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Abstract: In this paper, the classification of epileptic and non-epileptic events from multi-channel 16 

EEG data is investigated based on temporal and spectral analysis and two different schemes for the 17 

formulation of the training set. Although matrix representation which treats EEG features as 18 

concatenated vectors allows capturing dependencies across EEG channels, it leads to significant 19 

increase of feature vector dimensionality and lacks a means of modeling dependencies between 20 

features. Thus in this paper, we compare the commonly used matrix representation in which features 21 

are concatenated from all channels in order to capture the total spatiotemporal context with a tensor-22 

based scheme which extracts signature features to feed the classification models. TUCKER 23 

decomposition is applied to learn the essence of original, high-dimensional domain of feature space and 24 

extract a multi-linear discriminative subspace. In contrast to relevant studies found in the literature, in 25 

this study, the non-epileptic class consists of two types of paroxysmal episodes of loss of 26 

consciousness, namely the psychogenic non-epileptic seizure (PNES) and the vasovagal syncope 27 

(VVS). The classification schemes were evaluated on EEG epochs from 11 subjects in an inter-subject 28 

cross-validation setting. The proposed tensor scheme achieved an accuracy of 97,7% which is better 29 
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compared to the spatiotemporal model even after trying to improve the latter by dimensionality 1 

reduction through principal component analysis (PCA) and  feature selection by feature ranking. 2 

Keywords: electroencephalography, seizure-like events, tensors, multi-array decomposition, multi-3 

linear data structures 4 

1. Introduction 5 

One of the most challenging medical cases a clinician usually faces in everyday practice is that 6 

of patients reporting episodes of transient loss of consciousness (TLoC or blackout), altered 7 

awareness, abnormal limb movements or incontinence. The common causes of such episodes are 8 

mainly that of epiletpic seizures,  posssible psychogenic non-epileptic seizures (PNES) and vasovagal 9 

syncopal attacks (VVS)  [1, 2]. The similar seizure-like reactions of both epileptic and non-epileptic 10 

events make their diagnosis a difficult task. In clinical practice, the diagnosis is based on historical 11 

information assisted by specific tests [3]. However, since patients may have limited or no recall of the 12 

event and a witness report might not be available clinical information can be either missing or 13 

fragmented.  14 

Diagnostic uncertainty may has costs in terms of patients’ distress, unnecessary lifestyle 15 

changes, social exclusion and financial deprivation associated with hospitalization and repeated 16 

investigations [4]. In the worst case scenario, a misdiagnosis of epilepsy can result in mistreatment, 17 

with potentially important side effects from the use of antiepileptic drugs and also may have 18 

significant medical implications if a serious condition remains undiagnosed or untreated. Furthermore, 19 

the financial burden on health services accompanied by an incorrect diagnosis is significant. Taking 20 

into account the estimated proportion of the worldwide population with active epilepsy (according to 21 

WHO, it is estimated between 4 to 10 per 1000 people) and the unnecessary treatment costs, the 22 

estimated annual cost of epilepsy misdiagnosis only in England is around £189 million [5]. 23 

The most common diagnostic issue that medical experts routinely deal with, is the 24 

differentiation between an epileptic seizure commonly manifested by generalized spike wave 25 

discharges (GSW),  a psychogenic non-epileptic seizure (PNES) [6] and a vasovagal/ vasodepressor 26 

syncope (VVS) [7]. Figures 1 to 3 show examples of the different epileptic and non-epileptic events 27 

investigated in our study. 28 

 29 
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 1 

Fig. 1 Generalized Spike Wave (GSW) example. The first marker indicates the beginning of the GSW event 2 
and the second marker its end. 3 

 4 

Fig. 2 Psychogeninc Non Epileptic Seizure (PNES) example. The marker indicates the beginning of the 5 
PNES event. 6 



4 
 

 1 

Fig. 3 Vasovagal Syncopal Event (VVS) example. The marker indicates the beginning of the VVS event. 2 

 3 

Epileptic seizures are brief episodes of abnormal excessive or synchronous neuronal brain 4 

activity [8], characterized by typical ictal neurophysiological patterns and postictal and/or interictal 5 

abnormalities. Pshychogenic non-epileptic seizures (PNES) are sudden paroxysmal changes in 6 

behavior or consciousness, that resemble epilepsy but are not accompanied by the electrophysiological 7 

changes that characterize an epileptic seizure [9]. Vasovagal or vasodepressor syncope is a common 8 

type of syncope and various mechanisms have been postulated for explaining the characteristic 9 

association of hypotension and bradycardia. The term "vasovagal" indicates that both blood vessels 10 

and heart were implicated and since atropine reversed the bradycardia but not the hypotension he 11 

considered vasodilatation as the primary responsible factor. As such, PNES and VVS are generally 12 

considered to be physical symptoms of an underlying psychological disturbance, triggered by extreme 13 

stress-related or emotional events. Clinical characteristics, such as stable ictal heart rate, pelvic 14 

thrusting, closed eyes, longer duration of events, events induced by suggestion and rhythmic 15 

movement patterns [9-13] have been associated with non-epileptic events rather than epileptic 16 

seizures. In most cases, however, the diagnosis of such events still remains doubtful and agreement 17 

between physicians as to the nature of a single event may also be limited [14], resulting in 18 

misdiagnosis in around 25% of cases [2].  19 

Despite such diagnostic uncertainty, to the best of our knowledge, only a few studies have been 20 

proposed in the literature for automated classification between epileptic and non-epileptic pathological 21 

events from EEG. Poulos et al. [15] proposed an algorithm which estimates a number of  auto-22 
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correlated coefficients extracted from an appropriately selected epileptic EEG segment and examines 1 

whether these coefficients are correlated with the coefficients of the unknown EEG segments in order 2 

to classify the latest into epileptic or non-epileptic. In [16] a LVQ1 neural network was trained on an 3 

appropriately extracted set of auto-correlation coefficients (codebook) and the resulting model was 4 

used to classify the corresponding feature vectors of the unknown EEG segments.  However, both the 5 

aforementioned studies do not consider different types of non-epileptic events, which constitutes a 6 

fundamental clinical problem. In our previous works [17,18], the non-epileptic class was extended to 7 

include  both PNES and VVS events. In order to automatically classify epileptic and non-epileptic 8 

EEG epochs, several temporal and spectral features were extracted from different channels and 9 

combined to a large feature vector as a representative signature for each epoch.  10 

Broadly speaking, raw EEG signals are naturally born with more than two modes (dimensions) 11 

of time and space and represented by a multi-way array (tensor). In addition, the process of feature 12 

extraction produces structured high-order multi-way arrays that are usually very high dimensional, 13 

with large amount of redundancy, while occupying only a subspace of the input space [19]. However, 14 

all the previous research works in epileptic and non-epileptic events classification treated EEG 15 

features as concatenated vectors (i.e. matrix representation with observations in the rows and features 16 

in the columns) in a very high-dimensional space neglecting the inherent structure and correlation in 17 

the original feature space [20] [21]. Although matrix representation is suitable for many datasets, it is 18 

not always a natural representation because it assumes the existence of a single target variable and 19 

lacks a means of modeling dependencies between other features [22]. Motivated by the above,  in this 20 

study, we compare the commonly used matrix representation in which features are concatenated from 21 

all channels in order to capture the total spatiotemporal context with a tensor-based scheme which 22 

extracts signature features to feed the classification models. TUCKER decomposition is applied to 23 

learn the essence of original, high-dimensional domain of feature space and extract a multi-linear 24 

discriminative subspace.  The proposed scheme reduced dramatically the computational complexity of 25 

the subsequent classification step, which now was performed efficiently in a lower dimensional feature 26 

space. The advantage in terms of computational cost relied on the notion that once the mapping (from 27 

the original feature space to a reduced space) was learned, its application to unknown EEG segments 28 

would only require a few matrix multiplications.  29 
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The rest of this paper is organized as follows. Firstly, Section 2 is devoted to the proposed 1 

tensor-based scheme, data description, parameterization and pre-processing of EEG signals and 2 

classification. In Section 3, the experimental results are presented and a direct comparison with a 3 

scheme using linearized feature vectors is performed along with some discussion. The final section is 4 

devoted to some concluding remarks. 5 

2. Materials and Methods 6 

 2.1 Tensor-based scheme for (non)epileptic EEG events classification 7 

 8 

Fig. 4 The tensor-based scheme for EEG-based epileptic type classification 9 

 10 

The block diagram of the proposed tensor-based scheme is shown in Figure 4. During the training 11 

phase a set of multichannel EEG data denoted as             , where   denotes the number of 12 

samples per channel and      , where   denotes the number of channels, with known time 13 

annotations for the events of interest (i.e., PNES, VVS and GSW) was used to train binary 14 

classification models. Initially, each EEG signal was frame blocked with a Hamming window to non-15 

overlapping frames of   samples. For each windowed frame,   temporal and spectral EEG features 16 

(see Section 2.3 for more details) were estimated for each of the  channels, resulting in a third-order 17 

feature tensor      
       with   being the total number of windows. In particular, the constructed 18 

training tensor is a third-order tensor with modes the EEG channels, the features and the time epochs.  19 

Then, based on tensor decomposition, the proposed method extracts simultaneously dominant 20 
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temporal, spatial and spectral information from the training data, seeking an optimal discriminative 1 

feature subspace to project the test data and drive the classification process [23]. Therefore, TUCKER 2 

decomposition [24] was applied to reserve multi-linear discriminative subspace from the training 3 

feature tensor by decomposing the training tensor to two basis factors and a low-dimensional tensor 4 

          .  5 

In this scheme, TUCKER-2 was applied to extract the discriminative multi-linear subspace. 6 

Given the tensor      
     , its TUCKER-2 model, expressed as a decomposition of a 3-D tensor into 7 

two basis factors and a core tensor, is defined as: 8 

            

with the symbol    denoting the n-mode product of a tensor with a matrix along the mode-n (i.e. tensor 9 

unfolding in the direction of the n-th dimension) [25], the         ,        being the basis 10 

factors (projection filters) and              the extracted signature features. The core tensor    11 

consists of signature features of    projected onto the factor subspace spammed by   and  .  Then, the 12 

low-dimensional tensor was matricized and used as signature features to train the classification model. 13 

We used Tucker decomposition instead of canonical polyadic decomposition (CPD) [26] due to 14 

its superior flexibility. Tucker model enables all the components of each mode (dimension) to interact 15 

with each other through the mean of the core tensor, whereas, in CPD, a component in a certain mode 16 

can be linked to only a single component in another mode. Another critical issue, when applying tensor 17 

decomposition to perform data analysis, was the determination of the number of components     . 18 

Here, the values of the both parameters were set to two maximizing the classification of epilepsy type 19 

in our recordings. 20 

During the test phase, the calculated basis factors were used as a projected filter to perform 21 

feature extraction and finally the test features were used to feed the classification model. 22 

2.2. Data Description and Pre-processing 23 

The previously described classification methodology was evaluated on multi-parametric 24 

recordings performed under the ARMOR project [27]. All EEG data were recorded at the Department 25 

of Clinical Neurophysiology and Epilepsies in St. Thomas’ Hospital in London. The data consisted of 26 

105 generalized seizures (epileptic group) and 21 (19 PNES and 2 VVS) seizure-like events (non-27 
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epileptic groups) from 11 different patients. All participants had at least one of their typical epileptic or 1 

non epileptic events captured during the recording procedure. The epileptic group, consisted of patients 2 

with known diagnosis of idiopathic generalized epilepsy, manifested clinically with absence seizures 3 

and they had at least one clinical episode captured during the recording associated with generalized 4 

spike wave discharges on the EEG. The non-epileptic group included patients who had sustained a 5 

vasovagal syncope (2 patients) or a psychogenic non-epileptic attack (5 patients) during their 6 

monitoring. Patients with focal seizures were excluded from this analysis. 7 

The recordings were performed using conventional AgCl EEG electrodes positioned according 8 

to the extended international 10–20 system. After the completion of data acquisition, each recorded 9 

dataset was visually inspected for noise and motion artifacts and a subset of the main EEG channels 10 

was selected for analysis including the following channels: Fp2, F8, F4, T4, C4, A2, P4, T6, O2, Fp1, 11 

F7, F3, A1, C3, T3, P3, T5, O1, Fz, Cz, Pz. Notch filtering was applied to attenuate interference at 60 12 

Hz and its harmonics from power lines. Also, baseline correction and re-sampling  at 250 Hz was 13 

applied in order to obtain a common resolution level for all data coming from different patients and 14 

acquisition systems. The recordings were manually annotated by expert Neurologists of the Kings 15 

College London. Only epochs during paroxysmal events were considered for training and for testing. 16 

2.3 Parameterization of EEG signals  17 

The parameterization of the brain signals was based on the temporal and spectral information in 18 

the EEG channels. Initially, the incoming EEG signals       were frame blocked to epochs with a 19 

sliding Hamming window of length         and without time-overlap between successive epochs. A 20 

large number of hybrid features were investigated including statistical features such as 21 

minimum/maximum value, mean, variance, standard deviation, percentiles (25%, 50%-median, 75%), 22 

interquartile range, mean absolute deviation, range, skewness, and kurtosis [28-30]. In addition, several 23 

studies have supported that the number of ‘zero crossings’ in the EEG is thought to change during 24 

seizure activity [28,31]. Here, the zero crossing rate iis calculated as the sum of all positive zero 25 

crossings for each epoch of the zero-meaned EEG. Spectral features including 6-th order 26 

autoregressive-filter (AR), power spectral density, frequency with maximum and minimum amplitude, 27 

the power of continuous wavelet transform using symlet 5 mother wavelet of scale 25 and 32, the 28 

power of discrete wavelet transform with mother wavelet function Daubechies 16 and decomposition 29 
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level equal to 8 were also used. For each EEG epoch, fifty-five      features in total were analysed 1 

for each one of the      channels. All feature vectors were first normalized. The extracted features 2 

were derived from linear and nonlinear signal analysis and all have been employed in EEG applications 3 

in the past.   4 

2.4 Classification 5 

Aiming to evaluate the ability of the extracted signature features to discriminate between 6 

epileptic and non-epileptic events widely used classifiers were used, namely the random forest (RF) 7 

[32], the k-nearest neighbors (KNN) algorithm and its weighted (wKNN) version [33], and support 8 

vector machines (SVM) using the sequential minimal optimization algorithm [34], linear discriminant 9 

analysis (LDA) [35] and BayesNet [36] were investigated. For the KNN and wKNN classifiers, the 10 

Euclidean distance was selected as the distance metric. After testing the parameter space,     was 11 

chosen empirically. Moreover, the Gaussian radial basis function (RBF) for the SVM kernel was used. 12 

Polynomial-based kernels were also considered, but their performance was considerably lower than the 13 

RBF kernel. The values of the soft margin parameter      and the scaling factor       were found 14 

to offer optimal classification performance after a grid search at all combinations of 15 

                            and                            .  16 

3. Experimental Results and Discussion 17 

The tensor-based classification scheme presented in Section 2.1 was applied to the EEG dataset 18 

described in 2.2 in order to be compared with our previous classification scheme [17] that uses matrix 19 

representation with linearized feature vector of dimensionality                features for each 20 

frame of the training and tests sets. In this matrix representation features are concatenated from all 21 

channels in order to capture the total spatiotemporal context. For both schemes, evaluation was 22 

performed in a leave-one-out cross-validation setting. Specifically, each time one subject was left-out 23 

for testing, while the rest of the subjects were used for training. For the left-out subject, all epochs 24 

between seizure onset and offset were used as testing samples. Error! Reference source not found. 25 

shows the number of epochs that were extracted from each subject during the seizure(s).  26 

 27 
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Table 1 Number of seizures and number of seizure epochs per subject 1 

Subject Class # Epochs # Seizures 

1 GSW 59 52 

2 GSW 29 19 

3 GSW 16 14 

4 GSW 19 20 

5 PNES 1 1 

6 PNES 1 1 

7 PNES 1 1 

8 PNES 13 13 

9 PNES 3 3 

10 VVS 45 1 

11 VVS 18 1 

 2 

Throughout the paper, the classification accuracy defined as: 3 

          
     

           
 

where true positives are denoted as TP, true negatives as TN, false positives as FP and false negatives 4 

as FN, served as the primary performance metric. Here we consider the epileptic class as the positive 5 

and the non-epileptic class (PNES or VVS) as the negative. 6 

 The accuracy of the proposed scheme for classifying between epileptic (GSW) and non-epileptic 7 

(VVS, PNES) events, for the investigated classifiers, is shown in Fig. 5. The overall highest accuracy 8 

was 97.7% achieved by the KNN classifier, with the second highest being 96.1% using SVM as a 9 

classification model. On the other hand, the overall highest accuracy achieved by the scheme with the 10 

matrix representation of the linearized feature vectors was 86% for the BayesNet classifier. As can be 11 

seen, the performance of the tensor-based scheme was considerably higher compared to the scheme 12 

where the original features (without tensor decomposition) were utilized to drive the classifiers. In 13 

particular, the system performance was increased by approximately 13%. It seems that the high 14 

dimensionality of the training samples in the scheme without tensor decomposition is not appropriate 15 

for datasets with limited number of instances such as our dataset.   16 
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 1 
Fig. 5 Classification accuracy for the different classifiers with and without tensor decomposition. 2 

 3 

In a further step, to make a fair comparison of the two schemes, we tried to optimize the scheme 4 

without tensor decomposition by performing dimensionality reduction following two different 5 

strategies: principal component analysis (PCA) and feature selection by feature ranking. 6 

PCA is a transformation that finds the optimal linear combinations of the features, in the sense 7 

that they represent the data with the highest variance in a feature subspace, without taking the intra-8 

class and inter-class variances into consideration separately. The reduced dimension of the feature 9 

vectors is determined by observing the eigenvalues of the covariance matrix of the feature vectors 10 

sorted in descending order. The largest eigenvalues that constitute a high percentage of the total 11 

variance (e.g. 99%) of the principal components and account for much of the variability of the data are 12 

selected. The eigenvectors corresponding to the selected eigenvalues are used to form the 13 

transformation matrix, resulting in feature vectors with reduced dimensionality. PCA was performed on 14 

the feature matrix and the performance in terms of accuracy for different number of retained 15 

eigenvectors so as different amounts of variation are kept, was evaluated. 16 

The proportion of retained variance for different number of retained eigenvectors was computed 17 

after sorting the eigenvectors in decreasing order of eigenvalues by  18 

          
   

 
   

   
 
   

 

where    is the eigenvalue for the i-th principal component,   the number of retained eigenvectors,  and 19 

and   the number of total number of components. Figure 6 shows the retained variance as a function 20 

of the number of retained eigenvectors.  21 
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 1 

Fig. 6 Classification Retained Variance for different number of PCA retained eigenvectors. 2 

 3 

As can be seen, 198 eigenvectors are required in order to achieve 100% variance while in order to 4 

achieve 99,9% variance, only 5 retained eigenvectors are required. The classification performance for 5 

different number of retained eigenvectors with respect to the BayesNet classifier is shown in Table 2. 6 

For the evaluation of the scheme without tensor decomposition we selected the BayesNet classifier, 7 

since it was the one that reached the highest accuracy.  The maximum accuracy, which is 85,85%, is 8 

achieved when 7 components are retained (99,9% retained variance).  Although PCA does not improve 9 

the accuracy of the scheme without tensor decomposition, it provides an accuracy which is almost 10 

equal to the initial one obtained with a feature vector of significantly lower dimensionality.   11 

Retained Components Retained Variance Accuracy 
1 97,2% 60,98% 

2 99,0% 78,54% 

3 99,6% 75,61% 

4 99,8% 70.24% 

5 99,9% 78,05% 

6 99,9% 83.90% 

7 99,9% 85,85% 

198 100% 82,44% 

Table 2 Classification performance for different amounts of retained variance with respect to the scheme 12 
without tensor decomposition 13 

 14 

Note that these results are produced by applying PCA without any standardization of the data 15 

before performing the analysis. In such a case, since the different features are not measured on the 16 

same scale and PCA is performed on the non-standardized features, each principal component is 17 

dominated by a single or a few features, the one(s) with the highest variance resulting somehow to an 18 

ordering of the features by their variance. In this case very few components explain all the variance in 19 
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the data. On the other hand, when z-score is used before PCA, the other components contribute as well 1 

to the explanation of the data variance, since standardizing implies assigning equal importance to all 2 

variables. As a result, when standardizing the data many more principal components are required to 3 

achieve the same variance (in order to achieve 99% variance, 115 retained eigenvectors are required). 4 

However, when standardizing the data, it seems that the additional components introduce noise 5 

resulting to significantly reduced classification accuracy. 6 

 As an alternative strategy for dimensionality reduction, we examined the discriminative power of 7 

the extracted features for the classification of epileptic and non-epileptic EEG events by feature 8 

ranking. The t-test was used for estimating the importance of each feature in binary classification. In 9 

this study, ranking is performed by following a leave-one-out strategy on the available subjects. 10 

Specifically, for each leave-one-out experiment, feature ranking is performed using the t-test in each 11 

training subset. This means that for each leave-one-out experiment the retained features may be 12 

different. The performance of the method, in terms of accuracy for different number of N-best features  13 

(N=10, 20, 30, ..., 1150) using the BayesNet classifier that had shown the best performance for the 14 

scheme without tensor decomposition are shown in Figure 7. 15 

 16 

Fig. 7  Classification Accuracy for the scheme without tensor decomposition for different subsets 17 
of N-best features (N=10, 20, .., 1150). 18 

 19 

As can be seen in the above figure the highest classification accuracy is achieved when a small 20 

subset of discriminative features is used. Specifically, the scheme without tensor decomposition 21 

achieves its highest accuracy (90,73%) for a subset of 100 best features. Such results indicate the 22 
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superiority of the tensor-based scheme even after the optimization of the scheme without tensor 1 

decomposition through feature selection.  2 

Finally, in order to examine the ability of the tensor-based scheme using the best performed 3 

classifier (KNN) to discriminate each type of pathological events from the others, we performed pair-4 

wise classification of all possible pairs of the events (GSW-PNES, GSW-VVS, and PNES-VVS). The 5 

achieved accuracies are presented in Table 3.  6 

Table 3 System performance (with and without tensor decomposition) in terms of accuracy for all the 7 
pairwise classification problems 8 

Pairwise classification Tensor-based scheme Without tensor decomposition 

GSW-PNES 0,991 0,901 

GSW-VVS 0,983 0,903 

PNES-VVS 0,886 0,760 

 9 

As can be seen, the discrimination of PNES and VVS pathological events was the most difficult 10 

problem (87% accuracy). The above might be attributed to the nature of the different types of the 11 

pathological events. In general, generalized spike waves were very specific ictal neurophysiological 12 

patterns, presenting much more consistent features (compared to the other types) and consequently 13 

making their detection an easier task. On the other hand, PNES has no specific EEG patterns but was 14 

frequently accompanied by muscular artifacts presenting great variability across subjects. Similar 15 

variability appears even between consecutive epochs of VVS examples, since there were several 16 

changes that happen successively in time during such an episode (beta / alpha  theta   delta   lower 17 

voltage rhythms   isoelectric suppression). It seems that the variability in the feature values of the 18 

PNES and VVS epochs was high (with respect to the available training data) impeding the learning of a 19 

discrimination model. 20 

Although direct comparison with other studies was not possible due to the different characteristics 21 

of each dataset (e.g. different seizure types, lack of PNES or VVS examples in most studies or use of 22 

single channel data), the achieved classification accuracy was higher than the one reported in the 23 

literature [15, 16]. Regarding our previous work on the same dataset [17,18], again the proposed 24 

tensor-based scheme achieves higher accuracy. 25 

4. Conclusions 26 
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In this paper, a tensor-based scheme was proposed to discriminate different pathological events, 1 

The scheme incorporates spatial-spectral-temporal features extracted from EEG brain activity, and 2 

TUCKER decomposition to extract a multi-linear discriminative subspace. The proposed scheme was 3 

compared against the commonly used matrix representation in which features are concatenated from all 4 

channels in order to capture the total spatiotemporal context.  Experimental results demonstrated that 5 

using multi-linear models, we were able to extract signature features of EEG recordings for 6 

discriminating various type of epileptic events with higher accuracy. Even after the optimization of the  7 

scheme without tensor decomposition through feature selection, the proposed tensor-based scheme still 8 

presented higher classification accuracy. 9 
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