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Abstract. Software Adaptation aims at composing incompatible black-
box components or services (peers) whose individual functionality is as
required for the new system. Adaptation techniques aim at automati-
cally generating new components called adapters. An adapter works as
an orchestrator and makes the involved peers work correctly together by
receiving all messages exchanged in the system and by correcting mis-
match between them. A challenging issue in this area is to consider that
peers are described with (possibly cyclic) behavioural models and inter-
act asynchronously, that is, exchanging messages via message buffers.
The synthesis of adapters in this context is difficult because the compo-
sition of peers may result in infinite systems. In this paper, we propose
new adaptation techniques, which rely on a property of communicating
systems called stability. Stability aims at verifying whether a communi-
cating system exhibits the same observational behaviour from a certain
buffer bound on. We also provide adapter generation techniques using
process algebra encodings and enumerative analysis techniques.

1 Introduction

New software is constructed in many cases by reusing and composing existing
software elements,hereafter called peers. These peers correspond to a large va-
riety of software, such as software components, Web servers, databases, Graph-
ical User Interfaces, Software-as-a-Service in the cloud, or Web services. The
composition of such heterogeneous software pieces is possible because peers are
equipped with public interfaces, which exhibit their provided/required services
as well as any other composition requirements that must be respected to en-
sure the correct execution of the system. A problem in this context is that some
peer may be relevant wrt. a new composition-to-be from a functional point of
view, but does not exactly match with the partner peers from an interface point
of view. Mismatch takes different forms such as disparate operation names or
unspecified message receptions, and it prevents the direct assembly of the peers.

Software Adaptation [26, 7] is a non-intrusive solution for composing black-
box software peers that present interface mismatch, leading to deadlock or other
undesirable behaviour when they are combined. Adaptation techniques aim at
automatically generating new components called adapters, and usually rely on
an adaptation contract, which is an abstract description of how mismatch can
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be worked out. The adapter acts as an orchestrator and makes the involved
peers work correctly together by receiving all messages and by compensating for
mismatch. Many solutions have been proposed since the seminal work by Yellin
and Strom [26], but most of them assume that peers interact using synchronous
communication, that is, synchronization via rendez-vous.

One of the main open challenges in the adaptation area is to assume that
peers interact using asynchronous communication, which is a valid assumption
given that nowadays many systems rely on this communication model (cloud
computing, Web, grid computing, GALS, multi-core architectures, IoT, etc.).
Asynchronous communication highly complicates the adapter generation pro-
cess, because the corresponding systems are not necessarily bounded and may
result into infinite systems. It is known that in this context, the verification
problem is undecidable for communicating finite state machines [4]. An option
is to arbitrary bound the sources of infiniteness (buffers, cycles, number of par-
ticipants, etc.), but we want to avoid imposing this kind of constraints, since it
would unnecessarily restrict the behaviour of the whole system.

We assume that peers are modelled using behavioural descriptions and in-
teract asynchronously via (possibly unbounded) FIFO buffers. In a previous
work [9], we presented a preliminary proposal for asynchronous adaptation in
which a sufficient condition, called synchronizability, was required. However,
many asynchronous systems are not synchronizable. Hence, in order to widen
the number of systems to be adapted, in this paper we propose new synthesis
techniques, which rely on an encoding into the LNT process algebra [10] on the
one hand, and on a property of stability [1] on the other hand. Using stability
is an improvement over synchronizability, as many systems in practice are not
synchronizable yet stable. A set of peers is stable if from some buffer bound
k, the k-bounded asynchronous composition is equivalent to the k + 1-bounded
asynchronous composition, considering only the ordering of output messages and
ignoring that of input messages. If this k exists, it is proved [1] that the observ-
able behaviour remains the same for any larger buffer bound. This property can
be verified using equivalence checking techniques on finite systems, although the
set of peers interacting asynchronously can result in infinite systems. Based on
this result, one can check on the system a property, concerning output messages,
for the smallest bound satisfying stability and claim that this property is also
satisfied for any larger bound. We use stability here for verifying whether an
adapter generated for a certain bound k can be used with any larger bound, or
even with unbounded buffers.

As far as the adapter synthesis techniques are concerned, we encode all inputs
(peers, contract, buffers) into the LNT process algebra and use the CADP verifi-
cation toolbox [13] for generating the corresponding adapter model. The stabil-
ity property is also checked automatically using the CADP equivalence checker.
Since the adaptation contract is manually written, the designer can take advan-
tage of the LNT encoding to verify using CADP that the final adapter works
correctly, that is, respects certain properties of interest. We have validated our
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approach on several case studies, one of them presented in detail throughout this
paper.

The rest of this paper is organized as follows. Section 2 introduces the be-
havioural model for peers and the notation for specifying adaptation contracts.
Section 3 overviews the encoding into LNT. In Section 4, we present the stability
property and how we use it in our context. Section 5 shows how we generate the
adapter model from the LNT encoding and using CADP verification techniques.
In this section, we also present our whole adaptation method for asynchronous
environments. Finally, Section 6 surveys related work, and Section 7 concludes
this paper.

2 Models

In this section, we first introduce the interface model through which peers are
accessed and used. Then, we define adaptation contracts, and present the moti-
vating example that will be used throughout the paper.

2.1 Interface LTS

We assume that peers are described using a behavioural interface in the form of
a Labelled Transition System (LTS).

Definition 1 (LTS). A Labelled Transition System is a tuple (S, s0, Σ, T )
where: S is a set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? is a finite
alphabet partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.) message
events, and T ⊆ S ×Σ × S is the transition function.

The alphabet of the LTS is built on the set of operations used by the peer
in its interaction with the world. This means that for each operation p provided
by the peer, there is a message event p? ∈ Σ? in the alphabet of the LTS
describing the behaviour of the peer, and for each operation r required from its
environment, there is a message event r! ∈ Σ!. When two peers present events
with the same name and complementary directions (a!, a?) they can be matched
for inter-peer communication through message-passing.

Note that as usually done in the literature [16, 11, 23], our interfaces abstract
from operation arguments, types of return values, and exceptions. Nevertheless,
they can be easily extended to explicitly represent operation arguments and
their associated data types, by using Symbolic Transition Systems (STSs) [18]
instead of LTSs. However, this renders the definitions and results presented in
this work much longer and cumbersome, without adding anything substantial to
the technical aspects of our proposal. Hence, it is omitted in this paper.

It is worth observing that other formalisms, such as process algebra, could
be used alternatively to LTS [8]. However, for this paper we have preferred to
use LTS as the input notation of our proposal, since they provide a compact
representation, graphical, and easy to understand for all developers.
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2.2 Adaptation Contracts and Adapter LTS

Typical mismatch situations between peers appear when event names do not
correspond, the order of events is not respected, or an event in one peer has
no counterpart or matches several events in another one. All these cases of be-
havioural mismatch can be worked out by specifying an adaptation contract [8].
Adaptation contracts consist of rules that express correspondences between op-
erations of the peers, like bindings between ports or connectors in architectural
descriptions. Adaptation rules are given as vectors, as defined below:

Definition 2 (Vector). An adaptation vector (or vector for short) for a set
of peers {P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), is a tuple 〈e1, . . . , en〉 with

ei ∈ Σi ∪ {ε}, ε meaning that a peer does not participate in the vector.

In order to unambiguously identify them, we prefix event names with the
name of the peer, e.g., Pi : p?, or Pj : r!, and in that case ε can be omitted.
For instance, the vector 〈p1 : a!, p3 : b?, p4 : c?〉 represents an adaptation rule
indicating that the output event a! from peer p1 should match both input events
b? and c? in p3 and p4, respectively, while peer p2 does not participate in this
interaction.

In some complex adaptation scenarios, adaptation rules must be taken con-
textually (i.e., vectors cannot be applied at any time, but only in certain situa-
tions). For this purpose, we may use regular expressions (regex) on vectors [9],
indicating a pattern for applying them that will constrain the adaptation pro-
cess, enforcing additional properties on the adapter. This endows adaptation
contracts with extended expressivity, though in this work we do not show their
use, in order to avoid additional complexity in the presentation of our proposal.

Definition 3 (Adaptation Contract). An adaptation contract V for a set
of peers {P1, . . ., Pn} is a set of adaptation vectors for those peers.

Writing the adaptation contract is the only step of our approach which is
not handled automatically. This step is crucial because an inadequate contract
would induce the generation of an adapter that will not make the composition of
peers to behave correctly. However, the adaptation methodology that we propose
is iterative, which helps in writing the contract contract. Furthermore, in [5,
6], we presented a tool-supported approach for assisting and making easier the
specification of the adaptation contract. For more details on adaptation contracts
and the kinds of mismatch that can be resolved with them, we refer to [8].

Given a set of peers represented by their LTS interfaces and an adaptation
contract, our goal is to generate an adapter, which will play the role of man-
in-the-middle, solving the mismatch presented by the peers. The adapter is also
represented by an LTS consisting of messages to be consumed from its buffer
and messages to be sent to the other peers. The adapter also keeps track of
the messages received by its own local buffer. This information is important to
enforce the adapter to execute the correct behaviour, avoiding engaging in a
branch that may lead to an erroneous execution of the whole system.
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Definition 4 (Adapter LTS). An adapter LTS is a tuple (S, s0, Σ, T ) where:
S is a set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ ΣB is a finite
alphabet partitioned into a set Σ! (Σ?, resp.) of send (receive, resp.) messages
and a set of messages received by its buffer ΣB, and T ⊆ S × Σ × S is the
transition function.

In the following we will show how this adapter LTS can be automatically
generated from the LTS interfacs of the peers and the adaptation contract.

2.3 Running example

In order to illustrate the main features of our proposal, the following motivating
example will be used throughout this paper. Consider a simple Client/Server
system, in which clients are identified to the server by their username and pass-
word, and submit requests for a certain service. Upon receiving the result of the
request, the client issues an acknowledging message, and then quits. The inter-
face LTS representing the behaviour of clients is shown in Figure 1, top, where
the black dot indicates the initial state.

On the other side, the server follows a similar behaviour, as shown in Figure 1,
left bottom. The main differences, which are used in the example in order to show
how to perform adaptation, are: (i) connections are expected by the server with
a single login? message (instead of two separate usr! and pwd! messages issued
by the client); (ii) after login, the server is ready to receive several consecutive
requests or a logout message, while the client only sends one request before
quitting; and (iii) messages for disconnection are also named differently in the
client and the server. Finally the server interacts with a third peer, a database
log (Figure 1, right bottom), which stores all the requests fulfilled by the server.

 user!

 cl : Client

 request! pwd!  result?  ack!

 quit!

 login?

 sv : Server

 result! request?  ack?

 store!
 logout?  log?

 db : LOG

Fig. 1. Interface LTSs of the peers.
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The example above has been chosen deliberately simple in order to avoid it
taking too much space in this paper. However, it shows the different kinds of
adaptation that our proposal addresses: differences in message names (e.g., quit!
and logout?), differences in the granularity or the order of messages (e.g., user!,
pwd! and login?), and differences in decision-taking roles and other higher level
behavioural aspects (e.g., the client decides to quit after a request, while the
server allows new requests). How to address all these differences or mismatch
between the interfaces of the peers is specified with an adaptation contract.
Assuming that sv refers to a server, cl to its client and db to the database log,
these three peers can be adapted by means of the following contract, which shows
how message names are interconnected between the different peers involved in
this system:

{ 〈cl :user!, sv : login?〉,
〈cl :pwd!〉,
〈cl :quit!, sv : logout?〉,
〈cl :request!, sv :request?〉,
〈cl :result?, sv :result!〉,
〈cl :ack!, sv :ack?〉,
〈sv :store!, db : log?〉 }

3 Process Algebra Encoding

Our asynchronous adapter generation techniques rely on an encoding into
LNT [10] that we overview in this section. LNT is a formal specification language
which combines traits of process calculi, functional and imperative languages.
We chose LNT for two main reasons. First, it is expressive enough for encoding
all inputs (LTSs, contract, buffers, architecture) of our problem. Second, it is
equipped with a rich verification toolbox (CADP) that we use for checking the
existence of an adapter and, if this is the case, for generating an adapter LTS
and for analyzing properties of interest on it.

Interface LTSs. An LNT process is generated for each state in the interface
LTS of a peer. The alphabet of the process contains the set of messages appearing
in the transitions of the LTS. The behaviour of the process encodes all the
transitions of the LTS going out from the corresponding state. If there is no
such transition, the body of the process is the null statement. If there is a single
transition, the body of the process corresponds to the message labelling this
transition, followed by a call to the process encoding the target state of the
transition. If there is more than one transition, we use the select operator, which
encodes a nondeterministic choice between the different transitions going out
of that state. Name clashes are avoided by prefixing each message with the
name of the corresponding peer. We encode emitted messages (received messages,
resp.) with a EM ( REC, resp.) suffix. These suffixes are necessary because LNT
symbols ! and ? are used for data transfer only.
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Adaptation Contract. The vectors are encoded into an LNT process called
contract. The process alphabet is composed of all received and emitted messages
between the adapter-to-be and the involved participant peers, that is, all mes-
sages appearing in the vectors. Each vector is encoded as a sequence of actions
starting with the emissions and followed by the receptions. Notice that in the
LNT process representing the adaptation contract, message directions are re-
versed with respect to the peers because the adapter will receive the output
messages and emit the input messages expected by the recipient peers.

Fig. 2. Architecture and exchanged messages.

Asynchronous assembling. Now, we need to encode how all participants
(peer interfaces and adaptation contract) are composed together using asyn-
chronous communication. The architecture of the whole assembly is shown in
Figure 2. The contract represents an abstract description of the future adapter,
and all messages must go through this adapter, which acts as a centralized or-
chestrator. Each participant is equipped with an input FIFO buffer. A buffer in
LNT is first encoded using an LNT list and LNT functions are used to describe
classic operations on these buffers (e.g., adding and retrieving messages). Then,
for the behavioural part, a buffer is encoded using a process with a buffer data
type as parameter. This process can receive messages from the other partici-
pants, and it synchronizes with its own participant when the latter wants to
read a message. More precisely, when a participant reads a message, it reads
the oldest message in its buffer. When a participant sends a message to another
participant, it sends the message to the input buffer of that participant. In the
next sections, we will show how buffer bounds are determined for generating the
adapter LTS while avoiding the manipulation of infinite state spaces.

We also generate a process encoding each couple (participant, buffer) that
corresponds to a parallel composition (par) of the participant with its buffer.
The synchronization set contains messages consumed by the participant from its
buffer. Finally, the whole system (main process in LNT) consists of the paral-
lel composition of all these couples. It is worth noting that since the involved
peers communicate via the adapter, they evolve independently from one an-
other and are therefore composed using the par operator without synchroniza-
tions. In contrast, the couple (contract, buffer) must synchronize with all couples
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(peer, buffer) on all emissions from/to the peers, and this is made explicit in the
corresponding synchronization set of this parallel composition.

4 Stability of Adapted Systems

In this section, we characterize the stability property for adapted systems, where
peers communicate with the adapter asynchronously via FIFO buffers. Hence,
each peer Pi is equipped with an input message buffer Qi, and the adapter A
with an input buffer Q. A peer can either send a message m ∈ Σ! to the tail of
the adapter buffer Q at any state where this send message is available, or either
read a message m ∈ Σ? from its buffer Qi if the message is available at the buffer
head. We recall that we focus on output events, since reading from the buffer is
private non-observable information, which is encoded as an internal transition
in the asynchronous system.

Definition 5 (Adapted Asynchronous Composition). Given a set of peers
{P1, . . ., Pn} with Pi = (Si, s

0
i , Σi, Ti), Qi being its associated input buffer, and

an adapter A = (S, s0, Σ, T ) with input buffer Q, their asynchronous composition
is the labelled transition system LTSaa = (Saa, s

0
aa, Σaa, Taa) where:

– Saa ⊆ S1 ×Q1 × . . .× Sn ×Qn × S ×Q where ∀i ∈ {1, . . . , n}, Qi ⊆ (Σ?
i )∗

and Q ⊆ (Σ?)∗
– s0aa ∈ Saa such that s0aa = (s01, ε, . . . , s

0
n, ε, s

0, ε) (where ε denotes an empty
buffer)

– Σaa = ∪iΣi ∪Σ
– Taa ⊆ Saa × Σaa × Saa, and for s = (s1, Q1, . . . , sn, Qn, sa, Q) ∈ Saa and
s′ = (s′1, Q

′
1, . . . , s

′
n, Q

′
n, s

′
a, Q

′) ∈ Saa we have that

(p2a!) s
m!−−→ s′ ∈ Taa if ∃i ∈ {1, . . . , n} : m ∈ Σ!

i ∩ Σ?, (i) si
m!−−→ s′i ∈ Ti,

(ii) Q′ = Qm, (iii) s′a = sa, (iv) ∀k ∈ {1, . . . , n} : Q′
k = Qk, and

(v) ∀k ∈ {1, . . . , n} : k 6= i⇒ s′k = sk

(p2a?) s
τ−→ s′ ∈ Taa if m ∈ Σ?, (i) sa

m?−−→ s′a ∈ T , (ii) mQ′ = Q, (iii) ∀k ∈
{1, . . . , n} : Q′

k = Qk, and (iv) ∀k ∈ {1, . . . , n} : s′k = sk

(a2p!) s
m!−−→ s′ ∈ Taa if ∃j ∈ {1, . . . , n} : m ∈ Σ! ∩ Σ?

j , (i) sa
m!−−→ s′a ∈ T ,

(ii) Q′
j = Qjm, (iii) Q′ = Q, (iv) ∀k ∈ {1, . . . , n} : k 6= j ⇒ Q′

k = Qk,
and (v) ∀k ∈ {1, . . . , n} : s′k = sk

(a2p?) s
τ−→ s′ ∈ Taa if ∃i ∈ {1, . . . , n} : m ∈ Σ?

i , (i) si
m?−−→ s′i ∈ Ti, (ii) mQ′

i =
Qi, (iii) ∀k ∈ {1, . . . , n} : k 6= i ⇒ Q′

k = Qk, (iv) ∀k ∈ {1, . . . , n} : k 6=
i⇒ s′k = sk, (v) Q′ = Q, and (vi) s′a = sa

We denote by LTSaa an unbounded adapted asynchronous composition,
while we use LTSkaa for referring to the k-bounded adapted asynchronous compo-
sition, where each message buffer is bounded to size k. The definition of LTSkaa
can be obtained from Definition 5 by allowing send transitions only if the mes-
sage buffer of the receiving peer has less than k messages in it. Otherwise, the
sender is blocked, i.e., we assume reliable communication without message losses.
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The stability property applies here by considering the adapter as a peer whose
peculiarity is to interact with all the other participants.

Definition 6 (Stability). A set of peers {P1, . . . ,Pn} and an adapter A are
stable if ∃k such that LTSkaa ≡br LTSqaa (∀q > k).

A sufficient condition for ensuring stability was presented in [1]: if there exists
a bound k such that the k-bounded and the (k + 1)-bounded asynchronous
systems are branching equivalent, i.e., LTSkaa ≡br LTSk+1

aa , then the system
remains stable, meaning that the observable behaviour is always the same for
any bound greater than k. The smallest k satisfying the stability property can be
found using heuristics and a search algorithm. However, stability is undecidable.
Therefore an arbitrary max bound is used during these computations and the
algorithm stops when the current value goes beyong that arbitrary value. In that
case, stability checking is inconclusive.

5 Adapter Generation and Methodology

In the previous section we have defined stability for adapted asynchronous sys-
tems. If a system is stable for a certain bound k, we are able to generate an
adapter model that communicates asynchronously with the peers, where all the
participants use buffers of size k. The adapter will play the role that until now
had taken the adaptation contract. This adapter is obtained from our LNT en-
coding by keeping only the behaviour we expect from the adapter point of view,
that is, we need to preserve send and receive messages for the adaptation con-
tract. To do so, we hide message exchanges corresponding to consumptions of
the peers from their buffers and we rename emissions from peers to the adap-
tation contract (ΣB) in order to distinguish these messages from the adapter
regular behaviour (Σ! and Σ?). In order to keep only the behaviour correspond-
ing to the most permissive adapter, we use CADP compilers, which explore all
the possible executions of the generated LNT specification. We also make use of
minimization techniques available in CADP for eliminating all internal actions,
removing duplicated paths, and determinizing the final LTS. The whole adapter
generation process is achieved automatically.

Figure 2 shows an example of architecture with the contract/adapter and
two peers. Each participant is equipped with one input buffer. The dashed box
shows the messages we keep in order to generate the adapter LTS wheremi! ∈ Σ!,
pi? ∈ Σ?, and pi! ∈ ΣB , i ∈ {1, 2}.

Note that stability is checked on the whole LNT encoding. We show be-
low that this property is preserved when we extract the adapter LTS from this
encoding for using it with the peer LTSs, all interacting via FIFO buffers.

Theorem 1 (Stability preservation). Given a set of peers {P1, . . ., Pn}
and an adaptation contract V , if the corresponding asynchronous LNT encoding
is stable for a certain k, then the system where all peers interact through the
generated adapter LTS A via k-bounded FIFO buffers is also stable for this k.
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Proof. Let Sk1 = ((P1|Q1)| . . . |(Pn|Qn))|(V |Q) be the encoding into LNT of the
peers {P1, . . ., Pn}, of the contract V , and of FIFO buffers Qi for peers and
Q for the contract/adapter-to-be. The alphabet ΣV = Σ!

V ∪Σ?
v of V coincides

with the alphabet Σ = Σ!
A ∪Σ?

A ∪ΣB
A of the adapter LTS A, that is, Σ!

V = Σ!
A

and Σ?
V = Σ?

A, but for actions ΣB
A . However, actions in ΣB

A are not synchronized
with the system, they are internally used in the adapter LTS for keeping track
of the content of its buffer Q only.

Once the adapter is generated, the current behaviour of the whole system is
as follows: Sk2 = ((P1|Q1)| . . . |(Pn|Qn))|(A|Q). Actually, the adapter LTS A is
obtained by extraction from Sk1 , by keeping the behaviour of V constrained by
the peers’ behaviours as explained beforehand in this section, which is exactly
the behaviour of A. Thus, (C|V ) ≡br (C|A), where C stands for the context, i.e,
the rest of the system. Hence, Sk1 ≡br Sk2 and this proves the theorem. �

Figure 3 gives an overview of our approach for generating an adapter LTS in
asynchronous environments. First of all, we assume that the peers are incompat-
ible and thus cannot be reused and composed directly without using adaptation
techniques for compensating mismatch. This can be checked using existing com-
patibility techniques as those presented, e.g., in [21]. If an adapter is required, the
user needs to provide an adaptation contract. The next step consists in encoding
all these inputs (peer LTSs and adaptation contract) into LNT as presented in
Section 3.

Then, we check stability directly on the LNT encoding, trying to find a k
from which the k-bounded adapted asynchronous composition and the k + 1-
bounded adapted asynchronous composition are equivalent. If this is the case,
it means that the system is stable and its observable behaviour will remain the
same whatever bound is chosen for buffers from that bound k. In that case, we
can generate the adapter for that k, and it can be used in practice for whatever
bound equal or greater than it. If the system is not stable, the sole solution is
to fix an arbitrary bound before generating the adapter model, to generate the
adapter LTS for that bound, and to use it further with that bound only.

Finally, since the adaptation contract is written manually, some mistake may
appear at this level ending up with a faulty adapter. However, we can take ad-
vantage of the LNT encoding in order to formally analyse the system. This can
be achieved by verifying the global LTS obtained direclty from the encoding and
corresponding to the execution of the whole application (peers and adapter), or
by verifying the adapter LTS obtained after synthesis from the LNT encoding
as explained at the beginning of this section. In both cases, one can use the
verification techniques and tools available in the CADP toolbox, and in partic-
ular, the Evaluator model checker, which accepts as input an LTS and an MCL
formula [19], and returns a diagnostic (Boolean value + a counterexample if the
property is false). If some property is not satisfied, we can go back to the con-
tract writing, make corrections on it, and start again from this step the overall
synthesis.
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Fig. 3. Overview of our approach.

Coming back to our Client/Server example, we start from the LTSs of the
peers, as presented in Section 2.3. As already explained there, the client, the
server, and the database log show several sources of mismatch, the most obvious
being that they communicate using different message names, but also that mes-
sages do not correspond one-to-one between the server and the client (during the
login phase), and that the server admits several requests after connection, while
the client does not. Hence, adaptation is required, and the adaptation contract
presented in Section 2.3 is the first step of the adaptation process.

Then, we can check whether the system is synchronizable. If that were the
case, we would be under the conditions defined in [9], which require the asyn-
chronous system to be behaviourally equivalent to its synchronous version. This
is not the case of our adapted Client/Server system, in which the client is able
to issue several output messages (user!, pwd!, request!) in a row in the asyn-
chronous version of the system, whereas this is not possible in the synchronous
system because the adapter, after the reception of the two first messages (user?,
pwd?), cannot receive the third one (request?) until it sends the login! message
to the server. Hence, the results in [9] do not apply to our example, whereas
the approach presented in this paper works as we will show in the rest of this
section.

First of all, we need to check whether the system is stable. In order to analyse
stability, both the interface LTSs of the peers and the adaptation contract are
automatically encoded into LNT, as described in Section 3, and we check the
LNT resulting system as defined in Section 4. We use the CADP toolbox for
checking this property, which finds out that the asynchronous adapted system
is stable for k = 4. Intuitively, this means than from buffers of that size, the
observable collective behaviour of all peers remain the same, and hence, we can
generate an asynchronous adapter using buffers bounded to that size. For this
particular example, the asynchronous adapter presents 1,630 states and 4,278
transitions, though its generation takes only a few seconds. These figures show
that, despite we have committed to a very simple system, asynchronous adap-
tation could not be possibly performed without automated techniques, as those
presented in this paper. The asynchronous adapter, generated and visualized
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with CADP, is shown in Figure 4, after the removal of internal transitions and
identical paths, and abstracting for messages in ΣB in order to make it fit in
one page. We remind that event names in the adapter are reversed with respect
to those of the peers and the adaptation contract, as explained in Section 3.

Once we have obtained the adapter, we can check the system (adapter alone
or composition of the adapter with the peers) for properties of interest, like
for instance deadlock freedom. Not fulfilling these properties would mean that
the adaptation contract is ill-written, and from the counterexample provided we
could adjust the contract, until the system behaves as expected. In our case, the
adapted system is deadlock free, and we can also check for additional user-defined
properties, which are expected to be enforced by the adapter. For instance, that
every request! of the client will be followed by the delivery of the result! message,
or that every login? message received by the server is followed by a corresponding
logout? message. All these properties can be automatically analysed using the
CADP model checker. When all properties of interest are satisfied, and this is the
case with our example, we can conclude that our adaptation problem is solved.

6 Related Work

First of all, adaptation differs from automatic software composition approaches,
particularly studied in the Web services area, e.g., [17, 3], where services involved
into a new composition are assumed to perfectly match altogether with respect
to certain compatibility property [12].

The major part of the contributions on the software adaptation area assume
that peers interact synchronously, while our proposal addresses asynchronous
communication. Van der Aalst et al. [25] propose a solution to behavioural
adaptation based on open nets, a variant of Petri nets. A behavioural controller
(a transition system and BPEL) is synthesised for the product net of the ser-
vices and a set of message transformation rules. In [20], the authors provide a
method for identification of the split/merge class of interface mismatch and a
semi-automated, behaviour-aware approach for interface-level mismatch that re-
sults in identifying parameters of mapping functions that resolve that mismatch.
In [8, 18], the authors proposed automated techniques for generating an adapter
model from a set of service behavioural interfaces and an adaptation contract.
Some BPEL code is automatically generated from the adapter model, which may
finally be deployed.

Inverardi and Tivoli [15] formalise a method for the automated synthesis
of modular connectors. A modular connector is structured as a composition of
independent mediators, each of them corresponding to the solution of a recurring
behavioural mismatch. Bennaceur et al. [2] propose a technique for automated
synthesis of mediators using a quotient operator, that is based on behavioural
models of the components and an ontological model of the data domain. The
obtained mediator is the most general component that ensures deadlock-freedom
and the absence of communication mismatch.
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Fig. 4. Asynchronous adapter for the running example.

There are only a few attempts to generate adapters considering asynchronous
communication. Padovani [22] presents a theory based on behavioural contracts
to generate orchestrators between two services related by a subtyping (namely,
sub-contract) relation. This is used to generate an adapter between a client of
some service S and a service replacing S. An interesting feature of this approach
is its expressiveness as far as behavioural descriptions are concerned, with sup-
port for asynchronous orchestrators and infinite behaviour. The author resorts
to the theory of regular trees and imposes two requirements on the orchestrator,
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namely regularity and contractivity. However, this work does not support name
mismatch nor data-related adaptation. Seguel et al. [24] present automatic tech-
niques for constructing a minimal adapter for two business protocols possibly
involving parallelism and loops. The approach works by assigning to loops a
fixed number of iterations, whereas we do not impose any restriction, and peers
may loop infinitely.

Gierds and colleagues [14] present an approach for specifying behavioural
adapters based on domain-specific transformation rules that reflect the elemen-
tary operations that adapters can perform. The authors also present a novel way
to synthesise complex adapters that adhere to these rules by consistently sep-
arating data and control, and by using existing controller synthesis algorithms.
Asynchronous adaptation is supported in this work, but buffers/places must be
arbitrarily bounded for ensuring computability of the adapter.

In [9], we presented a solution to the software adaptation problem by us-
ing the synchronizability property and adapter generation techniques for syn-
chronous communication. The adapter synthesis in this approach relies on an
iterative process, which works properly in asynchronous environments. The main
limitation of our previous work is that the synchronizability property is quite
restrictive and requires asynchronous systems to behave de facto as synchronous.
Stability is a much looser condition, allowing to address a wider class of asyn-
chronous systems.

7 Conclusion

Software adaptation is an approach for simplifying the reuse of existing peers
when building a new software by composition of these entities. Adaptation is
particularly relevant when the peers to be composed fulfill the functional re-
quirements of the system but they are not compatible from an interface point of
view. In that case, we can rely on such techniques for synthesising an adapter,
which acts as an orchestrator and intervenes on the messages exchanged for cor-
recting mismatch among peer interfaces. Most solutions existing for this problem
assume peers interact synchronously via rendez-vous communication.

In this paper, we consider they exchange messages asynchronously via FIFO
buffers. We also focus on a behavioural description model for peers, involving
non-determinism and cycles. We propose new synthesis techniques for asyn-
chronous communication semantics, which are based on an encoding into LNT,
a modern process algebra. As far as adapter generation is concerned, we use the
CADP toolbox for compiling the generated process algebraic specification to an
LTS, and for minimizing the obtained result using classic reduction techniques.
Beyond synthesis techniques, we also provide two kinds of verification. The first
one relies on the stability property and aims at ensuring that the generated
adapter will work from a certain size chosen for buffers. The second one is to use
model checking techniques in order to verify that the adapter respect certain
properties of interest. Our approach has been applied to several examples for
validation purposes.
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Our main perspective is to find some sufficient conditions on the LTS models
or on the adaptation contract specification that could help ensuring the stability
property preservation. Such conditions would avoid to check this property and
ensure by construction that the generated adapter would work in unconstrained
asynchronous environments.
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