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Abstract. By bridging the physical and the virtual worlds, the Inter-
net of Things (IoT) impacts a multitude of application domains, among
which smart cities, smart factories, resource management, intelligent
transportation, health and well-being to name a few. However, lever-
aging the IoT within software applications raises tremendous challenges
from the networking up to the application layers, in particular due to
the ultra-large scale, the extreme heterogeneity and the dynamics of the
IoT. This paper more specifically explores how the service-oriented ar-
chitecture paradigm may be revisited to address challenges posed by the
IoT for the development of distributed applications. Drawing from our
past and ongoing work within the MiMove team at Inria Paris, the paper
discusses the evolution of the supporting middleware solutions spanning
the introduction of: probabilistic protocols to face scale, cross-paradigm
interactions to face heterogeneity, and streaming-based interactions to
support the inherent sensing functionality brought in by the IoT.

Keywords: Internet of things, Interoperability, Middleware, Service-
oriented Architecture, Scalability

1 Introduction

The Internet of Things promises the easy integration of the physical world into
computer-based systems. In effect, real-world objects become connected to the
virtual world, which allows for the remote sensing of as well as the remote act-
ing upon the physical world by computing systems. Improved efficiency and
accuracy are expected from this paradigm shift. However, although the vision
emerged about 2 decades ago, enacting IoT based systems is still raising tremen-
dous challenges for the supporting infrastructure from the networking up to the
programming abstractions. Key challenges relate to ([26]): scale as we are dealing
with systems that may have to coordinate millions of devices; deep heterogeneity
since the IoT brings together sensor and actuator networks with cloud-based
systems and thus the very small and the very large; high dynamics in relation
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with the unknown topology of the network and further presence of mobile things
as well as uncertainty about the features of the networked things.

The challenges that the IoT is raising in the development of computing sys-
tems along with perspectives on how to address them have been the focus of nu-
merous papers over the last decade, such as in: [3, 26, 12, 23]. Among the software
architecture paradigms envisioned for IoT-based systems, the literature suggests
that service-orientation is promising due to its inherent support for interoper-
ability and composability [13]. A large number of Service-oriented Middleware
(SOM) platforms have then been proposed for the IoT, which subsumes revisit-
ing the core elements of the service-oriented architecture paradigm starting with
the service abstraction itself.

Towards building a SOM platform for the IoT, the starting point is to
abstract Things or their measurements as services [8, 9, 7, 1, 19, 22]. Compared
to the classical Business services, Thing-based services must encompass highly
heterogeneous software entities among which resource-constrained ones [2]. An
early attempt in that direction is illustrated by the SenseWrap middleware,
which features virtual sensors that deal with the transparent discovery of the
supporting resources using ZeroConf protocols [19]. The discovery of resource-
constrained resources is also the main focus of Hydra [8], aka LinkSmart (https:
//linksmart.eu). Hydra further provides interoperability at a semantic level by
leveraging semantic Web services technologies for the description of the capabil-
ities of thing-based services. SOCRADES is another one of the early IoT-based
SOMs [13], which aims at easing the integration of physical devices into existing
enterprise information systems. SOCRADES builds upon the DPWS (Devices
Profile for Web Services) standard so that physical Things may expose their
resources and may communicate through the Internet as standardized Web ser-
vices. EQoSystem (Emergent QoS System) [20] goes one step further by deal-
ing with the quality of the services delivered by resource-constrained Things.
EQoSystem monitors the resources of the underlying devices and triggers re-
source management strategies (e.g., adapting the service workflow) at runtime
for providing acceptable QoS. Similarly in [18], authors investigate a heuristic
task allocation algorithm, named SACHSEN, which constitutes the core com-
ponent of their SOM. The algorithm aims to distribute WSN applications to
sensor nodes by dealing with the applications’ performance requirements and
the nodes’ energy resources.

In addition to coping with the abstraction of resource-constrained Things as
services, the access to the related services also requires special care in IoT-based
SOA. We identify two approaches to access a resource-constrained node (typi-
cally a sensor or actuator): either i) using a proxy/gateway; or ii) deploying the
middleware component on the sensor/actuator node itself. The former approach
was initially favored. However, with the technological evolution of sensor nodes
and of SOM, the latter approach is now deserving much attention. Indeed, it pro-
vides greater flexibility for managing the physical network infrastructure. The
authors in [17] undertake this approach by deploying SOAP-based Web services
(DPWS) directly on the nodes without using gateways. Nevertheless, deploying
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the middleware component directly on the device might cause several issues,
such as message delays, limited supported interactions, limited computational
capacity, high energy consumption, etc. Taking into account these problems, the
authors in [25] leverage the lightweight CoAP protocol (Constrained Application
Protocol, http://coap.technology/) on sensor devices and evaluate the trade-
off between response times and delivery success rates. Despite the fact that CoAP
supports extremely low-resource interactions, it is more suitable for synchronous
interactions. Several other protocols have been developed to address the above
issues, along with standardization efforts that will guarantee interoperability.
The authors in [10] compare the most promising IoT protocols: DPWS for large-
scale enterprise deployments, CoAP for lightweight interactions, and MQTT for
high reliability. Therefore, it is essential to combine one or more protocols in a
WSN application to better exploit the physical network infrastructure.

As briefly outlined above, revisiting SOA and the supporting SOM for the
IoT has undergone various steps, as a direct consequence of the technological
evolution of the IoT. Obviously, the fact that a growing a number of applica-
tion domains sees the benefits of leveraging the IoT has also encouraged the
development of the enabling hardware and software technologies. This is for in-
stance illustrated by the large literature on middleware solutions for the IoT, as
surveyed in [23]. The present paper focuses on the complementary SOM solu-
tions that we have been developing within the MiMove team at Inria Paris to
face the scale, dynamics and heterogeneity of the IoT with a special emphasis
on enabling resource-constrained Things to become first-class service providers.
The next section then outlines our vision of a Thing-based SOA, and is followed
by an overview of the supporting SOM solutions in Sections 3 to 5. Section 6
concludes with our perspective for future work.

2 Thing-based SOA

Traditional SOA involves three main actors that interact directly with one an-
other: a Service Provider, a Service Consumer, and a Registry for services. Any
service-oriented middleware adopting this architecture supports three core func-
tionalities: Discovery, Composition of, and Access to services. More specifically,
Discovery is used to publish (register) services in registries that hold service
metadata and to look up services that can satisfy a specific request. Compo-
sition of services is used when discovered services are unable to individually
fulfill the request. In such case, existing services are combined to provide a new
convenient functionality. The composed services can further be used for more
complex compositions. Finally, Access enables interaction with the discovered
services. This basic SOA architecture is shown in Figure 1.

The IoT brings new requirements and calls for substantially different ap-
proaches to the above traditional SOA. Regarding discovery, the principal new
challenge is scale when having to deal with millions of Things that produce data
of interest, typically sensors that provide real-world measurements. In traditional
SOA, even if millions of services are registered, one (or few for backup) is finally
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Fig. 1: Traditional Service-Oriented Architecture (SOA).

selected to fulfill a specific request. On the other hand, discovery in the IoT
means selecting from a potentially very big number of Things a sufficient subset
that will provide, in combination, quality data for a pending query, while lim-
iting unnecessary redundancy for the sake of the scarce resources. Furthermore,
a considerable portion of the networked Things that connect with the physical
world are endowed with the ability to change their location either autonomously
or, for instance, with human involvement (e.g., mobile phones, vehicles, etc.).
These mobile Things are now within everyone’s reach. For instance, all mobile
phones nowadays host at least two sensors, a camera and a microphone. As of
2011, there were 5.3 billion phones users, of whom more than 1 billion owned a
smartphone1 with additional sensors, such as gyroscopes and barometers. An-
other example is the increasing integration of sensors and actuators in vehicles.
We look into the problem of scalable discovery of Things – both fixed and mobile
– in Section 3 and report on our related research results.

Concerning composition, the key challenge is resource saving, especially when
it comes to dealing with continuous complex processing of data streams produced
by numerous Things that are resource constrained. While, in traditional SOA,
a composite service typically involves an exchange (direct or indirect) of a few
discrete messages between the constituent services, in IoT data streaming, big
volumes of data need to be collected from sensors, processed, composed and
finally stored or delivered to actuators. Even if relying on the cloud is a widely
adopted solution to this challenge, this incurs high communication and energy
cost for Things and networks. We discuss this issue along with our in-network
solution approach in Section 4.

Finally, access is essential for any IoT deployment, whether there is direct
communication among Things or through the cloud. The hard challenge here is
heterogeneity, which is particularly acute in the highly fragmented IoT world
and concerns all hardware and software aspects of Things. In traditional SOA,
standardization has been particularly effective, with WS-* and REST web ser-
vices being the two dominant technologies. Regarding the same aspect in the

1 US Strategy Analytics: www.strategyanalytics.com.
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Fig. 2: Thing-based SOA.

IoT, i.e., public service description and middleware-level service access, where
we assume Things sufficiently powerful to support IP protocol stacks, there is
much bigger diversity. Message-, event- and data-based interaction styles are all
widely used in the IoT with various protocol realizations. We analyze this issue
and provide an overview of our current related research in Section 5.

3 Discovery in the Ultra-large Scale IoT

Real-world measurements in the IoT require a large number of Things, since
it is unlikely for a single or even a few Things to be sufficient. Applying the
proposed traditional approaches of SOA to discover Things (i.e, discover all
the appropriate devices that are reachable), will return a large set of accessible
Things, many of which provide redundant functionalities. Moreover, mobility in
the IoT constitutes an additional challenge regarding the discovery of sensors
embedded in mobile devices.

More specifically, the application of SOA to the IoT results in some apparent
problems. On the one hand, all the tasks in SOA revolve around some business
logic that can be satisfied by one or several services. On the other hand, in the
IoT, all the tasks and interactions revolve around what we refer to as a Thing-
based query that senses/actuates some real world phenomenon. An example of
a Thing-based query would be “What is the air pollution level on highways in
Paris?”. Thus, with such queries it is unlikely to have only one or just a few ser-
vices that can provide accurate answers to represent a real-world feature. Hence,
expecting the service consumer to interact with the numerous relevant service
providers individually to access their services and acquire their measurements,
then know how to treat each and every value (with different possible formats,
types, units, etc.), in addition to the aggregation logic to apply, requires high
communication and computation capabilities that the consumer will most likely
not possess.
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Fig. 3: MobIoT architecture.

As an alternative, our approach revisits the SOA and renders most interac-
tions and heavy computations transparent to the consumer, who is only expected
to know the sought after measurements. Figure 2 depicts the Thing-based SOA
that is to be contrasted with the traditional SOA of Figure 1. This has further led
us to introduce the supporting MobIoT service-oriented middleware [16]. As de-
picted in Figure 3, MobIoT supports the core functionalities of SOA (discovery,
composition and access), while enabling Thing-based queries. In particular, Mo-
bIoT features a novel probabilistic discovery protocol. In MobIoT, the Discovery
component wraps Registration and Look-up functionalities as follows:

– Probabilistic Registration: the registration of a provider’s service is proba-
bilistic. The goal is to allow only a subset of willing providers to register
their services, depending on whether the already registered ones are suffi-
cient. More precisely, in MobIoT, the Registration component generates the
decision to allow or prevent a Thing from registering its services. The compo-
nent estimates whether or not the mobility path to be followed by this Thing
can be covered by other, already registered, mobile Things with similar sens-
ing/actuating services. To that end, the component computes the probability
that any of the latter Things be present at each of the future locations on the
path of the former Thing when the former Thing crosses them. Then, the
component compares the resulting probability value to a required sensing
coverage. We consider that the coverage requirement (threshold) depends
on the sensor and can be specified in its metadata. Only if the resulting
probability is lower than the threshold, the Thing registers its service. We
use the Truncated Lévy Walk mobility model [24] to estimate the mobility
of registered Things and compute the probabilities above. The Registration
component can use any other mobility model as long as the corresponding
mathematical formulas to compute the probabilities are provided. As shown
in [15], our registration solution successfully limits the registration of redun-
dant services.

– Probabilistic Look-up: the look-up is also probabilistic and returns only a
subset of sensing services based on the total area coverage they can pro-
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vide [14]. We adopt the same logic as in intrusion detection solutions [27],
where the spatial distribution of sensors has a major effect on the perfor-
mance of the sensing system. Based on those solutions, when measuring a
feature over some area (e.g., Air quality level), we sample sensors from a
Uniform distribution in space, so that sensors from all over that area have
the same likelihood of being selected. However, when the concept of interest
is at a specific point in space, a better distribution would be Normal, as it
selects more sensors around that point and less as we move farther. More
specifically, in MobIoT, the Look-up component is in charge of returning a
subset of services to access that can satisfy the Thing-based query. Based
on the requested measurement and the location of interest, the component
determines the most adequate probability distribution and the number of
needed services. This number is computed based on the coverage require-
ment, expressed as a percentage of the area of interest to be sensed/acted
upon by the selected subset. The result is then forwarded to the Registry to
determine the actual Things to sample.

4 Composition in the Dynamic Resource-constrained IoT

A major feature of a SOA is supporting the composition of the operations of
existing services in order to create composite services [21]. Contracts describe
the inputs and the outputs of service operations and enable the specification of a
workflow of service invocations that represents the logic of a new more complex
operation. In practice, composite services execute in a centralized or a distributed
fashion. The former approach, called service orchestration, introduces an orches-
trator to manage the invocations of the underlying services. The latter approach,
called service choreography, leverages negotiation and routing mechanisms to let
the service providers manage the composite services autonomously.

Applying a similar approach in the IoT is not a trivial procedure. We are, in
particular, interested in the composition of Things that collaboratively produce,
process and consume IoT data streams. Our emphasis is on in-network continu-
ous processing of sensed data streams, as opposed to delegating all of the com-
putation to the cloud, aiming to reduce the energy cost of communication over
computation incurred by the massive scale of the IoT. Additionally, the IoT is
characterized by a network topology that may be unknown and highly dynamic,
due to the mobility of Things or their short life span. As a consequence, services
required by an IoT application may suddenly become unavailable, because the
host ran out of battery or just changed its location abruptly. To deal with all the
above issues, the traditional composition of SOA must be extended in order to
infer which service providers have to be used for executing the services, according
to a set of scenario-dependent properties (e.g., throughput, energy consumption).
This problem is a variation of the task mapping problem, where a set of commu-
nicating tasks with several properties (constraints, resource consumption, etc.)
must be mapped to a set of connected nodes given their characteristics (location,
hardware capabilities, etc.).
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Fig. 4: The four-roles model.

Both centralized and distributed approaches have been studied to solve the
above problem. The centralized approach computes and executes an allocation
plan on a single machine (similar to service orchestration). The distributed ap-
proach lets the nodes compute parts of the allocation plan based on the knowl-
edge they have about their peers (similar to service choreography). In MiMove,
we have studied this problem and have introduced Dioptase, a distributed data
streaming middleware for the Web of Things [4]. Dioptase makes it possible to:
i) integrate the Things with today’s Web by exposing sensors and actuators as
Web services, ii) manage physical data as streams, and iii) use any Thing as
a generic pool of resources that can process streams by running tasks that are
provided by developers over time.

More concretely, we introduce in [5] a dedicated centralized solver (Dioptase
component) to allocate tasks on resource-constrained Things that produce data
as streams. Depending on the available resources, each Thing may play one (or
more in combination) of the identified four high-level roles (Figure 4): i) a pro-
duction role where the Thing presents sensor data as streams, ii) a processing
role where the Thing continuously processes streams, iii) a consumption role
where the Thing acquires streams and drives actuators, and iv) a storage role
where the Thing saves data extracted from streams (in its memory, or persis-
tently).

Subsequently, a Dioptase mashup is composed of distributed components,
called atomic components, derived from the above roles. These components in-
teract (are connected) by continuously exchanging data as streams. Each com-
ponent defines input ports for the consumption of streams, depending on the
component type, and output ports where new stream items are produced. Pro-
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(b) Physical mashup graph.

1 Producer Reads the PM10 sensor every x seconds.

2 Producer Reads the NO2 sensor every x seconds.

3 Processor Every y minutes, computes the average of the PM10 measurements
between min (PM10) and max (PM10).

4 Processor Every y minutes, computes the average of the NO2 measurements be-
tween min (NO2) and max (NO2).

5 Processor Aggregates geographically the values of 3 and 4 . Produces two
streams: i) a stream of events decrease-speed or increase-speed, depend-
ing on the aggregated results (s5) and ii) a stream containing the ag-
gregated results (s6).

6 Consumer Increases or decreases the displayed speed limit, according to the events
received from 5 .

7 Storage Stores the results of 5 .

6 Consumer Asks for data stored in 7 and presents it to the application.

Fig. 5: Logical and physical mashup graphs for air control pollution.

vided the data types specified for the input and output streams match, any
output port can be connected to any input port through a one-to-one connec-
tion. We represent the above components as services of SOA. The ports provided
by a service define its interface, while the contract specifies the schemas of i) the
streams readable by each input port and ii) the streams produced by each output
port. Given a contract, the service consumer can reason about the operations of
the service and the streams that each operation processes and produces.

The mashup can then be easily described as an acyclic directed graph where
the nodes are producers (sources), processors, consumers (sinks) and storages,
and the edges of the graph, are streams that link services together through the
input and output ports. We call this graph a logical mashup graph because it
describes the tasks that the network has to perform. This graph is provided by
the developer either directly or expressed as a query that is translated into a
mashup graph. As an illustration, Figure 5a presents an example of a simple
mashup that analyzes air pollution based on the level of nitrogen dioxide (NO2)
and particulate matter (PM10), in order to control the digital speed limiters
located along city highways. In this mashup, two producers ( 1 and 2 ) read
the PM10 and NO2 values from available sensors. Those data are acquired by
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two processors ( 3 and 4 ) that aggregate the values on a 10 minute basis (time
window). Processors 3 and 4 send these aggregated results to the processor
5 that will produce an event stream for the speed limiters 6 . At the same

time, the measurements are saved by a storage 7 and consumed by the air
pollution control application 8 , which presents historical values or alerts to an
administrator.

Subsequently, the logical mashup graph is executed through its conversion
into a physical mashup graph, as depicted in Figure 5b. The execution of a
logical graph is done through: i) instantiating the services (i.e., maps a service
onto a host device) and ii) connecting their ports according to the graph edges.
Regarding the latter, the data exchanged between two services is pull-based
(where a consumer requests a producer to send the data stream), and Dioptase
connects the services’ ports (input or output) that are specified in each contract.
After executing the logical graph, the services are hosted on the following devices
(Figure 5b): a PM10 sensor (Sensor 1), a PM10 + NO2 sensor (Sensor 2), a speed
limiter embedding an NO2 sensor (Speed Limiter 1), a speed limiter embedding
no sensors (Speed Limiter 2), and the control center computer. According to
this physical deployment, an instance of Processor 3 will execute on the same
device that hosts Producer 1 , thus reducing network traffic. Moreover, processor
5 , which controls the speed limiters, will run on the control center computer

together with the history database 7 and the air pollution control application
8 .

To instantiate the services as illustrated in the example, we use information
about Things’ locations and available resources. Then, depending on its capabil-
ities, a Thing can be assigned either a single component or an entire subgraph
by using the task mapping algorithm that we have proposed in [5]. In brief,
we formalize therein the task mapping problem in the specific context of the
IoT, which results in a binary programming problem. We provide a heuristic
algorithm to solve it and demonstrate experimentally the efficiency, sufficient
optimality, and reasonable resource requirement of our solution. Consequently,
the mapping can be performed directly within the network, without requiring
any centralized infrastructure.

5 Access in the Heterogeneous IoT

The access mechanism of traditional SOA enables the interaction between service
consumers and service providers. In particular, services interact in a unified way
following specific data formats on top of common overlay infrastructures across
different system platforms. Web services constitute the dominant technology in
SOA, with well known protocols such as SOAP or REST as the overlay in-
frastructure. The research community and many businesses have adopted these
protocols and their standards in order to describe and implement their services
(i.e., the supported operations, data formats, etc.). Also regarding the intercon-
nection of these protocols, the existence of standards facilitates the development
of frameworks for interoperability.
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On the other hand, the (mobile) IoT comprises sensors and actuators that are
heterogeneous with different operating (e.g., operating platforms) and hardware
(e.g., sensor chip types) characteristics, hosted on diverse Things (e.g., mobile
phones, vehicles, clothing, etc.). To support the deployment of such devices, ma-
jor tech industry actors have introduced their own APIs and protocols, which
deal with: i) the limited energy resources of Things; ii) several data formats
found in the IoT; iii) specific guarantees regarding response times and data de-
livery success rates; iv) the efficient transfer of small data payloads which are
common in the IoT; etc. The resulting APIs and protocols are highly heteroge-
neous. In particular, protocols differ significantly in terms of interaction styles
and data formats. For instance, protocols such as CoAP relying on client-service
interactions, MQTT based on the publish-subscribe interaction paradigm, SemiS-
pace offering a lightweight shared tuple space, or Websockets based on streaming
interactions, are among the most widely employed ones.

Hence, providing access to Things establishes a new challenge with respect to
traditional SOA. To deal with this challenge, we have introduced the eVolution
Service Bus (VSB). VSB is a development and runtime environment dedicated
to complex distributed applications. Its objective is to seamlessly interconnect,
Things that employ heterogeneous interaction protocols at the middleware level
(e.g., DPWS, CoAP, MQTT, Dioptase, etc.). This is based on runtime conver-
sions between such protocols, with respect to their primitives and data type sys-
tems, while properly mapping between their semantics. This also includes map-
ping between the public service interfaces of Things, regarding their operations
and data, from the viewpoint of the middleware: the latter means that operations
and data are converted based on their middleware-level semantics, while their
business semantics remains transparent to the conversion. VSB follows the well-
known Enterprise Service Bus (ESB) paradigm [6]. In this paradigm, a common
intermediate bus protocol is used to facilitate interconnection between multiple
heterogeneous middleware protocols: instead of implementing all possible con-
versions between the protocols, we only need to implement the conversion of each
protocol to the common bus protocol, thus considerably reducing the develop-
ment effort. This conversion is done by a component associated to the Thing in
question and its middleware, called a Binding Component (BC), as it enables
the interaction between the Thing and the common bus protocol. VSB follows a
fully distributed architecture implemented by a number of Binding Components
(BCs) that interact among themselves through the VSB common bus protocol.

A view of the VSB architecture is depicted in Figure 6, showing the intercon-
nection of Sensor 2 and the Control Center of the physical mashup in Figure 5b.
Within every mashup, there are streams of data exchanged using the Dioptase
middleware. However, Sensor 2 publishes data through an MQTT middleware
component and the Control Center accepts data through a CoAP component.
Thus, using VSB we enable the interconnection of heterogeneous protocols. Par-
ticularly, BC 1 is associated to Sensor 2, while BC 2 is associated to the Control
Center. Implementation-wise, a BC employs the same (or symmetric, e.g., client
vs. server) middleware protocol library as its associated Thing, and all BCs use
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Fig. 6: VSB architecture.

a library implementing the bus protocol, which in our case is the Dioptase mid-
dleware. MQTT, CoAP and Dioptase are treated in the same way within the
VSB architecture. More specifically, each end-to-end interaction using the same
middleware-layer protocol is modeled and abstracted by the Generic Middleware
(GM) connector, as indicated in Figure 6.

The GM connector abstracts interactions among peer components that em-
ploy the same middleware protocol in a unifying fashion for any middleware
protocol. We propose an API (application programming interface) for GM and a
related interface description, which we call GIDL (Generic Interface Description
Language), for application components that (abstractly) employ GM. Concrete
middleware protocols and related interface descriptions of application compo-
nents that employ these middleware protocols can be mapped to GM API and
GIDL, respectively. Based on these abstractions, we elaborate a generic archi-
tecture for BCs (which we call Generic BC ), an Implementations’ Pool, which
contains implementations of the GM API for concrete middleware or bus proto-
cols, as well as a related method for BC Synthesis.

We provide more details concerning the GM connector, GIDL, and BC syn-
thesis in the following:

– Generic Middleware (GM) Connector : based on our experience with middle-
ware protocols/paradigms and their modeling in [11], we introduce a detailed
API for GM. The GM API identifies and supports basic interaction styles
found in most middleware protocols: one-way interaction, two-way asyn-
chronous interaction, two-way synchronous interaction, and stream interac-
tion. It also distinguishes between the two roles involved in an interaction,
such as: provider and consumer. Essentially, the API relies on two main ac-
tions: a post action for sending a piece of data and a get action for receiving
a piece of data.

– Generic Interface Description Language (GIDL): by relying on the GM API,
we elicit a generic interface description (GIDL) for a Thing that employs
a middleware protocol abstracted by GM. GIDL enables the definition of
operations provided or required by a Thing and that follow the interaction
styles and roles identified in the GM API. Besides an operation’s type, the
names and data types of its parameters are also specified. The description
is complemented by the physical address of the Thing.
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Fig. 7: VSB development and runtime environments.

– BC Synthesis: the functioning of BC Synthesis for the generation of a BC in-
tended to serve a specific Thing is illustrated in Figure 7, which depicts VSB’s
development and runtime environments. BC synthesis receives as input the
GIDL description of the Thing and the information of the bus protocol in
use. Based on this input, BC synthesis refines the Generic BC in two steps:
(1) by selecting appropriate GM API implementations from the Implemen-
tation’s Pool that correspond to the Thing’s middleware protocol and bus
protocol; and (2) by inserting specific information about the Thing’s opera-
tions and data from its GIDL description. The outcome of BC synthesis is
a BC that will be deployed to serve the Thing.

VSB enables access to heterogeneous Things, while taking into account the
current diversity but also the future evolution of IoT protocols. Hence, as shown
in Figure 7, a Thing may participate in more than one runtime topologies, which
can be readily supported by multiple BCs and buses. Additionally, depending
on the constraints found in an application scenario (e.g., devices with limited
energy resources), any new protocol can be introduced as the VSB’s common bus
protocol. Accordingly, BCs are built and deployed as necessary: no BC is needed
when a Thing employs the same middleware protocol as the bus protocol. Finally,
there is no need for relying on and/or providing a full-fledged ESB platform (e.g.,
a cloud-based platform), which makes the VSB solution particularly flexible and
lightweight.

6 Conclusion

IoT-based SOA holds the promise of easing the development of rich applications
integrating the physical with the virtual worlds in a multitude of domains. This
paper has presented our perspective on the definition of a supporting Service-
oriented Middleware, which primarily revolves around enabling the provision of
services by resource-constrained Things, typically sensors and actuators. Chal-
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lenges then relate to: dealing with the ultra-large number of Things that are ex-
pected to be deployed in most environments, composing the services offered by
the Things while coping with their inherent resource limitations and dynamics,
and accessing the various networked things despite their high heterogeneity, in-
cluding in terms of supported communication protocols. We have been studying
solutions to these issues, which has led us to revisit the core functions of a SOM:
service discovery becomes probabilistic to filter out redundant Things, especially
accounting for the possible mobility of the service clients and/or providers; ser-
vice composition aggregates data streams within the network so as to reduce the
network load; and service access enables the interconnection of Things that ad-
here to different interaction styles (spanning client-server, event-based and data
sharing communication). While those middleware solutions have led to the de-
velopment of different SOM instances, we are now studying their integration so
as to support the development of application toward smarter cities, in particular
in the area of urban pollution monitoring.
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