numerical values of the parameters
listed in Table C.1 that either delimit the shape and size of the computation domain,
enter the formulation of the mathematical functions involved in the dynamics, or
define the initial conditions. In this section, we will detail how we can either fix
nominal values for some of the parameters or impose constraints on the bounds of
parameter ranges.

4.1.1. Domain geometry: xs,Dc,ys,y
−
s ,y

+
s ,ymax. The dynamics of a folli-

cle’s trajectory is mostly characterized by the transit times within the different phases
of the computation domain. As explained in the previous section, the transit time
from the initial to the maturity threshold ys controls the instant of cell cycle exit,
hence the maximum cell count; similarly, the transit time within the apoptotic zone
controls the cumulative exposure to apoptosis, hence the cumulative cell loss.
For rather obvious computation purposes, the degrees of freedom that we use to
control the transit times both horizontally and vertically are the aging and maturation
velocities, while the length and height of the domain subparts are kept constant and
can be set to any arbitrary value. Hence, the geometry of the computation domain
is fixed once for all, with the additional constraints that the domain subparts are
paved by an integer number of meshes and that the same discretization step is used
in both direction ∆x = ∆y. Choosing as unit length the duration of the cell cycle,
Dc, we thus have ymax = 1, and, for the sake of simplicity, we set xs = ys = 1/2 (this
amounts to multiplying the time by a scaling factor (here 2/3) to recover the physical
time scale in days, for an average cell cycle duration of one day).
Also, the boundaries of the apoptotic zone, y−s and y+

s should coincide with horizontal
boundaries between two consecutive meshes. From the hypotheses underlying the
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choice of Λ(y, U), we can consider that the support of this function is rather narrow,
and represents one tenth of the height of phase G1 and D on either side of the y = ys
boundary. Setting the values of y−s and y+

s imposes the value of ȳ.

4.1.2. Specification-based constraints on the parameters. From the bib-
liographic corpus dedicated to terminal follicular development, we can draw-up a list
of specifications that should be fulfilled either by the parameters or some model out-
puts, as detailed in Appendix C.2. Part of these specifications are summarized in a
dataset that will be used as such, in the optimization part of the calibration strategy
(see next sections) or as a guide to define the checklist that any ovulatory trajectory
should fulfill.
We can also readily define the initial conditions. First, we consider that the dis-
tribution in age covers the whole first cell cycle and that it takes into account the
discontinuities in the aging velocity on the internal boundaries as defined by equation
(2.8). For the distribution in maturity, the upper bound is defined from the expected
time taken by a cell with initial maturity µ2 to reach the apoptotic zone (start of FSH-
dependency), while the lower bound is defined from the expected time taken by a cell
with initial maturity µ1 to exit the cell cycle (time of stabilization in the cell number).
Finally, the total cell number is fixed from the pseudo-data set to ≈ 2 105cells.
Finally, we can propose bounds for the parameters in the velocity functions. The
derivation of these bounds is detailed in Appendix B.2, we just comment here the un-
derlying principles. First, the velocities are functions of the control term uf (t), whose
values cover a closed interval determined by the bounds of U(t) and the parameter of
the (closed loop or piecewise constant version of) bf function, so that we can restrict
the study to the admissible values of uf (t). Second, there are specific assumptions on
the roots of hf needed to ensure that the velocity is positive in the proliferative part
of the domain (r2(u, γ) > γs for all admissible u) and to discriminate the ovulatory
trajectories from the atretic ones in a FSH-poor environment. Lastly, the modulation
operated by the control term on the aging velocity in phase G1 is moderate and is
fixed by a modulation coefficient of r% (set to 10% in practice).

4.1.3. Characteristic time based calibration of an ovulatory trajectory.
The fallouts of subsections 4.1.1 and 4.1.2, combined with Appendix C.2 and B.2
provide us with:

1. Explicit a priori fixed values for the geometric parameters (delimiting subdo-
mains inside the computation domain: Dc = 1, y−s = 0.45, ys=0.5, y+

s = 0.55)
as well as the bounds of the global control (Umin = 0.075, Umax = 0.150).

2. Implicit a priori constraints relating respectively some parameters of the ag-
ing (horizontal) velocity gf (γ1, γ2) and maturation (vertical) velocity hf
(c1,c2, ū) with some of the parameters of the transfer function b(f) (b1, b2,
in the closed-loop case or b1, β2, in the open-loop case). Implicit means here,
that when instantiating a first initial guess for either the ovulatory or atretic
follicles (respectively before step 1 and at step 4 of the procedure summarized
in Figure C.2 in Appendix C.4) or at each iteration of the (CMAES-based)
optimization steps (see steps 1, 2, 4 and 5 in Figure C.3), one first choose
(randomly or not) the values of the corresponding 4-uplets or 5-uplets †, and
then check that the corresponding γ1, γ2 (resp. c1, c2) values do belong to
the delineate close set Ωg (resp. Ωh) in plane (c1, c2) (resp. plane (γ1, γ2)).

†[γ1, γ2, b1, b2] and [c1, c2, ū, b1, b2, ] in the closed-loop case, [γ1, γ2, b1, β2] and [c1, c2, ū, b1, b2] in
the open-loop case
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3. Explicit a priori constraints (fixed bounds) on the remaining parameters.
Even if we have fixed bounds or even given values for several parameters, the dimen-
sion of the parameter space remains large with 13 unknown parameter values (see the
size of p̃ in Table C.2). As a consequence, the direct optimization-based estimation of
these parameters is very costly, as each trial requires a 2D Finite Volume simulation.
To circumvent this problem, we design a multi-step method that first considers the
open-loop situation with control variables Uol and uolf defined in (3.1) and (3.2). This
allows us to perform the identification of a slightly reduced set of 9 parameters (see the
size of p? in Table C.2) with little a priori information, thanks to the low computing
time cost of the particle-like model. When we switch to the closed-loop situation, we
benefit from an appropriate initial guess for 8 of the parameters (the values of p̂ in
Table C.2 except Ts2), so that the 2D FV-based identification remains tractable.
Appendix C.3.1 details the expressions of the multi-objective functions used along
the different calibration steps and describes the practical algorithm implemented to
seek local minima by means of the CMAES Python library [10]. An instance of an
ovulatory trajectory is presented in the top panels of Figure 4.1. The macroscopic
outputs of the models (cell number and follicular maturity) are similar in the open
loop (dashed lines) and closed loop (solid lines) situations.
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Figure 4.1. Single ovulatory follicle (top panels) and pair of atretic and ovulatory follicles
(bottom panels). Left panels: control values, center panels: follicular maturities, right panels: cell
numbers. In the single follicle case dashed lines correspond to the open loop situation and solid lines
to the closed loop one. In the top panels, the green and blue dashed line correspond respectively
to Ts1 and Ts2. In the bottom panels, the blue and black dashed lines correspond to alternative
trajectories when the apoptosis rate is deactivated (λ = 0 in Eq. (B.5)).

4.2. Calibration of interacting ovulatory and atretic trajectories. We
finally dispose of a reasonable parameter set pov (see values in Table C.2) for a closed-
loop ovulatory trajectory. We now consider the interaction between several follicles,
resulting in a situation with ovulatory follicles and atretic ones. Starting with a pair
of interacting follicles we first couple the ovulatory trajectory with another trajectory
corresponding to an atretic follicle: another multi-objective function, formulated in
Appendix C.3.2, is introduced to ensure that for the atretic follicle, the cell number
increases significantly with respect to its initial value, up to the selection time, while
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the cell loss becomes substantial after this time, with a final cell number clearly lower
than the maximal number reached along the atretic trajectory. In the same time,
the penalization of the atretic follicles should not be performed at the expense of a
non-realistic level of cell loss in the ovulatory follicles.
It is why, although they are not as directly observable as other macroscopic quantities
such as the number of viable cells, we have introduced the instantaneous number of
cells undergoing apoptosis-induced death at a given time df (t) as well as the cumula-
tive number of apoptotic cells all along the follicular trajectory Df (t):

df (t) =

∫∫
Ω

Λ(x, y, U(t))φf (t, x, y)dxdy, Df (t) =

∫ t

0

df (s)ds,

given that, in the ovulatory follicle, Df (t) is constrained to remain below a threshold.
Then, we design a realistic cohort of Nf follicles: for a given number of ovulations Nov,
we couple trajectories obtained by Nov (respectively Nf −Nov) random fluctuations
about the ovulatory (resp. atretic) parameter set and adapt the global parameters in
functions U(t) and Λ(t).
An instance of an ovulatory/atretic pair is presented in the bottom panels of Figure 4.1
(solid lines). To visualize the contribution of the apoptotic process in the dynamics,
the same pair is also followed in the case when the apoptosis rate is deactivated (λ̄ = 0,
dashed lines); the selection is then not operated and the former atretic follicle becomes
able to ovulate.
Figure 4.2 displays the macroscopic outputs for a cohort of 10 follicles. The random
perturbations are uniformly distributed within ±10% of the parameters in Table C.1.
The ovulation time Tov is defined as the time when the cumulated ovarian maturity∫ Tov

0
M(s)ds (magenta dashed line in Figure 4.2) has reached a level sufficient to

trigger ovulation (840 in this simulation). The follicles are sorted amongst ovulatory
follicles (black, blue and green solid lines) and atretic ones (dashed lines). After Tov
all follicles whose maturity reaches a theshold (here 15) within one day ovulate.
The top panels display a simulation where all 10 follicles start with the same nor-
malized cell number. At ovulation time Tov = 8.0 only follicles 1 to 3 have reached
a sufficient maturity to ovulate. Follicle 4 (dashed blue line) is yet just below the
threshold. The bottom panels display the situation where follicles 4 and 5 start with
an enhanced cell number of 1.25 instead of 1 for the seven other follicles. The ovula-
tion time occurs a bit earlier (Tov = 7.8) and by that time both follicles 4 and 5 have
managed to reach the ovulatory stage.

5. Discussion. In this work, we have tuned the quantitative behavior of a mul-
tiscale model coupling cell kinetics with population dynamics, and spanning scales
from the intracellular level to the tissue (ovarian follicle) level. The passage from
microscopic to macroscopic dynamics is based, for a single follicle, on the numerical
computation of moments and derived outputs such as cell kinetics indexes (growth
fraction and mitotic index) and the total cell number. In addition, the connections
between scales are not limited to an averaging approach, but they are rather two-way,
since the macroscopic interactions between follicles, mediated by the pituitary-ovarian
loop, feedback onto the microscopic level.
To calibrate the model parameters, we have investigated thoroughly the links between
cell kinetics indexes and the fine distribution of cells within the different cell states
(proliferating or differentiated) and cell cycle phases; in some sense, we revisit and
extend a corpus of biomathematical works that were undergone at the golden age
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Figure 4.2. Cohort of 10 interacting follicles. Left panels: control values, center panels:
follicular maturities, right panels: cell numbers. Trajectories of follicles 1, 2, and 3 (respectively 4
to 7) result from random perturbations applied to the ovulatory (resp. atretic) follicle in Figure 4.1.
Compared to top panels, follicles 4 and 5 in bottom panels (dashed green and blue lines) start with
a cell number increased by 25%. Dashed black lines indicate the ovulation thresholds. The magenta
dashed line is the time integral of M(t) (scaled by 10 for the sake of lisibility). A movie showing the
corresponding changes in the cell density is available as supplementary material.

of experimental and theoretical cell kinetics (in the 1970s, see for instance [1]), that
studied the impact of different cell distributions (exponential in case of non-limited
growth, uniform in case of strict population renewal, possibly subject to cell loss) on
the interpretation of experimental cell-kinetics approaches. We have benefited from
both the richness of our 2D-structuring of the cell population (versus only an age-
structuring) and the power of numerical simulations to tackle more complex situations
including time-dependent and even unknown-dependent progression along the cell
cycle (see Section A.3 in Appendix A).
At this stage, the biomathematical approach is somehow a step forward on compared
to the experimental possibilities, since it is still very difficult to obtain quantitative
information on cell dynamics in physiological conditions. For instance, even “simple”
cell counting represents a hard-working process, and most of the time, there are not
true kinetic data, since, due to the invasive character of the measurements, different
experimental subjects correspond to the different time points (as often in physiological
issues, time is thus a statistical reconstruction in this case). Yet, one may hope that
cutting edge techniques allowing one to visualize the cell cycle distribution in living
cells [18], that requires the transfection of cells, will also be easily deployable in more
physiological contexts, or that time-lapse monitoring of cell fate (see e.g. [12, 15]) will
be usable on larger time and space scales to embed single cell fates within a tissue
dynamics.
From the reproductive biology viewpoint, our results have shown that the hormonal
control is at the source of selection, since there is no predestination of follicles, neither
on the proliferative capital issue (all follicles can potentially reach a similar total
cell number at the end of development) nor on the apoptosis issue (any follicle will
escape from the apoptosis zone when exposed to a constantly favorable environment).
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With minimal follicular heterogeneity in the parameters affecting only the velocities
(and possibly as a first trial instance initial conditions), and a quite narrow range
of hormonal (FSH) levels, selection can nevertheless be operated through the model.
We have already mentioned and investigated in former studies the importance of
managing the proliferative resource of the follicles and controlling the transit time in
the apoptosis zone, on the level of a single follicle [7]. One critical point that has been
further unraveled by the current study, on the level of the population of interacting
follicles, is that there is a relatively little room for manoeuvre to meet at the same time
the constraints that (i) the ovulatory follicle(s) should not have a too high cumulated
loss of cells and (ii) the atretic follicle should in contrast be subject to a significant
cell loss.
We have performed the numerical illustration and parameter fitting of the model in the
ewe due to the variety of data sources available in the ovine species, and also because
this species exhibits a natural (and genetically-encoded) variability in the ovulation
number, that is challenging both on the experimental side and the modeling one.
The principle of our approach could be generalized to other species and especially
to the human (mono-ovulating) species. We intend to extend the present model of
terminal follicular development to women. From the mathematical viewpoint, this
extension would not raise new bottlenecks. Yet, from the biomathematical, data-
based viewpoint, it is not straightforward, since it requires to design a specification
list, as we did for the ewe, from very composite information that need to be both
gathered and tallied from literature articles dealing with morphologic (monitoring of
follicle growth through ultrasonography), histologic, cell kinetics and endocrine issues.
To perform the parameter tuning, we have had to cope with the structural lack of
quantitative and kinetic data on in-vivo follicular development. Everything would be
much simpler if datasets giving the cell numbers of both ovulatory and atretic follicles
against time were available. We thus had to develop a more indirect strategy that
brute-force fitting and we could not proceed only through optimization steps. The
core of our strategy is the computation of characteristic reaching times in the spatial
domain from a particle-like reduction of the model presented in section 3. Compared to
previous particle or characteristic-curve based approaches, we focus here on the effect
of the drift dynamics in phase SM (pure horizontal transport without any vertical
motion) in amplifying the desynchronization between cells sharing the same initial
maturity (vertical ordinate) but not the same initial location within the cell cycle.
This question amounts to investigating the effect of the cell insensitivity to extra-
cellular signals after the G1-S checkpoint. The formulation of the model from particle
systems had already been used in [8] and [6] but in a more simple framework in
which either the phase-dependent contrast in the aging velocity, or the heterogeneity
in initial conditions had been discarded. A thorough analysis of the model based
on the characteristic curves had also been conducted in [19] without any simplifying
assumptions, but in a rather theoretical objective (existence and uniqueness of weak-
solutions) that is not straightforward to handle numerically especially in the context
of inverse problems.
The drawback of the calibration strategy is that at this stage, we cannot assess our
parameter sets from the viewpoint of identifiability; we rather provide a set of com-
patible parameters. Issues of identifiability and statistical estimation could be studied
through intensive simulations with random selection of the parameter values; the idea
would be to recover for each parameter a distribution compatible with all the specifi-
cations, which would provide us with information on the heterogeneity and variability
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in the parameters with respect to different physiological (mono- or poly-ovulation) or
pathological (dysovulation or anovulation) situations.
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Appendix A. Computation of the age distribution within the cell cycle and
related cell kinetics indexes in simplified frameworks.

A.1. Simple exponential cell dynamics. We illustrate here different model
outputs in the simplest case of a fully desynchronized and oproliferating population.
Figure A.1 shows some snapshots of both the φ(t, x, y) density (color-code based pan-
els) and the ψ(t, x) density (graphs with red curves), in the simplified 2D framework.
In the case of a single cell cycle with periodic boundary conditions (top panels in
Figure A.1), the age distribution is the exponentially decreasing in age and increasing
in time law (2.3). In the case of two (or more) successive cycles (bottom panels in
Figure A.1), the shape of the density is modified at the time of the transition between
the consecutive cycles, since the cells are in between the two cycles, and then goes
back to the simple exponential pattern once all cells have exited the first cell cycle and
lie in the second one. Figure A.2 displays the corresponding macroscopic outputs in
the total cell number m0

f (t) (eq. 1.8) and mitotic index MI(t). As expected, the cell
number is doubled after one cell cycle, while the numerical MI (2.2) remains constant
and equal to the theoretical value expected from (2.4).
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Figure A.1. Snapshots of the cell density φ(t, x, y) over the 2D domain (color-code panels) and
age density ψ(t, x) (red curves) in the case of a fully proliferating, desynchronized cell population,
with constant velocity (g = 1) of progression along the cell cycle. Top panels: a single cell cycle with
periodic boundary conditions. Bottom panels: 2 subsequent cell cycles. Left panels: t = 0.0, middle
panels: t = 0.5, right panels t = 1.

A.2. Recursive computation of the MI. We recall briefly here how to com-
pute the solution to equation (2.2) for a series of Nc cycles (hence 2Nc−1 interfaces),
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Figure A.2. Macroscopic outputs corresponding to the microscopic outputs of Figure A.1:
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f (t) (left panel) and mitotic index MI(t) (right panel).

with Dc = 2xs. On the pth interface located at x = p× xs the condition on the flux
reads:

vpψ(t, px+
s ) = kpv(p−1)ψ(t, (p− 1)x−s ) (A.1)

where vp is the (constant) velocity on the right of the interface and v(p−1) the velocity
on its left, kp = 1 in the case of flux continuity (interface G1-SM), while kp = 2 in
the case of flux doubling (interface SM-G1 phase where mitosis occurs). For the first
interface (and starting the numbering of cell phases from 0),

ψ1(t, x) =


ψ0(x− v0t) for x < xs,

ψ̃1(ts) for (xs − v1t) ≤ (x− v1t) < xs,

ψ0(x− v1t) for (x− v1t) ≥ xs,
(A.2)

where ψ̃1 is the trace of the solution on the right of the interface, defined by

ψ̃1(t) =
1

v1
k1(v0ψ0(xs − v0t)), (A.3)

and ts is the delay after which the effect of interface xs is felt at position x and time
t defined by

ts = t− (x− xs)
v1

. (A.4)

We now show how the exact solution for a sequence of Nc cell cycles can be defined
recursively. Let us denote by ψp−1(t, x) the solution for a sequence of p−1 interfaces,
with p > 1 and add a pth interface at pxs with a coefficient kp for the transmission
condition and a velocity vp on the right hand side. For x < pxs the effect of the pth
interface is not felt and the solution is ψp−1(t, x). For x ≥ pxs, depending on time t,
the effect of the interface is felt or not. If (x−pxs) < vpt, traces of the solution crossing
the pth interface are multiplied by the kp coefficient and transported at velocity vp.
The effects of these events are felt at position x after a delay (x−pxs)/vp. If (x−pxs) >
vpt, the effect of the pth interface is not felt yet and the initial condition defined on
x > pxs is transported at velocity vp. We eventually have

ψp(x, t) =


ψp−1(x, t) for x < pxs,

ψ̃p(t
p
s) for (pxs − vpt) ≤ (x− vpt) < pxs,

ψ0(x− vpt) for x− vpt ≥ pxs,
(A.5)
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Figure A.3. Snapshots of the cell density φ(t, x, y) over the 2D domain at t = 0, 0.5, 1, 2, 2.7
and 8.5. Parameters are set to τh = 0.4, c1 = 0.01, c2 = 1.2, ū = 0.1, g = 0.5 in G1 for the velocities,
Umax = 0.15 , Umin = 0.075 and Ts = 2 for the open-loop control and λ = 0.2, ȳ = 0.1 for the
apoptosis rate. The same logarithmic color scale is used for all times, from 1 in white to 35.8 in pink.
The three horizontal black lines on each snapshot materialize the thresholds y−s = 0.45, ys = 0.5
and y+s = 0.55. The same logarithmic color code is used for all snapshots. It is well suited to the
exponential increase in the cell number and concentration of the density in the maturity direction.
Sharp changes in color happen on the interfaces between phases, where velocity contrasts induce
density discontinuities due to conditions (1.3), (1.4) and (1.5). The narrowing of the density support
in phase D rather induces smooth changes in color, towards the highest color levels. An animated
version of this figure is provided as a supplemental movie file.

where ψ̃p is the trace of the solution on the right of the pth interface, defined by

ψ̃p(t) =


1

vp
kpvp−1ψp−1(pxs, t) if p > 1

1

vp
kpvp−1ψ0(xs − vp−1t) otherwise,

(A.6)

and tps is defined by

tps = t− (x− pxs)
vp

. (A.7)

A.3. Instance of a detailed simulation in the case of cell cycle exit
induced by differentiation and/or apoptosis. We now comment a detailed sim-
ulation corresponding to a dynamical framework that has been designed to embed, as
simply as possible, differentation- or apopotosis-induced cell cycle exit, and to study
its impact on the model outputs on different scales. The microscopic outputs for
the φ(t, x, y) density are illustrated on Figure A.3, where snapshots are shown at six
different times. The computational domain is made of eight consecutive cycles, but
for each snapshot, we only display the part of the computational domain containing
the support of the density.
At initial time, the density is all contained within the first cell cycle and the maturity
range is [0.1, 0.4]. At time t = 0.5, some cells have undergone mitosis and spread
over the second cycle, while others are exiting the first cell cycle. At time t = 1,
the density is splitting into two disconnected regions; some of the cells have already
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escaped from the apoptosis zone (their maturity overcomes the y+
s threshold in phase

D). At time t = 2.0, the density has almost completely entered the upper phase of
the domain and it is composed of three disconnected regions. The same is true at
time t = 2.8, when all cells have not only exited the cell cycle, but also escaped from
the apoptosis zone. The last snapshot, at time t = 8.5 illustrates the “contracting”
property of the maturation function, that tends to pitch the density horizontally as the
average maturity approaches the asymptotic value corresponding to the positive root
(here r2(Umin)); this property has been theoretically established in [12] for a slightly
different model where the distinction between SM and G1 phases is not made.
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Figure A.4. Macroscopic outputs: total cell number (top left panel) ; mitotic index (top center
panel) ; growth fraction (top right panel) ; piecewise constant control and follicular maturity (bottom
left panel) ; instantaneous and cumulated cell death (bottom center panel); average (red solid line)
and minimal (red dashed line) cell maturity (bottom right panel). In the left panels the solid line
correspond to λ = 1.6 in the sink term, the dashed line corresponds to λ = 0 (no apoptosis). The
effect of apoptosis is hardly visible on the mesoscopic outputs.

The macroscopic outputs are displayed on Figure A.4. In addition to the total cell
number (top left panel) and mitotic index (top center panel), the figure shows the
decrease in the growth fraction (top right panel) due to cell cycle exit (GF was not
shown in the former subsections since GF = 1 there) and the changes in the follicular
maturity m1

1(t) (bottom left panel, which was neither shown up to now, because
its time pattern superimposed on the total cell number). Also, to understand these
macroscopic outputs in more depth, we introduce new mesoscopic indexes, such as (i)
the changes in the minimum, average and maximum maturity (bottom right panel),
and (ii) the instantaneous and cumulated cell death (bottom center panel). We also
plot the changes in U(t) according to (2.9), where Ts = 2.0 to condense all interesting
events (and especially the triggering of apoptosis) in short time (the physiological
drop would occur later, see next sections).
With the set of parameters chosen for this example, the total cell number stops in-
creasing around t = 2.11. Before that time, the slope in the cell number increase
had been lowered due to he intensification of cell differentiation. The growth fraction
decreases steadily from its maximal value (1, since all cells are in the proliferative part
of the domain at initial time) to a null value at the time when all cells have exited
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the cell cycle. This exit time (around t = 2.33) roughly coincides with the abscissa
of the crossing point between the horizontal line delimiting the ys threshold and the
minimum maturity (red dashed line on the bottom right panel), even if numerical
diffusion blurs a little the precise assessment of the coordinates of this crossing point.
It is not exactly the same as that when the total cell number stabilizes, due to effect of
apoptosis. A slowing-down in GF decrease can be seen between t = 1.7 and t = 2.11.
This is due to a transient relative lowering of the denominator in (1.9) with respect
to its numerator. After t = 2.0, apoptosis is active and is no more compensated by
proliferation. Indeed the cell number even decreases a little before stabilizing around
t = 2.54. The mitotic index first follows a pattern resembling that of Figure 2.1 with
a sharply damped second peak, and then drops to zero at the exit time.
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Appendix B. Complementary information on model-specific formulation
and parameterization.

B.1. Specific formulation of the aging and maturation velocities and
their control. Both the aging and velocity functions gf (x, y, u) and hf (x, y, u) are
space-dependent ; their expressions depend either directly on the space variables, or
indirectly, through the location within a given subpart of the domain. They also take
as argument a control variable, that can be defined either as an open-loop function of
time (see uolf in 3.2) or as a closed-loop function defined from some moments of the
cell density.
The aging function gf appearing in (1.1) is defined by

gf (x, y, u) =

{
γf1 u+ γf2 for (x, y) ∈ Θ1

1 for (x, y) ∈ Θ2 ∪ Ω3
(B.1)

where γf1 , γ
f
2 are real positive constants. The aging velocity gf modulates the transit

time along phase G1 and its relative duration with respect to the total cell cycle
duration Dc. Hence, even if phase G1 is assumed to have a different duration than the
remaining of the cycle (phase SM), we can set xs to Dc/2 without loss of generality ;
the lengths of G1 and SM will be the same on the domain, but their relative duration
will be dynamically settled by the aging function and the choice of its parameter
values. In practice, we deal with a phase G1 longer than SM , so that the aging
velocity will be lower than 1.
The maturation function hf is defined by

hf (x, y, u) =

{
τfh (−y2 + (cf1y + cf2 )(1− exp(

−u
ūf

))) for (x, y) ∈ Θ1 ∪ Ω3

0 for (x, y) ∈ Θ2

(B.2)

where τfh , c
f
1 , c

f
2 and ūf are real positive constants. An important feature of hf (x, y, u)

is that for fixed u, it possesses only one strictly positive root in y, and this root remains
below a maximal threshold as the value of u increases. Let us denote

θ(u) = 1− exp− u

ūf
, θ(0) = 0, and lim

u→∞
θ(u) = 1.

The roots ri(u)i=1,2 of hf read:

ri(u) =
1

2

(
cf1θ(u)±

√
(cf1θ(u))2 + 4cf2θ(u)

)
(B.3)

It is easy to check that the positive root r2(u) increases with u:

r2(0) = 0 and lim
u→∞

r2(u) =
1

2

(
cf1 +

√
cf1

2
+ 4cf2

)
. (B.4)

The sink term, that represents cell loss through apoptosis, is defined by

Λ(x, y, U) =

 λ exp(−(
y − ys
ȳ

)2)× Umax − U
Umax

1[y−s ,y
+
s ] for (x, y) ∈ Θ1 ∪ Ω3

0 for (x, y) ∈ Θ2

(B.5)
where λ, ys and ȳ are real positive constants. Λ(x, y, U) is nonzero only in a restricted
range y ∈ [y−s , y

+
s ] with 0 < y−s < ys < y+

s < ymax, while its maximal value is reached
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when both U takes its lowest value Umin (penalization due to poor hormonal supply),
and y = ys (highest sensitivity to apoptosis at the cell cycle exit transition).
The F equations in the PDE system (1.1) are linked together through the arguments
uf (t), appearing in the velocities gf (x, y, u) and hf (x, y, u), and U(t), appearing in
the sink term Λ(x, y, U), which depend on the first maturity moment of the densities.
The plasma FSH level U(t) showing up in the arguments of the sink term in (1.1) is
defined from the global maturity (see 1.7) by

U(t) = S(M(t))

with S(M) = Umin +
Umax − Umin

(1 + exp(c(M −m))δ)
(B.6)

where Umin, Umax, c, δ and m are real positive constants.
The locally bioavailable FSH level uf (t) showing up in the arguments of the velocities
in (1.1) is defined by

uf (t) = bf (m1
f (t))U(t) for f = 1, . . . , F,

with bf (m) = bf1 +
1− bf1

1 + exp (−bf2 (m− bf3 ))
, (B.7)

where bf1 , b
f
2 and bf3 are real positive constants. The sigmoid shapes of S(M) and

bf (m) ensure altogether that the mesoscopic control uf is bounded

bf1Umin ≤ uf (t) ≤ Umax. (B.8)

To alleviate the notations, we drop from now on the upper index f in the constants γf1 ,
γf2 , τ

f
h , c

f
1 , c

f
2 , ū

f , bf1 , b
f
2 and bf3 , which indicates that they can vary from one follicle

to another. The follicle-dependent character of these parameters will be reminded
in the sequel by the f index in functions gf , hf and uf . We now comment on the
outer boundaries of the computing domain. From (B.4) and (B.8), we can see that
the maturation velocity in the y direction vanishes at some ordinate lying below a
supremum r2(Umax) and above an infimum r2(b1Umin). Choosing µ2, c1, c2 such that

µ2 ≤ ys < r2(b1Umin) and
1

2

(
c1 +

√
c21 + 4c2

)
< ymax

ensures that hf (y, .) is strictly positive until above ys and negative before reaching
ymax, so that the density remains null on these two boundaries at all times. This en-
ables us to use periodic boundary conditions in the numerical implementation (see [2]).

B.2. Derivation of constraints for the parameters of the aging and mat-
uration velocities.

Bounds of the parameters entering the gf aging function. Here we detail how we
fix the bounds of the set Ωg of admissible values for the γ1 and γ2 parameters in the
aging velocity function gf

Ωg ( [0, γ1max]× [γ2min, gmax]

Let us denote by [umin, umax] the extremal values that may be taken by the local
control uf . In the open loop piecewise constant setup (3.2)

umin = b1Umax, umax = max (b2Umax, Umin) , (B.9)
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while in the closed loop original setup (B.6,B.7)

umin = b1Umin, umax = Umax. (B.10)

From the aging velocity and the length of the cell phases, we can derive the average
duration of phases SM and G1

TSM =
Dc − xs

1
, and TG1 =

xs
gf
,

Denoting by r% the level of modulation operated by the hormonal control on the
aging velocity, we get

TSM
TG1

(1− r) ≤ gmin < gf (uf (t)) < gmax ≤ 0.5(1 + r)
TSM
TG1

(B.11)

In our specific case Dc = 2xs = 1, so that TSM/TG1 = 1/2, and we obtain the
following inequality constraints for γ1 and γ2

gmin ≤ γ1umin + γ2 (B.12)
γ1umax + γ2 ≤ gmax (B.13)

so that

γ1max =
gmax − gmin

umax − umin
and γ2min =

gminumax − gmaxumin

umax − umin
. (B.14)

Note that the bounds in (B.14) depend indirectly on the parameters of the bf function,
and more specifically on b1 (and also β2 in the open loop setup). In practice, we first
select the pair (γ1, γ2) independently, and then check whether the selected values are
compatible with all other constraints imposed on the whole parameter set. A practical
domain for searching the pair is the minimal box containing ∪b1Ωg, i.e. the bounds
(B.14) evaluated at b1 = b1max.

Figure B.1. Left panel : admissible values for parameters γ1, γ2, satisfying constraints (B.13)
(gmin = 0.45, gmax = 0.55, b1 = 0.3, closed loop setup). Right panel: admissible values for parame-
ters c1, c2, satisfying constraints (B.19). The polygons Ωg and Ωh are delimited by the green-filled
areas.
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Bounds of the parameters entering the hf maturation function. We will now de-
rive constraints on the bounds of the set Ωh of admissible values for the c1 and c2
parameters in the maturation velocity function hf

Ωh ( [0, c1max]× [c2min, c2max ] (B.15)

The positive root of hf , r2(uf ) is an increasing function of uf . In the ovulatory case,
the development of the follicle is well synchronized with the FSH environment (“right
time - right place”), so that it is able to take advantage of even low level of FSH
(Umin) and

ys ≤ r2(umin)

r2(umax) < ymax. (B.16)

along with

y+
s ≤ r2(Umin). (B.17)

Yet, if the follicle fails to adapt to low FSH levels [9], (bf ≤ 1 when U = Umin), then,
as in the atretic case, the cells can be trapped in the part of the differentiated domain
where they are sensitive to apoptosis in case of an unfavorable FSH environment
(typically when U(t) = b1Umin) and

ys ≤ r2(b1Umin) ≤ y+
s (B.18)

Similarly to Ωg, the bounds of Ωh depend indirectly on the parameters of the bf
function, b1 and ū (as well as b2 in the open loop setup). As can be seen on the right
panel of Figure B.1, Ωh is a polygon bounded by the following lines, derived from
(B.16,B.17,B.18)

y2
s/θ(umin)− c1ysθ(umin) ≤ c2

c2 ≤ y2
max/θ(umax)− c1ymaxθ(umax)

y+
s

2
/θ(Umin)− c1y+

s θ(Umin) ≤ c2 ≤ y+
s

2
/θ(umin)− c1y+

s θ(umin) (B.19)

The combinations of c1 and c2 that fall within the polygon area are not arbitrary and
we can derive a condition preventing from emptiness of Ωh

max

(
y+
s

2

θ(Umin)
,

ys
2

θ(umin)

)
≤ min

(
y+
s

2

θ(umin)
,
y2

max

θ(umax)

)
When the condition is met

Ωh ( [0, c1max]× R,

with

c1max = max

0,min

 y2max

θ(umax) −
ys

2

θ(umin)

ymaxθ(umax)− ysθ(umin)
,
y+
s + ys

θ(umin)2

 (B.20)

The existence of non-empty sets is illustrated as a function of parameters ū and c1 in
the left panel of Figure B.2.
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Figure B.2. Left panel: sketch of non emptiness criterium (B.20). Maximum bound for c1
parameter as a function of ū. Right panel: hf (y, u) and Λ(y, Umax) versus y for c1 = 0.2, c2 = 0.5,
ȳ = 0.02, u = Umax (green line), u = Umin (blue line), u = umin (red), u = u0, with r2(u0) = ys
(black solid line) and u = u1, with r2(u1) = y+s (black dashed line).

Figure B.3. Admissible sets (c1, c2) for varying values of ū (from left to right
0.001, 0.009, 0.021, 0.086).

Once we are guaranteed that c1 ∈ [0, c1max], we deduce that

c2min = max

(
u+
s

2

θ(Umin)
− c1y+

s θ(Umin),
y2
s

θ(umin)
− c1ysθ(umin)

)
,

c2max = min

(
u+
s

2

θ(umin)
− c1y+

s θ(umin),
y2

max

θ(umax)
− c1ymaxθ(umax)

)
.

The shape and area of different admissible sets corresponding to different values of ū
are depicted in Figure B.3, while Figure B.2 gives an instance of the resulting graph
of hf (y, u) versus y after applying the strategy for finding a specific parameter set
belonging to Ωh.
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Appendix C. Biological foundations and dedicated calibration strategy for
a multiscale model of cell population dynamics in ovarian follicles.

In this appendix, we provide the reader with information that are rather specific to
the issue of follicular development modeling.

C.1. Biological and biomathematical background. The ovulation event is
the endpoint of the developmental process undergone by ovarian follicles, which are
spheroidal tissular structures composed of somatic cells and sheltering the oocyte (the
female gamete). The follicular development is a morpho-dynamical process spanning
several months and involving both proliferation and differentiation of the follicular
cells, as well as enlargement of the follicle due first to the increase in the number of cell
layers and then to the creation and dilatation of a fluid cavity (an antrum) inside the
follicle [11]. During each ovarian cycle, ovulation results in the release of one (in mono-
ovulating species) or several (in poly-ovulating species or strains) oocyte(s) competent
for subsequent fertilization and embryo development. The number of ovulations is
determined during the terminal phase of follicular development, as the issue of a
selection process regulated by endocrine loops between the ovaries and hypothalamo-
pituitary axis. Hence, the selection of ovulatory follicle(s), and its corollary, the
degeneration of the non-selected follicles, caused by the apoptosis of follicular cells, is
an original instance of population dynamics coupled with hormonally-controlled cell
kinetics.
The multiscale model initially introduced in [7] and presented in section 1 of the
main text has inherited some of its characteristic features from the highly complex
control of terminal follicular development. First, to account for the differential (yet
not uncoupled) control exerted by FSH onto the commitment of its target follicular
cells towards either proliferation or differentiation, we have introduced two structur-
ing variables, the age x and maturity y, hence we have to deal with a 2D equation for
each of the (possibly numerous) follicles. Second, to account for the feedback exerted
by the follicles onto the pituitary (mediated by the contributions of follicular cells
to the secretion of estradiol and inhibin by the ovaries), we have introduced control
terms (denoted by U(t) and uf (t) in the sequel) underlying the interactions between
follicles, whose formulation depends on moments of the unknowns. This amounts to
considering FSH-dependent expression of the velocities, and especially of the mat-
uration function, whose biochemical foundations were settled in [6]). An instance
of moment-based control term occurs in the context of hematopoiesis (see e.g. [1]).
However, in that case, as in other problems of control of hyperbolic partial differential
equations (see e.g. [17]), the control term operates on a boundary, whereas in our case
the control variables operate on the velocities and sink term. Third, to account for the
differences in cell sensitivity to extracellular signals according to the different phases
of the cell division cycle [23], we cannot distribute the term representing mitosis (cell
doubling) over all cell ages, and we have to tackle discontinuities both in the velocities
and density on internal boundaries of the domain representing the passage from one
cell phase to another.

C.2. Biological specifications for parameter calibration. All our numer-
ical simulations will be illustrated in the ewe. Indeed, large domestic species, and
especially the ovine species, are particularly interesting to investigate the bases of
follicular development, since (i) they have a large body size allowing repeated blood
sampling and further analysis of endocrine time series, (ii) the duration of the ovarian
cycle makes it easier to dissect the different steps in the temporal sequence of hormonal
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feedbacks between the ovaries and hypothalamo-pituitary axis and its links with the
follicle selection process, (iii) they are closer to human ovarian physiology compared
to rodents, and (iv) there exist in several ewe strains natural mutations affecting the
ovulation number, that correspond to different genetic strategies of poly-ovulation
[16]. Many experimental studies have been undertaken on follicular development in
this species, so that we can access a variety of experimental data ranging from cell
kinetics of granulosa cells or in vivo monitoring of follicle growth to endocrine time
series of pituitary and ovarian hormones.
From the bibliographic corpus dedicated to terminal follicular development in the
ewe, we can draw-up a list of specifications that should be fulfilled either by the pa-
rameters or some model outputs. Part of these specifications are summarized in a
dataset first introduced in [5], that relates the cell number to the follicular age (red
bullets on Figure C.1), by combining data on follicular growth (changes in diameter
assessed either by histology [21, 22] or ultrasonography [15]) with data on granulosa
cell numbers according to the diameter [20]. The initial age corresponds to 1mm in
diameter follicles, when ovarian follicles undergo at this size their maximal prolifera-
tive activity ([21, 22]) and can be recruited into the selection process [19]. This set of
data will be used as such, in the optimization part of the calibration strategy (see next
sections) or as a guide to define the checklist that any ovulatory trajectory should
fulfill. From this dataset, we can derive constraints on the range of cell values that
should be reached at some critical points of follicular development, that are given in
the literature with respect to the diameter, and that we can convert in time:

1. the switch from a FSH-responsive to a FSH-dependent status in follicles
2.5mm in diameter [16, 13]; from this diameter, the follicles become unable
to pursue their development further if they are not supplied with FSH (as it
has been shown in many occasions of surgical or pharmacological hypophy-
sectomy);

2. the selection of the future ovulatory follicles around 4mm in diameter ; at
this diameter, the drop in the growth fraction is the highest [14], as is the
sensitivity towards FSH, as assessed by the rate of follicle degeneration [16];
dominant follicles are “saved” thanks to their new ability to transfer their
gonadotropin dependency from FSH to LH (luteinizing hormone);

3. the ovulation at an ovulatory size around 7-7.5mm in the mono-ovulatory
strains of sheep ; at this size, one can assess the ratio of increase CC in the
cell number from the initial cell number at diameter 1mm:
CC ∈ [CCmin, CCmax] ≈ [25, 35]; since in the ovulatory case the cell number
starts stabilizing as soon as the maturity of all cells overcomes y+

s , this ratio
also gives a rough indication on the bounds of the global maturity of the
ovarian follicle from selection to ovulation: m1

f (t) ∈ [CCminy
+
s , CCmaxymax].

Besides these specifications, the bounds of the S(M(t)) function given in equation
(B.6) can be set in a more straightforward way, since they can be read from time
series of FSH plasma levels along the ovarian cycle (see e.g. [15, 18]). During the
time horizon spanned by the model, the FSH level starts from its maximum and
drops by half at the end of the follicular phase. Hence we can set Umin = Umax/2.
We can also get some a priori idea on the location of the inflexion point ruled by the
value of m̄ and consider that

CCminy
+
s ≤ mmin ≤ m ≤ mmax ≤ CCmaxymax

which amounts to assume that the dominant follicle contributes the most to the FSH
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Figure C.1. Specifications on the cell number in an ovulatory follicule. The cell number is
shown both as a function of diameter (top horizontal axis) and time (bottom horizontal axis). From
the initial cell number (≈ 0.216), 3 checkpoints can be defined from the biological knowledge and
applied to our training data set (red bullets superimposed on the solid black line) ; we expect to reach
given cell numbers at the time when the follicle switches from a FSH-responsive to a FSH-dependent
status (green marks, diameter 2.5mm), when it switches from a mainly proliferative (GF>0.5) to
a mainly differentiated status (blue marks, diameter 4mm) and when it reaches the ovulatory size
(diameter 7.5mm). The cell number is illustrated in physical unit (million of cells) on the left vertical
axis, and as the ratio of increase from the normalized initial number on the right vertical axis.

drop.
It is not straightforward at all to define similar specifications in the case of atretic
follicles, since there are numerous ways for a follicle to follow an an atretic trajectory.
Yet, we recall here some additional comments on the hypotheses underlying the choice
of formulation of Λ(y, U), that are related to specifications for atretic follicles (the
shape of Λ is displayed in the right panel of Figure B.2). Indeed, the formulation
of the cell loss intensity transcribes on the cell level what is well established on the
follicle level. Indeed, the vulnerability of a follicle to atresia (follicle degeneration)
is maximal at the time of selection of future ovulatory follicles (follicles of 3-4mm in
ewes [13]), which is also the time when the drop in the growth fraction is the highest.
Before the selection time, this vulnerability appears at the moment of the switch
from a FSH-responsive to a FSH-dependent stage (follicles of 2,5mm in ewes [16]),
while it disappears when the follicle is selected (dominant follicle) and able to switch
its dependence from FSH to LH. Since follicle atresia is mediated by granulosa cell
apoptosis, it seems quite natural to draw an equivalence between the cell sensitivity to
apoptosis and the follicle dependence towards FSH, and between, respectively, (i) the
exit time (where y = ys) and the selection time, (ii) the time when the cell reaches y−s
and the time of FSH-dependency triggering and (iii) the time when the cell overcomes
y+
s and the time of dominance.
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C.3. Optimization steps using CMAES and flow charts for the whole
procedure of parameter calibration. In this section, we explain in details the
procedure reviewed in section 4.1.3 and whose final output is a complete set of pa-
rameter values for the original model, given all a priori constraints on the values or
bounds of the parameters (as summarized in Table C.1).

Global parameters
Model Name Value

ys 0.5
Domain ymax 1
geometry xs 0.5
Fig. 1.1 Dc 1

Umax 0.15
Global Umin 0.075
control m [m̄min, m̄max]
eq. (B.6) c [cmin, cmax]

δ 1
Apoptosis λ [λmin, λ̄max]
sink ȳ 0.02
term y−s 0.45
eq. (B.5) y+s 0.55

Local parameters
Model Name Value
Initial M0 [M0min,M0max]
condition µ1 0.05
eq. (2.7),(2.10) µ2 0.4
Aging γ1 [0, γ1max]
velocity eq. (B.1) γ2 [γ2min, gmax]

c1 [0, c1max]
Maturation c2 [c2min, c2max]
velocity ū [ūmin, ūmax]
eq. (B.2) τh [τhmin, τhmax]
Mesoscopic b1 [b1min, b1max]
open-loop control β2 [β2min, β2max]
eq. (3.2) Ts1

Ts2

Mesoscopic b1 [b1min, b1max]
closed-loop control b2 [b2min, b2max]
eq. (B.7) b3 [b3min, b3max]

Table C.1
List of the model parameters. The global parameters are shared by all follicles in a cohort while

the local parameters are specific to individual follicles. Some parameters (highlighted in magenta) are
given nominal values in all cases, while others are constrained to either explicit or implicit (highlighted
in green) bounding conditions and may vary from one simulation or one follicle to another. Amongst
them, the parameters ruling the local control variable correspond either to the open-loop (highlighted
in cyan) or to the closed-loop (highlighted in blue) situation.

C.3.1. Identification of a single ovulatory trajectory. In this paragraph,
we make use of the piecewise constant, open-loop approximation of the nonlocal con-
trol uolf (t), introduced in Eq. (3.2), and of the results obtained in section 3.3 to derive
an initial guess for a parameter set of an ovulatory trajectory.
We first begin by assessing Eq. 3.5 with the specific formulation of gf in (B.1) and
the factor expression of hf obtained from (B.2) and (B.3)

hf (y, u) = −τh(y − r1(u))(y − r2(u)), with r1(u) < 0 < ys < r2(u),

Thf
(y0, y1) =

1

τh(r2(u)− r1(u))
ln

(
y1 − r1(u)

y1 − r2(u)

y0 − r2(u)

y0 − r1(u)

)
. (C.1)

Inverting Eq. (C.1) and substituting either Th = TG1 or Th = T − Te depending on
whether y1 ≤ ys or not, we get

y1(TG1, y0) =
r1 − r2R

1−R with R = exp (TG1τh(r2 − r1))
y0 − r1

y0 − r2
,

or R = exp ((T − Te)τh(r2 − r1))
ys − r1

ys − r2
, x1 = xs + T.

Times TP+A, TD+A and Te can be roughly associated with crucial steps in follicular
development, respectively: the transition from a FSH-responsive to a FSH-dependent
state, the transition towards dominancy (follicle selected for ovulation), and the ex-
haustion of the proliferative resources of the follicle at the time of the latest cell cycle
exits. We then follow a simple strategy that consists in taking as a priori observations



Supplementary material - Cell-kinetics based multiscale calibration C-5

the first switching time T obss1 , that will be made coincident with an onset time of apop-
tosis (TP+A), the exit time T obse and the corresponding cell numbers and estimating
the values of the parameters in the hf , gf and uolf functions from a multi-objective
optimization step using the stochastic algorithm CMAES [8]. The set of (constrained)
parameters to be optimized is

{p = (γ1, γ2, c1, c2, τh, ū, b1, β2, Ts2)}

while the criterion reads

Jol(p) =

4∑
i=1

αifi(p), p? = argmin
p

(Jol(p)) (C.2)

with f1(p) = |Ts1 − Ts1obs|2, f2(p) = |Te − T obse |2, (C.3)
f3(p) = |m0

ov(Ts1)−ms
obs
1 |2, f4(p) = |m0

ov(Te) −me
obs|2. (C.4)

Weights αi, i = 1, . . . , 4 are fitted numerically. An initial guess for Ts1 can be assessed
from the time corresponding to the diameter value (2.5mm) coinciding with the onset
of FSH-dependency (delimited by green dashed lines on Figure C.1): Ts1obs ≈ 4.0. We
then identify this value with that of TP+A(µ) assessed at the mean initial maturity
µ = (µ1 + µ2)/2, using formulas (C.1) and (3.15). Similarly, the initial guess for the
exit time Te is assessed from T obse = 9 (delimited by black dashed lines on Figure
C.1), and this value is matched with the computation of the exit time assessed at the
lowest maturity µ = µ1 in formula (3.16). In the open-loop framework, the observed
cell numbers m0

ov(Ts1) ≈ 3.16 and m0
ov(Te) ≈ 6.7 can be in addition matched with

their rough theoretical counterparts derived from the simplifying expression (3.17).
This is of course a crude estimation of the evolution in time of the cell number, since
it amounts to dealing with the population as if it was fully proliferating and with a
point initial distribution in maturity, but it leads nevertheless to quite satisfactory
results for a first trial. It might also be worth noting that, at the end of this step, the
estimated values T ?s1 = 4.3, T ?s2 = 6.0 and Te = 8.0 differ from their initial guesses
which were set respectively to T obss1 = 4.0, T obss2 = 5.14 and T obse = 9.0 using the data
set in Figure C.1.
Starting from p? as an initial guess (see Table C.2), we next proceed to the direct
comparison of the simulated outputs, obtained by simulating the 2D PDE model in
the open-loop framework, with the observed cell numbers, and perform a classical,
CMAES-based optimization with a single objective criterion:

Jc(p; q) =

n∑
i=1

|m0
ov(ti)−mobs(ti)|2, p̂ = argmin

p
(Jc(p; q)) (C.5)

where ti corresponds to the sampling times and mobs(ti) to the observed cell number
at each time (whole set of red crosses on Figure C.1), with the set of estimated
parameters p = (γ1, γ2, τh), where γ1 and γ2 belong to Ωg while the other parameters
are kept equal to their values in p? : q = (c?1, c

?
2, ū

?, b?1, β
?
2 , T

?
s1 , T

?
s2).

Now, going back to the full, closed-loop formulation of the model, we can draw some
equivalence with the open-loop case to fix starting values for the parameters of the
S(M) (eq. B.6) and bf (eq. B.7) functions. We thus deduce the starting value
of b3 = 7.5 from the ovarian maturity reached at Ts1 = 4.3 (green dashed lines
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on the top center panel in Figure 4.1) and that of m̄ = 16.0 from the maturity at
Ts2 = 6 (blue dashed lines on the same panel). Keeping unchanged the values of
parameters q = (c?1, c

?
2, ū

?, b?1) in p̂ (inherited from p?), we search for the parameters
p = (γ1, γ2, τh, b2, b3, m̄, c, λ) using an augmented version of criterion (C.5):

Jcc(p; q) = Jc(p; q) + Cov(p; q), p̃ = argmin
p

(Jcc(p; q)) (C.6)

with Cov(p; q) = (U(Te)− Umin) + max(0, Dov(Te)− αRm0
ov(Te)). (C.7)

The first term in the penalization criterion (C.7) ensures that the single follicle evolves
in a realistic hormonal environment (including the drop in FSH levels). The second
term limits the cumulative amount of cells lost by apoptosis. Indeed, even if apoptosis
is a physiological process occurring also in healthy follicles, its incidence is much lower
(an order of magnitude of tenfold) in ovulatory follicles than in atretic ones [10], and
we can roughly consider that the cumulated cell loss does not exceed αR = 10 % of
the cell number at ovulation time.

C.3.2. Calibration of interacting ovulatory and atretic trajectories. We
finally dispose of a reasonable parameter set p̃ (see values in Table C.2, and solid black
lines in top panels of Figure 4.1) for a closed-loop ovulatory trajectory that we now
intend to couple with another trajectory corresponding to an atretic follicle. Letting
the local parameters of p̃ unchanged for the ovulatory follicle (some of them being
inherited from p? or p̃): pov = (γ̃1, γ̃2, c

?
1, c

?
2, ū

?, τ̃h, b
?
1, b̃2, b̃3), we search for a parameter

set combining parameters specific to the atretic follicle with those defining the global
control (common to both follicles).We expect at the same time that

1. the cell number increases significantly with respect to its initial value up to
the selection time,

2. the increase in the cell number remains moderate,
3. the cell loss becomes substantial after this time, with a final cell number

clearly lower than the maximal number reached along the atretic trajectory.
Denoting by m?

f the maximum cell number reached by follicle f over the time window
we express these requirements within a multi-criterion function

Catr(p; q) = ν1 |θ1 −m?
atr|+ + ν2 |m?

atr − θ2|+ + ν3
|m0

atr(tf )− θ3m
?
atr|+

m?
atr

, (C.8)

where θ1 (respectively θ2) is the minimum (resp. maximum) cell number value below
(resp. beyond) which the computed cell number contributes to the fit function, while
θ3 measures cell loss due to atresia. Weights ν1, ν2 and ν3 are fitted numerically. At
the same time, the new atretic trajectory should be still compatible with the ovulatory
behavior of the other follicle, which is ensured by the constraint Cov. In addition,
we select admissible fixed values for the subset of parameters (catr1 , catr2 , ūatr, batr1 ), as
described in Appendix B.2. We therefore seek a minimum of

Jcoh(p; q) = Catr(p; q) + Cov(p; q), pcoh = argmin
p

(Jcoh(p; q)) (C.9)

with {p = (γatr1 , γatr2 , τatrh , batr2 , batr3 ; m̄, c, λ)}, {q = (pov; c
atr
1 , catr2 , ūatr, b

atr
1 )}.
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Func Param p? p̂

gf
γ1 0.249 0.0626
γ2 0.745 0.479

hf

c1 0.130 0.130
c2 0.311 0.311
ū 0.0145 0.0145
τh 0.305 0.31

uolf

b1 0.249 0.249
β2 0.717 0.717
Ts1 4.3 4.3
Ts2 6.0 6.0

Func Param p̃ pcoh
pov patr

gf
γ1 0.1 0.1 0.010
γ2 0.45 0.45 0.548

hf

c1 0.130 0.130 0.015
c2 0.311 0.311 0.295
ū 0.0145 0.0145 0.0123
τh 0.28 0.28 0.522

uf

b1 0.249 0.249 0.287
b2 0.8 0.8 0.973
b3 6.0 6.0 14.563

U(t)
m̄ 14. 24.
c 0.7 0.3
δ 1.0 2.0

Λ λ 0 0.5

Table C.2
Parameter values for the different parameter sets introduced in section C.3.1 and C.3.2. Param-

eters with fixed nominal values are ȳ = 0.02, M0 = 1, gmin = 0.45, and gmax = 0.55, as well as those
in Table C.1. p? is obtained from the particle-derived criterion Jol. p̂ is obtained from criterion
(C.5) and requires the simulation of the PDE model in the open loop setup. p̂ is used to obtain
the preliminary fitted cell numbers shown on the rightmost top panel of Figure 4.1. pov and patr
are the final outputs of the whole estimation procedure. For pov , the bounds on the aging velocity
parameters γ1 and γ2 are set using (B.14). For patr, the admissible initial guess is obtained from
constraint (B.19), as described in Appendix B.2. The values highlighted in color (blue or green) are
the result of the current optimization set, while those left in black are inherited from the previous
steps.

C.4. Flow charts for parameter identification. We now summarize the dif-
ferent identification steps leading to the final set of parameters pcoh in Table C.2. We
follow a sequential procedure, whose main steps are summarized in Figure C.2, and
that involves the successive CMAES-based optimization of the four criteria Jol, Jc,
Jcc, Jatr (Step 1, 2, 3 and 5 in Figure C.3). Depending on the size of the parameter
set entering the optimization procedure, the dimension of the parameter space vary
between 3 (in the case of p̂) and 9 (in the case of p?). Fortunately, the search for
p? does not require the simulation of the PDE model since it is only based on the
computation of the characteristic times. Hence, although only few a priori bounds
on the 9 unknown parameter values are provided in this case, the computational cost
associated with the assessment of Jol remains largely tractable‡. In contrast, Steps 2,
3 and 5 do need to perform numerical simulations of the PDEs, from the finite volume
numerical method described in [3, 4], with Nx ×Ny = 402 grid points per cycle and
CFL= 0.4. Besides the optimization steps, Step 4 is needed to select admissible values
for parameters of atretic follicles (catr1 , catr2 , ūatr, batr1 ) as described in Appendix B.2,
before the assessment of Jatr in Step 5.

‡If we merge weights (αi)i=1,...,4 with the set of unknown parameters, the solution found by
CMAES is a weak Pareto minimum favoring only the first objective (good coincidence in time
between the theoretical value of Ts1 and its observed value). In contrast, if we arbitrarily impose
αi = 1 for all i = 1, . . . , 4 the fit is much more balanced over the four objectives. Similarly we set
ν1 = 10, ν2 = 1, ν3 = 20, θ1 = 25, θ2 = 30 and θ3 = 0.5 in (C.8) to obtain the parameters patr.
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Initialize model
parameters q and

choose bounds for p

Set texps1 , texpe ,
mexp

0 (t)
from pseudo data
for Jt or Jcc fit

Fix Umin,Umax,
y−s < ys < y+

s < 1,
0 < µ1 < µ2 < y−s

Choose p
within bounds

Set bounds for
control parameters

[b1min, b1max]
and

[b2min, b2max]
[b3min, b3max]

or
[β2min, β2max]
[ts2min, ts2max]

Set bounds for veloc-
ities and source term

[ūmin, ūmax]
[τhmin, τhmax]

[0, c1max]
[c2min, c2max]
[gmin, gmax]
[0, γ1max]

[γ2min, γ2max]

Compute admissible
zone Ωh for h
parameters

J(p; q) =
NaN

(c1, c2) ∈ Ωh

Compute admissible
zone Ωg for g
parameters

(g1, g2) ∈ Ωg

Compute J(p; q)
J is one of the cri-
teria Jol, Jc, Jcc, Jcoh

stop

Search stops when
J(p; q) < εJ or
∆J(p; q) < ε∆

or σ(p) < εσ

no

yes

yes

no

no

Figure C.2. Flow chart for the CMAES-based optimization of criteria (C.2,C.5,C.6,C.9). The
Python library cma was used to find the parameter values corresponding to local minima of the
criterion.
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Set fixed parameters
Geometry ys, xs, Dc

Control Umax, Umin

Apoptosis y−s , y+s
Initial condition M0, µ1, µ2

Set computational parameters

Design ovulatory follicle
(top panels of Figure 4.2)

1. Find admissible parameters
using open-loop simplified con-
trol and characteristic time fit

p? =argminp Jol(p)
p= (γ1, γ2, c1, c2, ū, τh, b1, β2, ts2)

2. Fit kinetics using open-loop
simplified control and cell-count fit

p̂ =argminp Jc(p; q)
p = (γ1, γ2, τh),

q = (c?1, c
?
2, ū

?, b?1, β
?
2 , ts1

?, ts2
?)

3. Fit parameters using
closed-loop control and

cell-count constrained fit
p̃ =argminp Jcc(p; q)

p = (γ1, γ2, τh, b2, b3, m̄, c, λ),
q = (c?1, c

?
2, ū

?, b?1)

Design atretic follicle (bot-
tom panels of Figure 4.2)

ovulatory follicle parameters set to
pov = (γ̃1, γ̃2, c

?
1, c

?
2, ū

?, τ̃h, b
?
1, b̃2, b̃3)

4. Find admissible para-
meters catr1 , catr2 , ūatr, batr1

for constraints on roots of hf

5. Fit atretic and global pa-
rameters using closed loop

and cell-count constrained fit
pcoh =argminp Jcoh(p; q)

p=(γatr1 , γatr2 , τatrh , batr2 , batr3 , m̄, c, λ)
q = (pov, c

atr
1 , catr2 , ūatr, batr1 )

Figure C.3. Flow chart for parameter identification. In steps 2, 3 and 5, the whole parameter
set is subdivided into set q, whose values were obtained from the previous optimization steps (re-
spectively 1, 2 and 3) and are left unchanged, and set p, that is subject to the current optimization
procedure.
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