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Noise Floor Removal via Phase Correction of
Complex Diffusion-Weighted Images:
Influence on DTI and g-space Metrics

Marco Pizzolato!*, Rutger Fick!, Timothé Boutelier?, and Rachid Deriche!

! Université Céte d’Azur, Inria, France
2 QOlea Medical, La Ciotat, France

Abstract. The non-Gaussian noise distribution in magnitude Diffusion-
Weighted Images (DWIs) can severely affect the estimation and recon-
struction of the true diffusion signal. As a consequence, also the estimated
diffusion metrics can be biased. We study the effect of phase correction,
a procedure that re-establishes the Gaussianity of the noise distribution
in DWIs by taking into account the corresponding phase images. We
quantify the debiasing effects of phase correction in terms of diffusion
signal estimation and calculated metrics. We perform in silico experi-
ments based on a MGH Human Connectome Project dataset and on a
digital phantom, accounting for different acquisition schemes, diffusion-
weightings, signal to noise ratios, and for metrics based on Diffusion
Tensor Imaging and on Mean Apparent Propagator Magnetic Resonance
Imaging, i.e. g-space metrics. We show that phase correction is still a
challenge, but also an effective tool to debias the estimation of diffusion
signal and metrics from DWIs, especially at high b-values.

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is inherently a low
Signal to Noise Ratio (SNR) technique [1]. More diffusion weighting — globally
encoded by a larger b-value — leads to lower signal intensities and consequently
to a poorer SNR. In such a low SNR regime, the magnitude of the complex
DW signal can be dominated by a bias, namely noise floor, which is due to
the non-Gaussian distribution of the noise. This generally falls within the non-
central x? family, depending on the adopted MR acquisition strategy (number
of coils, multi-coil reconstruction, acceleration, etc.) [2]. However, some diffusion
MRI techniques require the acquisition of Diffusion-Weighted Images (DWIs) at
relatively high b-values [3-5], where the Noise Floor affects the signal estimation
and consequent parameter calculations. A strategy for removing the Noise Floor
from the magnitude DWIs, is phase correction [6]. This method consists on
estimating the true phase from the complex DWIs to transfer the image content
— which is split between real (rDWI) and imaginary (iDWI) parts — into the
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real part only, such that the rDWIs contain the signal corrupted by Gaussian
distributed noise. In this work, we quantify the influence of phase correction in
terms of unbiased signal estimation and reconstruction. In the latter case, we
focus on two popular signal-driven representations of the diffusion process, such
as Diffusion Tensor Imaging (DTT) [7] and Mean Apparent Propagator Magnetic
Resonance Imaging (MAP) [3], and we quantify the effects of phase correction on
the corresponding scalar parameters. We present in silico experiments based on
a MGH Human Connectome Project (HCP) dataset and on a digital phantom.

The noise floor causes a signal overestimation that is more important at high
b-values and when diffusion is less restricted, i.e. when the signal is low. This
introduces a bias that leads to the distortion of the estimated quantitative diffu-
sion metrics, such as the underestimation of the Apparent Diffusion Coefficient
(ADC) in DTI [1]. This affects the principal diffusivity (PD), i.e. the ampli-
tude of the tensor’s eigenvector aligned to the least restricted direction, which
is underestimated. Similar considerations hold for other DTI metrics, such as
the fractional anisotropy (FA). Moreover, since MAP signal reconstruction typ-
ically requires high b-values, we also expect some of the derived g-space metrics
to be biased. In this scenario, phase correction is a promising tool to calculate
unbiased metrics.

Phase correction exploits the phase images associated with the magnitude
DWIs. Some advantages of using the phase of the DW signal, to perform a
reconstruction directly in the complex domain, have been previously reported
[8], while assuming phase coherence among q-space samples. However, in actual
DW-MRI acquisitions the phase images are subject shot-wise variations that
are mainly dominated by movements, cardiac pulsation, blood circulation or
field inhomogeneity. Thus, coherent phase contributions related to the diffusion
process, e.g., asymmetries due to tissue configurations or experimental setups [9—
11], are hardly observable and are not explicitly accounted in noise floor removal
via phase correction.

Recent phase corrections for noise floor removal consist on filtering the real
and imaginary images, i.e. the rDWI and iDWI, to obtain a low-frequency ver-
sion of the DWI’s phase, which is used to complex-rotate the rDWI and iDWI
such that former contains the signal plus Gaussian distributed noise, and the
latter only noise (which will be discarded). The filtering is typically performed
via a convolution procedure [12,13] or total variation [14]. However, the cor-
rect estimation of the low-frequency phase depends on the correct choice of
the convolution kernel (and its size) or regularization parameter. Therefore, the
effectiveness of phase correction on signal debiasing and diffusion parameters
estimation, such as DTI and MAP metrics, needs to be assessed.

In this work, we implement a phase correction procedure based on total vari-
ation [14]. We first apply it to in silico complex DWIs, created by processing a
HCP dataset, in order to assess the effectiveness of the phase correction in a re-
alistic scenario, for different diffusion weightings, i.e. b-values, and SNRs. At the
same time, we assess the amount of noise floor bias in typical magnitude DWIs
(|DWIJ) — based on signal probability distribution metrics — and the correspond-
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ing improvement after phase correction. In second place, we asses the influence
of phase correction on DTI and g-space metrics. Particularly, we apply phase
correction to complex DWIs produced by using a modified version of Phantomas
[15], while accounting for different total variation regularizations and for typical
acquisition setups, i.e. single-shell at b € {1000,2000, 3000} s/mm? (DTI), and
multi-shell (DTT, MAP).

2 Methods

In this section, we describe the implemented phase correction procedure, and
illustrate the generation of the data used for the experiments, such as the acqui-
sition setup, the generation of a synthetic phase, and the SNR convention.

The phase correction takes into account a complex DWI

DWI,, = rDWI,, + j- iDWI,, (1)

where x and y represent the pixel coordinates, » and ¢ indicate the real and
imaginary parts, and jis the imaginary unit. If /DW ., is a good estimation of
the phase, then the phase-corrected image is obtained via complex rotation

s(DWL,,-/DWL, ) -

where /DWI,,, and |DWI|,, are the original noisy phase and magnitude. The
real part of the phase-corrected complex DWI, R((DWI}7), contains the signal
(tissue contrast) plus Gaussian distributed noise, whereas the imaginary part,
S(DWIE; ), only contains noise. Henceforth, any classical diffusion modeling and
reconstruction taking into account additive Gaussian noise can be performed on
R(DWILY ), where the noise floor is absent.

The effectiveness of phase correction clearly depends on the quality of the
phase estimation. In this work we implement a total variation method, known
to better preserve discontinuities in the images [14]. Particularly, for each image
ug € {rDWI,,,iDWI,,} defined on coordinates z € X,y € Y, we find the image
u such that it is the minimizer of

DWIZ¢ = [DWI|, e

inf)\/ (uo — u)?dady + / |Vuldzdy (3)
v Jxy X,y

where A is the regularization parameter expressing the attachment to the data.
The estimates of rDWI,,, and iDWI,, obtained with eq. (3) are then used to

compute [/\! YW1, to perform the complex rotation in eq. (2).

2.1 Simulation and Diffusion Signal Reconstruction

The complex DWIs have in all cases been created by generating a synthetic
phase image, @, associated with a magnitude image, M,,. The phase images
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are created in order to mimic the outcome of subject movements. We assume
a bi-dimensional sinusoidal wave oriented along the direction v = (v, v,) with
frequencies f,, f, and initial shifts ¢, ¢

Vg Uy

fxwi + ¢z + 2777fyl + ¢y> (4)

&(x,y) =m- sin (271'
[Vl wy

IVl

where w,, w, are scale parameters, i.e. in this case the width of the image along
the corresponding direction (w, = card(X), w, = card(Y)). Eventually, con-
stant phase patches are added. Assuming to have the ground-truth images of
magnitude M, and phase $,,, the latter resulting from eq. (4), then

I‘DWIzy = zy * COS(@my) + n;y

; 5
iIDWIyy = Myy - sin(Puy) + 1y, ®)

where 75, 7., € N(0,0?). The noise is added with a value of o calculated accord-
ing to the DW-MRI convention o = (card[p(X x Y)]~1 dowy P(T y)M}C’y:O) /SNRy,

where SNRg is defined on the magnitude image without diffusion weighting
M}70, and p € {0,1} is a mask defined on the pairs (z,y), e.g., a mask of the
tissue-related signal like the brain mask. The Rician magnitude [DWI|;, and the
phase /DWI,,, are calculated from the real and imaginary parts in eq. (5).

The data used for the experiments is a HCP brain dataset corrected for
eddy currents where we selected DWIs of interest for b € [0, 1000, 3000] s/mm?.
Other experiments use Phantomas [15] to obtain the ground-truth magnitude
images, M,,. This software requires input with a geometrical description of
tissue structures and fiber bundles. We used the well known geometry produced
for the HARDI reconstruction challenge 20133. We generated DWIs for a 3-shells
scheme with b € {1000,2000, 3000} s/mm?, 51 samples per shell, with samples
uniformly distributed within and among shells [16].

The phase-corrected real DWIs can contain negative values: the noise is zero-
mean Gaussian and the noise floor is absent. Therefore, the DTT reconstruction
is performed non-linearly forcing signal positivity, and MAP is performed with
Laplacian regularization imposing positivity on the recovered Ensemble Average
Propagator [17].

3 Experiments and Results

We perform three experiments with two objectives: first, quantifying the effect
of phase correction on signal debiasing, by processing real data from a HCP
dataset; second, assessing the debiasing on diffusion metrics, calculated with DTI
and MAP reconstructions, on a digital dataset generated for typical scenarios
such as DTI at b-value 1000, 2000, 3000 s/mm? and DTT and MAP multi-shell.

3 http://hardi.epfl.ch/static/events/2013_ISBI/ https://github.com/
ecaruyer/phantomas/blob/master/examples/isbi_challenge_2013.txt
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Fig. 1. The signal contrast and distributions for synthetic complex DWIs, at b =
1000, 3000 s/mm?, created from clustering a real HCP dataset (SNRo = 10). In the
rectangular frames from left to right: the SNR map, the Rician magnitude (Mg) and
the phase-corrected estimated real image (Re). Below, the histograms of the signal
intensities corresponding to the circles with low, medium, and high signal/SNR, for
Mg (green) and Re (blue). Background SNR: 21.5 for b = 1000 s/mm? and 3.2 for
b= 1000 s/mm?>. *: s/mm>.

In the first experiment, we clustered a HCP dataset to obtain typical signal
values at b-value 1000 and 3000 s/mm?. Particularly, for each b-value we ap-
plied k-means to divide the signal of the DWIs — accounting for all the gradient
directions — into 4 clusters. We used the centroid of each cluster to define respec-
tively background, low, medium, and high mean signal values. Based on these,
we created a ground-truth synthetic magnitude image — M, in eq. (5) — com-
posed of three circles each containing, from left to right, low, medium and high
signal respectively. Outside the circles we added background signal. A synthetic
phase was generated and the noisy complex DWI was created. After calculating
the average b = 0 signal (5(0)qvy = 758a.u.) in the HCP dataset, noise was
added as in eq. (5) in low SNR regime: SNRg = 10. Figure 1 shows, for each b-
value, the noisy magnitude |DWI|;, and the estimated phase-corrected real part
R(DWILY) (A set to 0.75 after visual inspection). In addition, an effective SNR
map is present along with histograms of the magnitude and phase-corrected real
signals for each circle. We conclude that in both cases the phase-corrected real
image presents more contrast with the background compared to the magnitude.
This is more evident at low SNR values — left circle at b = 1000 s/mm?, left and
central circles at b = 3000 s/mm? — that are more likely with high b-values. The
R(DWIZ) ) shows darker colors, i.e. lower signal intensities, as it is highlighted
by the histograms: the magnitude (green line) has a Rician distribution for low
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SNRs (typically below SNR = 5) whereas the estimated real part (blue line)
always shows a Gaussian distribution, thus including negative signal intensities.
We point out that since this is an experiment grounded on real data, the centroid
of the clusters — especially at low signal values — are based on Rician data and
might overestimate the actual (noise-free) ones. This means that the Rician bias
in histograms (green line) might be an underestimation of the true one.

In the second experiment, we use the HCP dataset to create a mean ground-
truth magnitude DWI, M,,, in order to quantify the Rician bias, i.e. the distance
from Gaussianity. We calculate the mean b = 0 image S(0),,, for a slice of inter-
est, by averaging the 40 non-diffusion-weighted images in the dataset. Since the
SNR is very high, the averaging procedure is not biased. Then, we select all the
DWIs corresponding to b = 1000 s/mm? and perform DTI to obtain the mean
diffusivity map, MD,,. At this point, we obtain a ground-truth magnitude DWI
at any b-value by extrapolating with M, = S(b)yy = S(0)gy exp(—b - MDy,,).
Although we assume Gaussian isotropic diffusion, this phantom represents an
average description of a magnitude DWI. After generating a synthetic phase
image, as described in section 2, we calculate the noisy complex DWI, for each
b-value, as in eq. (5). Figure 2 shows the b = 0 magnitude and the phase used
for the phantom (left column). We then calculate the Rician magnitude |[DWI|,,,
and the phase-corrected real part R(DWIZ?) (A = 0.75). Additionally, we cal-
culate a magnitude image with Gaussian distributed noise |DWI|§y7 by adding
Gaussian noise (with the same SNRg) to M,,. This will be used as reference
for Gaussianity measures. We generate 1000 noise occurrences and calculate, for
each pixel of the images, the signal intensities histograms of the signal intensi-
ties (as in fig. 1). For each pixel we generate 3 histograms, each related to the
Rician [DWI|,,, the phase-corrected R(DWIES) and the Gaussian [DWI|S,. The
hypothesis is that, for each pixel, the phase-corrected signal distribution should
be closer to that of the Gaussian magnitude image than the Rician magnitude
one. As a distance from Gaussianity, we use the discrete Hellinger distance [18]

H(P7Q)=\%|I¢7’—x/@\lz (6)

where P and @ are two discrete probability distributions, and 0 < H(P,Q) <1
where 1 means maximum distance. In columns 2 to 4, fig. 2 shows the Hellinger
distance maps from the Gaussian magnitude, for the Rician magnitude (first
row) and the phase-corrected real part (second row), at b-value 1000, 2000 and
3000 s/mm?2. We see that the Rician magnitude shows more bias (higher H),
especially in regions where MD is high. As expected, at higher b-values (from
left to right) the signal intensity is lower and the bias occurs in a larger number
of pixels. Conversely, the phase-corrected real part does not show a clear change.

In the third experiment, we quantify the bias on the estimated DTT and MAP
metrics for the Rician magnitude, and we quantify the debiasing power of phase
correction by looking at the change in the distributions of such metrics com-
pared to the Gaussian noise case. We generate complex DWIs with Phantomas
[15] as described in section 2. For each gradient direction g = (g4, gy,9-), the
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Fig. 2. The distance from Gaussianity of complex DWIs obtained by processing a HCP
dataset and a synthetic phase image. In the first column the b = 0 magnitude image
obtained from real data, and the generated phase. In the columns from the second to
the fourth, the distance from the Gaussianity measured with eq. (6) for the Rician
magnitude (first row) and the phase-corrected real part (second row), at different b-
values (columns). Contrarily to the case of the Rician magnitude, the distance from
Gaussianity remains visually unchanged as the diffusion-weighting increases. *: s/mm?.

synthetic phase image is oriented towards v = (g4, gy) (see eq. (4)) with con-
stant phase shifts between slices (along the z direction). Figure 3 shows the
original noisy data (Rician magnitude, phase, noisy real and imaginary parts)
and the one after phase correction for a reference slice (b = 1000 s/mm?). For
each SNRy € {10, 20,30} we generate the Rician magnitude data and, as for the
second experiment, the Gaussian DWI image to be used as reference. In this
experiment we also investigate the effect of the regularization parameter A of
the total variation filtering in eq. (3). Therefore, for each SNR( we generate six
phase-corrected datasets, for A € {0.25,0.5,0.75,1,2,5}. For each combination
of SNRy and type of data — Rician, Gaussian and the six phase corrections — we
fit DTT with single-shell scheme at b-value 1000, 2000 and 3000 s/mm?2, and DTI
and MAP with multi-shell scheme. For DTI, we calculate the mean diffusivity
(MD), the principal diffusivity (PD), and the fractional anisotropy (FA). We
calculate g-space metrics based on closed formulas derived for MAP. These are
the return to origin (RTOP), axis (RTAP) and plane (RTPP) probabilities [3],
the mean squared displacement (MSD) and the g-space inverse variance (QIV)
[17]. We create a mask of voxels within fibers, based on the noise-free dataset, by
considering only the voxels where RTOP € [0.5¢6,0.7¢6] (range chosen based on
visual inspection). For each value of A\ and for each calculated DTI and g-space
metric, we compute the probability distribution inside the mask for the Rician,
Gaussian and phase corrected data. Figure 4 illustrates the influence of the reg-
ularization parameter A\ (decreasing along the rows) on the recovered metric
probability distribution. The figure shows the Gaussian (red line), Rician (green
line) and phase-corrected (blue line) probability distributions (SNRy = 10) of
PD (DTTI at 1000, 2000 s/mm?) and RTPP (MAP). The results confirm the un-
derestimation of PD that increases with the b-value, i.e. the green histograms are
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Fig. 3. A slice of data generated with the digital phantom for SNRy = 10, b = 1000
s/mm?. On the left: the original noisy data calculated with a ground-truth magnitude
image obtained with Phantomas [15] and a synthetic phase. On the right: the phase-
corrected real and imaginary parts (A = 0.75); the signal information is almost entirely
contained in the real part, whereas the imaginary part mainly contains Gaussian noise.

left to the red ones. Consequently, also MD (see section 1) is underestimated [1].
Inverse analogous considerations hold for RTPP. We observe that A has a great
influence on the phase correction results. Particularly, a large A implies strong
attachment to data, resulting in a poor phase-correction since the estimated low-
frequency phase is very similar to the original noisy one, /mw ~ /DWI,, in
eq. (2). Indeed, the blue histograms (phase-corrected) in the first row of fig. 4 al-
most entirely overlap the green ones (Rician magnitude data). As the attachment
to the data decreases (from top to bottom), the blue phase-corrected histograms
move towards the (red) Gaussian based distributions, visually reducing the dis-
tance from Gaussianity. As in second experiment, we quantify the distance from
Gaussian metrics by using Hellinger’s formula in eq. (6). Figure 5 illustrates the
variation of the H distance for the phase-corrected data as function of A, for
each acquisition setup, reconstruction method (DTI, MAP) and diffusion met-
ric. In each image, the dashed lines represent the distance value from Gaussian
metrics for the metrics calculated on Rician magnitude data, whereas the solid
lines report the distance for metrics calculated on phase-corrected data, which
varies with A (abscissa). Color codes indicate the SNR( value. We observe that
phase correction leads to metric distributions that are closer to the Gaussianity
(H distance close to 0) than the Rician magnitude ones, for specific ranges of
A. In general, phase correction debiases the metric distributions up to a great
extent. The improvement over the Rician magnitude is clearly correlated with
the combination of acquisition scheme — especially the maximum b-value — and
SNRy as also indicated by the signal intensities experiments and illustrated in
figs. 1 and 2. Indeed, at high b-values the signal is low — especially along the less
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Fig. 4. Histograms of the principal diffusivity (PD) — for DTI at 1000, 2000 s/mm?>
— and return to plane probability (RTPP) — for MAP — estimated on Gaussian DWI
(“Ga”, red), Rician magnitude (“Mg”, green) and phase-corrected real part (“Re”,
blue), SNRo = 10. While the red and green histograms remain unchanged along the
rows, the blue histograms change as function of the regularization parameter \ (see

(3)). As the attachment to the data decreases (from top to bottom) the phase-

corrected histograms overlap more with the red Gaussian ones. *: s/mm?.
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restricted diffusion direction — which, in combination with a poor SNRg, causes
the effective SNR to fall well below 5 where a Rician distribution diverges from
a Gaussian one. Therefore, the best A value (highlighted with a dot in fig. 5)
also depends on these factors. We point out that in some cases, as for DTT at
b= 1000 s/mm?, too much filtering (small \) causes the phase-corrected metric
distributions to be more distant from Gaussianity compared to those based on
the Rician magnitude (dashed lines). The best A also seems to have a dependence
on the considered metric. For instance, at SNRg = 30 the best A for RTPP is
0.75 whereas for RTAP is 2. This can be associated to the fact that metrics that
are highly related to signal measured along the less restricted diffusion direction,
i.e. low intensity signal, such as PD and RTPP, benefit more than others of phase
correction. See table 1 for a comprehensive summary.

Table 1. Maximum relative reduction [0, 1] in H distance after phase correction com-
pared to Rician magnitude (bias reduction). Values are reported for each acquisition
type — b = 1000, 2000, 3000 s/mm? (1K,2K,3K), and multi-shell (ms) — and SNRy.

SNRo MD PD FA RTOP RTAP RTPP MSD QIV
(1K,2K,3K,ms) (1K,2K,3K,ms) (1K,2K,3K,ms ms ms ms ms

) ms
10 (.75,.84,.85,.85) (.76,.84,.85,.84) (.45,.78,.86,.78) .85 .68 .86 78 .84
20 (.62,.80,.84,.81) (.63,.79,.86,.82) (.24,.72,.86,.70) .75 .45 .85 .55 .16
30 (.39,.78,.80,.80) (.52,.80,.79,.79) (.13,.61,.75,.62) .68 .36 .82 .56 .11

4 Conclusion

We investigated the effects of phase correction of DWIs in terms of signal debias-
ing and Noise Floor removal. We quantitatively assess that phase correction has
the potential of rendering nearly unbiased DTI and g-space metrics. Indeed, the
noise distribution transformation, from Rician to Gaussian, allows compliance
with the assumptions required to use standard least squares methods for signal
estimation, avoiding noise floor related signal overestimation. In this work we
illustrate the importance of accurate phase estimation of complex DWIs, nec-
essary condition for a good phase correction. We plan to extend this work to
other diffusion signal metrics, such as those derived from NODDI [5]. We believe
that phase correction is still a challenging but promising tool for boosting the
estimation of diffusion metrics.
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