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Abstract. We consider the inverse problem of retrieving the coe�cients of a second
order boundary operator from Cauchy data associated with the Laplace operator at
a measurement curve. We study the identifiability and reconstruction in the case
of piecewise continuous parameters. We prove in particular the di↵erentiability of
the Khon-Vogelius functional with respect to the discontinuity points and employ the
result in a gradient type minimizing algorithm. We provide validating numerical results
discussing in particular the case of unknown number of discontinuity points.

1. Introduction:

We study the inverse problem of retrieving the coe�cients of an impedance operator from

available Cauchy data on a given surface. This problem arises in a variety of applications

related mainly to non destructive testing of corrugated surfaces or the identification

of thin deposits [16, 14, 18, 11, 12]. The specificity of our work is to consider the

case of a generalized boundary operator involving the Laplace-Beltrami operator with

discontinuous coe�cients. For the study of inverse problems with generalized impedance

boundary conditions we refer to [3, 5, 2, 10]. We here employ a method that exploits the

di↵erentiability of the Kohn-Vogelius cost functional with respect to the discontinuity

points. We show in particular that this di↵erentiability holds although the state variable

may not be di↵erentiable (with respect to those discontinuity points). Indeed, from the

numerical perspective, this method is attractive as it reduces the number of unknowns

and therefore does not need sophisticated regularizations. This type of approach has

been used in [7] for the case of impedance coe�cients. The mathematical justification of

the method in the case of generalized impedance boundary conditions is more delicate.

Moreover, given the higher sensitivity of the inverse problem with respect to the Laplace-

Beltrami coe�cient, the interest of this type of approach is more relevant in this context.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator2

We consider here the case of the Laplace operator similarly to [5, 4] where the case of

regular coe�cients is considered and a method based on surface integral formulation

of the problem is employed. We also restrict ourselves to a two-dimensional setting of

the problem. The directions of generalizations are therefore multiple and are part of

ongoing e↵orts.

The outline of the paper is as follows. We first state the direct problem with a

sketch of some useful regularity properties of the solutions. The impedance boundary

conditions are assumed to hold on a known interior curve and the data for the inverse

problem is formed by Cauchy data on an exterior boundary. We then discuss the

identifiability issue in the case of piecewise continuous parameters. The case of general

L1 coe�cients is more complex (we refer to [8, 1] for a discussion of the inverse

problem with L1 coe�cients in the case of Robin type problem). We here show in

particular that two sets of Cauchy data are needed to ensure the identifiability. We

remove in particular the positivity assumption in [4] where a similar uniqueness result

is proved. After summarizing some easy-expected di↵erentiability results with respect

to L1 perturbations of the parameters, we discuss the di↵erentiability of the Khon-

Vogelius function with respect to L2 perturbations of the coe�cients (see [17, 9, 15, 6]

for more details concerning the Kohn-Vogelius method). This is done in the framework

of piecewise continuous parameters. We also explain why the di↵erentiability of the state

is not guaranteed in that framework. In the last part of this article we exploit these

results to design an inversion algorithm based on a gradient-descent procedure where

the minimization is done alternatively on the coe�cient values and the discontinuity

points. We discuss the accuracy of this procedure and robustness with respect to noise.

We show in particular that if the number of discontinuity points is not known a priori,

one needs a regularization procedure that does not allow the appearance of Dirac-like

singularities. An upper bound on the number of singularities can be automatically fixed

in the algorithm.

2. The Direct and the inverse problem

Let ⌦ be a doubly connected bounded domain of R2 with C1,↵ boundary, for some

↵ 2]0, 1[. We denote by � and ⌃ respectively the interior and exterior boundary of ⌦.

Let H := {u 2 H1(⌦) /u|� 2 H1(�)} endowed with the following natural graph norm:

kuk2H = kuk2H1(⌦) + ku|�k2H1(�).

One can easily see thatH is a Hilbert space. Let � 2 L2(⌃) denotes the imposed current

flux; � 6⌘ 0 and q 2 L1(�) be a Robin parameter such that: q � �; for some � > 0.

Let ⌘⇤ > 0 and ⌘ad be the set of admissible parameters:

⌘ad = {⌘ 2 L1(�) such that ⌘ � ⌘⇤ a.e. on �}.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator3

For every ⌘ 2 ⌘ad, we denote by u⌘ 2 H the solution of the following problem:

(N )

8
>>><

>>>:

��u = 0 in ⌦,
@u

@n
= � on ⌃,

@u

@n
+ qu� @

@⌧

✓
⌘
@u

@⌧

◆
= 0 on �,

where
@u

@⌧
denotes the tangential derivative of u|� and where n denotes the outward

normal vector. The two last equations in (N ) hold in the sense of traces in H� 1
2 (⌃)

and H� 1
2 (�) respectively. A function u⌘ 2 H satisfies (N ) if and only if it satisfies the

following variational problem:

(V )

(
Find u 2 H, such that :

a⌘(u, v) = L(v) 8 v 2 H

with

a⌘(u, v) :=

Z

⌦

ru.rv +

Z

�

quv +

Z

�

⌘
@u

@⌧

@v

@⌧
and L(v) =

Z

⌃

�v. (1)

One can prove by using the Lax-Milgram theorem, that the variational problem (V )

admits only one solution u⌘. Moreover, if � 2 L2(⌃), then by standard elliptic

regularities for PDE, u⌘ 2 H
3
2 (⌦) (we used here that u⌘ 2 H1(�)). Then, by trace

results, we have
@u⌘
@n

2 L2(�). Using the third equation in (N ), we then get that

⌘
@u⌘
@⌧

2 H1(�) (2)

which shows in particular that ⌘ @u⌘
@⌧

2 C0(�). These facts will be useful in the discussion

of uniqueness for the following inverse problem:

(I.P)

(
Given the prescribed flux � together with the potential measurement f := u⌘|⌃
recover the function ⌘ 2 ⌘ad.

By considering the case of the annulus domain: ⌦ = {(x, y) 2 R2, such that 1 <

x2 + y2 < 4}, where (�, f) = (1, 2 log(2) + 2)) on ⌃ and q = 1 on �, we see that

u(x, y) = log(x2 + y2) + 2

that satisfies
@u

@⌧
= 0 on � (3)

is the unique solution of the problem (N ) for every parameter ⌘ 2 ⌘ad. Consequently,

only one measurement is not su�cient to determine the unknown parameter ⌘.

We hereafter establish the following two identifiability results.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator4

Case 1. We first prove that if we avoid (3) by assuming that the set
⇢
x 2 � / ⌘

@u⌘
@⌧

(x) = 0

�
is of Lebesgue measure 0 in �, (4)

then only one measurement is su�cient to identify the unknown parameter ⌘.

Case 2: We exploit the result of Case 1 to prove that two di↵erent measurements of

Cauchy pairs corresponding to two linearly independent fluxes � and  are su�cient to

identify the unknown parameter ⌘ in the class of piecewise continuous functions.

Theorem 2.1 Let � 2 L2(⌃); � 6⌘ 0 and (⌘1, ⌘2) 2 ⌘ad ⇥ ⌘ad such that 4 holds for

⌘ = ⌘1. Then,

u⌘1 |⌃ = u⌘2 |⌃ ) ⌘1 = ⌘2.

Proof. One can see that the function w = u⌘1 � u⌘2 verifies the following Cauchy

problem: 8
<

:
��w = 0 in ⌦,
@w

@n
= 0 and w = 0 on ⌃.

From the unique continuation principle for the Laplace operator with Cauchy data, we

deduce that w ⌘ 0 in ⌦. Consequently, u⌘1 = u⌘2 in ⌦ and then we have

@

@⌧

✓
(⌘1 � ⌘2)

@u⌘1
@⌧

◆
= 0 on �.

Then, there exists C 2 R such that

(⌘1 � ⌘2)
@u⌘1
@⌧

= C on �

and also we have
(⌘1 � ⌘2)

⌘1

✓
⌘1
@u⌘1
@⌧

◆
= C on �, (5)

where g = ⌘1
@u⌘1
@⌧

2 C0(�) (as indicated in (2)). Let x0 2 � and x1 2 � such that:

u⌘1(x0) = min
x2�

u⌘1 and u⌘1(x1) = max
x2�

u⌘1(x).

We prove that C = 0 by considering the two following cases.

First case: u⌘1(x0) = u⌘1(x1). This implies that u⌘1 is constant on � and therefore

C = 0.

Second case: u⌘1(x0) 6= u⌘1(x1). In this case the sign of the continuous function g

must change on �. If not, for instance g(x) = ⌘1
@u⌘1
@⌧

(x) � 0 for every x 2 �, then

from the condition ⌘1 � ⌘⇤ > 0, we conclude that u⌘1 is increasing along the connected

curve in � joining x1 to x0 in the sense of increasing curvilinear abcissa. Consequently,

u⌘1(x1)  u⌘1(x0) which is of course a contradiction. We then conclude from the mean

value theorem that there exists some point a 2 � such that g(a) = 0.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator5

Let " > 0 be a su�ciently small number and ' : [0, 1] 7�! R2 be a C1,↵

parametrization of the curve � such that '0(t) 6= 0 for every t 2 [0, 1]. Let t0 2 [0, 1]

such that '(t0) = a and V" ⇢ � the arc joining a and a" = '(t0 + "). Integration (5)

along V" implies
C

"

Z

V"
d�  1

"

����
(⌘1 � ⌘2)

⌘1

����
L1(�)

Z

V"
|g|d�.

Consequently,

C

"

Z t0+"

t0

k'0(t)kdt  1

"

����
(⌘1 � ⌘2)

⌘1

����
L1(�)

Z t0+"

t0

|g|('(t))k'0(t)kdt.

By letting "! 0, we obtain

Ck'0(t0)k 
����
(⌘1 � ⌘2)

⌘1

����
L1(�)

k'0(t0)k|g('(t0))|

where k'0(t0)k 6= 0 and g('(t0)) = 0. Consequently C = 0. Using again (5) we obtain

(⌘1 � ⌘2)

⌘1

✓
⌘1
@u⌘1
@⌧

◆
= 0 on �.

Using (4) we conclude that

⌘1 = ⌘2 a.e. on �.

⇤

Theorem 2.2 Let � and  2 L2(⌃) be two linearly independent fluxes and (⌘1, ⌘2) 2
⌘ad ⇥ ⌘ad be two piecewise continuous parameters. For i 2 {1, 2}, we denote by u�⌘i and

u ⌘i the unique solution of problem (N ) corresponding respectively to the fluxes � and

 for a parameter ⌘ = ⌘i. Set f i
� = u�⌘i|⌃

and f i
 = u ⌘i|⌃

. Then we have the following

implication

(f 1
� , f

1
 ) = (f 2

� , f
2
 ) ) ⌘1 = ⌘2.

Proof. Using the same arguments as in the previous Theorem, we deduce that:

(⌘1 � ⌘2)

⌘1

 
⌘1
@u�⌘1
@⌧

!
= 0 and

(⌘1 � ⌘2)

⌘1

 
⌘1
@u ⌘1
@⌧

!
= 0 on �. (6)

Consequently,

✓
(⌘1 � ⌘2)

⌘1

◆2
0

@
 
⌘1
@u�⌘1
@⌧

!2

+

 
⌘1
@u ⌘1
@⌧

!2
1

A = 0 on �.

Assuming that we have ⌘1 6= ⌘2, we conclude that there exists x0 2 � and an

open connected subset I of � such that x0 2 I and ⌘1(x) 6= ⌘2(x) for every x 2 I.

Consequently,
@u�⌘1
@⌧

=
@u ⌘1
@⌧

= 0 on I.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator6

Then, there exists two constants ↵ and � such that:

u�⌘1 = ↵ and u ⌘1 = � on I. (7)

Consequently,

@u�⌘1
@n

+ q↵ = 0 and
@u ⌘1
@n

+ q� = 0 on I. (8)

Equations (7) and (8) give

8
><

>:

�(�u�⌘1 � ↵u ⌘1) = 0 in ⌦

(�u�⌘1 � ↵u ⌘1) = 0 on I,
@(�u�⌘1�↵u

 
⌘1 )

@n
= 0 on I.

By the unique continuation principle for the Laplace operator with surface homogeneous

Cauchy data we deduce that �u�⌘1 � ↵u ⌘1 = 0 in ⌦. Therefore

��� ↵ = 0 on ⌃,

and then ↵ = � = 0. Using again equations (7) and (8), we deduce that:

(
�u�⌘1 = 0 in ⌦

u�⌘1 = 0 and
@u�⌘1
@n

= 0 on I.

Then, u�⌘1 ⌘ 0 in ⌦ which is in contradiction with the fact that � 6⌘ 0. Consequently,

⌘1 = ⌘2 a.e. on �.

⇤

3. The Kohn-Vogelius function

We present in this part a numerical method based on the Kohn-Vogelius cost function

that allows us to determine the unknown piecewise constant parameter ⌘. For ⌘ 2 ⌘ad,

we denote by v⌘ the solution of the following problem:

(D)

8
>><

>>:

��v = 0 in ⌦,

v = f on ⌃,
@v

@n
+ qv � @

@⌧

✓
⌘
@v

@⌧

◆
= 0 on �.

In the sequel, we denote by

H0 = {v 2 H such that v = 0 in ⌃}.

The variational problem of (D) is given by

(V D)

(
Find v 2 H, such that v|⌃ = f,

a⌘(v, w) = 0 8 w 2 H0.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator7

where the bilinear form a⌘ is the same as in (1). We now consider the Kohn-Vogelius

cost function J� corresponding to the flux �, that measures the energy gap between u⌘
and v⌘, defined as

J� : ⌘ad �! R

⌘ 7�! J�(⌘) =

Z

⌦

|ru⌘ �rv⌘|2 +
Z

�

q|u⌘ � v⌘|2 +
Z

�

⌘

����
@u⌘
@⌧

� @v⌘
@⌧

����
2

,

where u⌘ is the solution of (V ) and v⌘ is solution of (D) with f being the potential

measurements on ⌃ corresponding with the flux � (f := u⌘|⌃ ). As a consequence of

Theorem 2.1, if (4) is satisfied, then the cost functional J� admits only one minimum

which is the solution ⌘ of the inverse problem (IP). If not than there may exist infinitly

many solutions as attested by the counter example given at the beginning of the second

section. Let ⌘0ad = ⌘ad \ Cp, where Cp denotes the all of piecewise continuous functions

defined on �. If we assume that ⌘ 2 ⌘0ad and we use two linear independent fluxes �

and  and a cost functional J = J� + J , then by using Theorem 2.2, J has a unique

minimizer on ⌘0ad given by the unique solution of (I.P).

3.1. Di↵erentiability of the cost function J�

Let � 2 L2(⌃) denotes the imposed current flux; � 6⌘ 0 and q 2 L1(�) be a Robin

parameter such that: q � �; for some � > 0.

Remark 3.1 We can assume that we have only q � 0. Then, one needs to change the

solution space to H̃ = {v 2 H,

Z

⌃

v = 0} and impose that

Z

⌃

� = 0.

We study in this part the di↵erentiability of J� with respect to the parameter ⌘.

Let ⌘ 2 ⌘ad and d 2 L1(�). For h > 0 small enough, we set by ⌘h := ⌘ + hd. One

can prove that we have the two following expansions (the proof is simple and is left to

reader).

Lemma 3.2 There exist u1
⌘ and "(h) in H such that

u⌘h = u⌘ + hu1
⌘ + h"(h), (9)

where lim
h!0

k"(h)kH = 0, and u1
⌘ is the solution of the following problem:

8
<

:

Find u 2 H such thatZ

⌦

ru.rv +

Z

�

quv +

Z

�

⌘
@u

@⌧

@v

@⌧
= �

Z

�

d
@u⌘
@⌧

@v

@⌧
8 v 2 H.

(10)

Lemma 3.3 There exist v1⌘ and "(h) in H0 such that

v⌘h = v⌘ + hv1⌘ + h"(h) (11)

where lim
h!0

k"(h)kH = 0, and v1⌘ is the solution of the following problem:

8
<

:

Find v in H0 such thatZ

⌦

rv rw +

Z

�

q v w +

Z

�

⌘
@v

@⌧

@w

@⌧
= �

Z

�

d
@v⌘
@⌧

@w

@⌧
8 w 2 H0.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator8

As a consequence of the two previous lemmas we straightforwardly deduce that the

function J� is Gateaux di↵erentiable at every point ⌘ 2 ⌘ad and we have the following

theorem.

Theorem 3.4 The cost function J� has the following expansion (for su�ciently small

h).

J�(⌘h) = J�(⌘) + h

Z

�

d.

"✓
@v⌘
@⌧

◆2

�
✓
@u⌘
@⌧

◆2
#

+ h"(h).

where lim
h!0

|"(h)| = 0.

Indeed the last theorem holds for small L1 perturbations hd. However this type of

perturbations do not include the case of small perturbations of discontinuity points of

⌘. This is what shall address now. We consider the case of piecewise constant parameter

⌘ and define the following set of admissible partitions of � where T denotes the set of

nonempty connected open subsets of �:

Vad :=

(
(#i)i=1,...,n; n > 1; #i 2 T ; #i \ #j = ; if i 6= j; and

n[

i=1

#i = �

)

Let ⌘⇤ > 0 be a given constant. The class of admissible parameters ⌘ is then redefined

by

⌘ad :=

(
⌘ =

nX

i=1

ci�#i ; (#i)i=1,...n 2 Vad; ci � ⌘⇤, i = 1, ...n

)
.

By using Theorem 3.4 with a direction d = �#j , we obtain the following corollary:

Corollary 3.5 Let ⌘ =
nX

i=1

ci�#i 2 ⌘ad and j 2 {1, 2, ..., n}. Then, the mapping:

⇣j,⌘ : R+ �! R t 7�! J�(t�#j +
X

i 6=j

ci�#i)

is di↵erentiable at cj, and we have

⇣ 0j,⌘(cj) =

Z

#j

"✓
@v⌘
@⌧

◆2

�
✓
@u⌘
@⌧

◆2
#
.

3.2. Derivative of J� with respect to the discontinuity points of ⌘

In this section, we shall discuss the derivative of the cost function J� with respect to the

(possible) discontinuity points of ⌘. The major di�culty is that the solutions u⌘ and v⌘
are not di↵erentiable with respect to discontinuity points. First, we begin by proving

the two following lemmas on the dependance of the state u⌘ with respect to ⌘.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator9

Lemma 3.6 Let � 2 L2(⌃) and q 2 L1(�); q � �; for some � > 0. Then, there

exists a constant C > 0, such that for every ⌘ 2 ⌘ad, the functions ⌘ @u⌘
@⌧

and ⌘ @v⌘
@⌧

are in

H1(�), and verify the following estimates:

����⌘
@u⌘
@⌧

����
H1(�)

 Cku⌘kH1(�) and

����⌘
@v⌘
@⌧

����
H1(�)

 Ckv⌘kH1(�).

Proof. Let & be the Neumann trace mapping:

& : H
3
2 (⌦) �! L2(�)

v 7�! @v
@n

and  the linear continuous mapping:

 : H1(�) �! H
3
2 (⌦)

v 7�! ṽ

where ṽ denotes the harmonic extension of v defined as the unique solution of the

following boundary value problem:
8
>><

>>:

��ṽ = 0 in ⌦,
@ṽ

@n
= � on ⌃,

ṽ = v on �.

We set ↵ := k k
L(H1(�),H

3
2 (⌦))

and � := k&k
L(H

3
2 (⌦),L2(�))

. Let ⌘ 2 ⌘ad, then the function

g = u⌘|� 2 H1(�) and we have

ku⌘kH 3
2 (⌦)

 ↵kgkH1(�).

Consequently,
@u⌘
@n

2 L2(�) and verifies the following estimate

����
@u⌘
@n

����
L2(�)

 ↵�ku⌘kH1(�).

Moreover, from the boundary conditions
@

@⌧

✓
⌘
@u⌘
@⌧

◆
=
@u⌘
@n

+ qu⌘, with qu⌘ 2 L2(�),

we deduce that ⌘ @u⌘
@⌧

2 H1(�) and verifies the following estimate:

����⌘
@u⌘
@⌧

����
H1(�)

 Cku⌘kH1(�)

for some constant C > 0 depending only on ↵, �, �, q and �. The proof for v⌘ can be

done in a similar way.

⇤
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Reconstruction of discontinuous parameters in a second order impedance boundary operator10

Remark 3.7 One can prove using similar arguments as in the previous Lemma that

there exists C > 0, such that for every (⌘1, ⌘2) 2 ⌘ad ⇥ ⌘ad, we have:
����⌘1

@u⌘1
@⌧

� ⌘2
@u⌘2
@⌧

����
H1(�)

 Cku⌘1 � u⌘2kH1(�) (12)

and, ����⌘1
@v⌘1
@⌧

� ⌘2
@v⌘2
@⌧

����
H1(�)

 Ckv⌘1 � v⌘2kH1(�). (13)

The following Lemma proves that the two mappings ⌘ 7�! u⌘ and ⌘ 7�! v⌘ are Lipschitz

from L2(�) into H.

Lemma 3.8 Let � 2 L2(⌃) and q 2 L1(�); q � �; for some � > 0. Then, there

exists a constant C > 0, such that for every (⌘1, ⌘2) 2 ⌘ad ⇥ ⌘ad, we have:

ku⌘1 � u⌘2kH  Ck⌘1 � ⌘2kL2(�) and kv⌘1 � v⌘2kH  Ck⌘1 � ⌘2kL2(�).

Proof. First, we can see from the variational formulation (V ) that for every ⌘ 2 ⌘ad,

we have:

min{1, ⌘⇤, �}ku⌘k2H  k�kL2(⌃)ku⌘kL2(⌃).

Let � be the norm of the trace mapping from H to L2(⌃), then we have:

ku⌘kH  �k�kL2(⌃)

min{1, ⌘⇤, �} (14)

Let us consider now two admissible parameters (⌘1, ⌘2) 2 ⌘ad ⇥ ⌘ad and e = u⌘1 � u⌘2 ,

then we have:
Z

⌦

rerv +

Z

�

qev +

Z

�

⌘1
@e

@⌧

@v

@⌧
= �

Z

�

(⌘1 � ⌘2)
@u⌘2
@⌧

@v

@⌧
for every v 2 H.

Therefore

min{1, ⌘⇤, �}kekH 
����(⌘1 � ⌘2)

@u⌘2
@⌧

����
L2(�)

.

By using the previous Lemma, we deduce that ⌘2
@u⌘2
@⌧

2 L1(�), and from the condition

⌘2 � ⌘⇤, we get

kekH 

���⌘2
@u⌘2
@⌧

���
L1(�)

⌘⇤ min{1, ⌘⇤, �}k⌘1 � ⌘2kL2(�).

Using again the previous Lemma together with the continuous embedding of H1(�) into

L1(�), we deduce from equation (14) that there exists a constant C > 0 such that

kekH  Ck⌘1 � ⌘2kL2(�). (15)

To prove the same result for the Dirichlet problem (D) we first prove the uniform

boundedness of v⌘ with respect to ⌘. Let v0 be the solution of the following Dirichlet

problem: 8
><

>:

��v = 0 in ⌦,

v = f sur ⌃,

v = 0 on �.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator11

Taking w = v⌘ � v0 as a test function in the variational formulation for v⌘, we simply

get: Z

⌦

|rv⌘|2 +
Z

�

q|v⌘|2 +
Z

�

⌘

✓
@v⌘
@⌧

◆2

=

Z

⌦

rv⌘rv0.

Consequently,

kv⌘kH  |v0|1,⌦
min{1, ⌘⇤, �} .

Let us consider now two admissible parameters (⌘1, ⌘2) 2 ⌘ad ⇥ ⌘ad and e0 = v⌘1 � v⌘2 ,

then we have
Z

⌦

re0rw +

Z

�

qe0w +

Z

�

⌘1
@e0

@⌧

@w

@⌧
= �

Z

�

(⌘1 � ⌘2)
@v⌘2
@⌧

@w

@⌧
for every w 2 H0.

Using exactly the same proof as for the first estimate (15), we obtain

ke0kH  Ck⌘1 � ⌘2kL2(�)

for some constant C > 0 only depending on ↵, �, �, q, ⌘⇤ and �.

⇤

In the sequel, we suppose that the curve � is parameterized by a C1,↵ function

' : [0, 1] 7�! R2. Consider a parameter ⌘ 2 ⌘ad. There exists some constants

c1, ..., cn 2 R+; n � 2 and a strictly increasing subdivision 0 = ↵0 < ↵1 < ... < ↵n = 1

such that ⌘ =
nX

i=1

ci �#i with #i = '([ ↵i,↵i+1[).

Let h > 0 be a small enough parameter and c0 = cn. We denote by mi = '(↵i), mi,h =

'(↵i + h) and by #i,h = '([↵i,↵i + h]) (see Figure 1).

Figure 1. The set #i,h
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Reconstruction of discontinuous parameters in a second order impedance boundary operator12

Let us denote by ⌘h the parameter defined by:

⌘h(x)

(
ci�1, if x 2 #i,h

⌘(x) else.

To compute the derivative of the cost function J� with respect to mi we need the

following lemma.

Lemma 3.9 Let � 2 L2(⌃) and q 2 L1(�); q � �; for some � > 0. Then, there

exists C > 0 such that for every h > 0 small enough, we have:

Z

#i,h

����

✓
⌘h
@u⌘h
@⌧

� ⌘
@u⌘
@⌧

◆
⌘
@u⌘
@⌧

����  Ch
3
2 ,

Z

#i,h

����

✓
⌘h
@v⌘h
@⌧

� ⌘
@v⌘
@⌧

◆
⌘
@v⌘
@⌧

����  Ch
3
2 .

Proof. We first observe that
Z

#i,h

����

✓
⌘h
@u⌘h
@⌧

� ⌘
@u⌘
@⌧

◆
⌘
@u⌘
@⌧

���� 
"����⌘h

@u⌘h
@⌧

� ⌘
@u⌘
@⌧

����
L1(�)

����⌘
@u⌘
@⌧

����
L1(�)

k'0kL1([0,1])

#
h(16)

From Remark 3.7 and the continuous embedding of H1(�) into L1(�), we deduce that

there exists a constant C1 > 0 such that:
����⌘h

@u⌘h
@⌧

� ⌘
@u⌘
@⌧

����
L1(�)

 C1ku⌘h � u⌘kH1(�) (17)

and by Lemma 3.8, we can deduce that there exists a constant C2 > 0 such that:

ku⌘h � u⌘kH1(�)  C2k⌘h � ⌘kL2(�). (18)

From the definition of ⌘h, we get for some c > 0 the following inequality

k⌘h � ⌘kL2(�)  ch
1
2 (19)

for h > 0 small enough. From (16), (17), (18) and (19), we infer the existence of a

constant C > 0, such that, for h > 0 small enough, we have
Z

#i,h

����

✓
⌘h
@u⌘h
@⌧

� ⌘
@u⌘
@⌧

◆
⌘
@u⌘
@⌧

����  Ch
3
2 . (20)

Using similar arguments, we also get:

Z

#i,h

����

✓
⌘h
@v⌘h
@⌧

� ⌘
@v⌘
@⌧

◆
⌘
@v⌘
@⌧

����  Ch
3
2 .

⇤
Let us define

J1
�(⌘) :=

Z

⌦

|ru⌘|2 +
Z

�

q|u⌘|2 +
Z

�

⌘

����
@u⌘
@⌧

����
2

.

Then we have the following theorem.

Page 12 of 23AUTHOR SUBMITTED MANUSCRIPT - IP-100938.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Reconstruction of discontinuous parameters in a second order impedance boundary operator13

Theorem 3.10 Let � 2 L2(⌃) and q 2 L1(�), q � � for some � > 0. Then:

J1
�(⌘h)� J1

�(⌘) = �

1

⌘

�✓
⌘
@u⌘
@⌧

(mi)

◆2

k'0(↵i)kh+ h"(h),

where
h
1
⌘

i
:= 1

ci
� 1

ci�1
and "(h) ! 0 as h ! 0.

Proof. Taking u⌘ ( respectively u⌘h) as a test function in the variational formulation

for u⌘ (respectively u⌘h), we simply get:

J1
�(⌘h)� J1

�(⌘) =

Z

⌃

�(u⌘h � u⌘).

Using u⌘ as a test function in the variational formulation for u⌘h , we get:
Z

⌦

ru⌘hru⌘ +

Z

�

qu⌘hu⌘ +

Z

�

⌘h
@u⌘h
@⌧

@u⌘
@⌧

=

Z

⌃

�u⌘

and in a symmetric way, we get
Z

⌦

ru⌘hru⌘ +

Z

�

qu⌘hu⌘ +

Z

�

⌘
@u⌘h
@⌧

@u⌘
@⌧

=

Z

⌃

�u⌘h .

Consequently,

J1
�(⌘h)� J1

�(⌘) =

Z

�

(⌘ � ⌘h)
@u⌘h
@⌧

@u⌘
@⌧

.

Using the definition of ⌘h we obtain:

J1
�(⌘h)�J1

�(⌘) =

Z

#i,h

(ci � ci�1)

cici�1

✓
ci�1

@u⌘h
@⌧

◆✓
ci
@u⌘
@⌧

◆
= �


1

⌘

� Z

#i,h

✓
⌘h
@u⌘h
@⌧

◆✓
⌘
@u⌘
@⌧

◆
.

Rearranging the terms yields

J1
�(⌘h)�J1

�(⌘) = �

1

⌘

� Z

#i,h

✓
⌘
@u⌘
@⌧

◆2

�

1

⌘

� Z

#i,h

✓
⌘h
@u⌘h
@⌧

� ⌘
@u⌘
@⌧

◆✓
⌘
@u⌘
@⌧

◆
.(21)

From Lemma 3.6, the function ⌘ @u⌘
@⌧

2 C0(�), and therefore
Z

#i,h

✓
⌘
@u⌘
@⌧

◆2

= k'0(↵i)k
✓
⌘
@u⌘
@⌧

(mi)

◆2

h+ h"(h). (22)

By (21), (22) and Lemma 3.9, we obtain:

J1
�(⌘h)� J1

�(⌘) = �k'0(↵i)k

1

⌘

�✓
⌘
@u⌘
@⌧

(mi)

◆2

h+ h"(h).

⇤
Now consider

J2
�(⌘) :=

Z

⌦

|rv⌘|2 +
Z

�

q|v⌘|2 +
Z

�

⌘

����
@v⌘
@⌧

����
2

.

Then we can establish similarly as in the proof of Theorem 3.10 the following result.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator14

Theorem 3.11 Let � 2 L2(⌃) and q 2 L1(�); q � �; for some � > 0. Then we

have:

J2
�(⌘h)� J2

�(⌘) =


1

⌘

�✓
⌘
@v⌘
@⌧

(mi)

◆2

k'0(↵i)kh+ h"(h),

where "(h) ! 0 as h ! 0.

Proof. Taking w = v⌘h � v⌘ 2 H0 as a test function in the variational formulation of

v⌘, we simply get the following equation:

Z

⌦

|rv⌘|2 +
Z

�

q|v⌘|2 +
Z

�

⌘

✓
@v⌘
@⌧

◆2

=

Z

⌦

rv⌘rv⌘h +

Z

�

qv⌘v⌘h +

Z

�

⌘
@v⌘
@⌧

@v⌘h
@⌧

and in a symmetric way, we get

Z

⌦

|rv⌘h |2 +
Z

�

q|v⌘h |2 +
Z

�

⌘h

✓
@u⌘h
@⌧

◆2

=

Z

⌦

rv⌘hrv⌘ +

Z

�

qv⌘hv⌘ +

Z

�

⌘h
@v⌘h
@⌧

@v⌘
@⌧

.

Consequently,

J2
�(⌘h)� J2

�(⌘) = �
Z

�

(⌘ � ⌘h)
@v⌘h
@⌧

@v⌘
@⌧

�
.

The remaining of the proof follows exactly the same line as the proof of Theorem 3.10.

⇤
Using the fact that:

Z

⌦

ru⌘hrv⌘h +

Z

�

qu⌘hv⌘h +

Z

�

⌘h
@u⌘h
@⌧

@v⌘h
@⌧

=

Z

⌃

�f,

then,

J�(⌘h)� J�(⌘) =
�
J1
�(⌘h)� J1

�(⌘)
�
+
�
J2
�(⌘h)� J2

�(⌘)
�
.

Therefore, we obtain the following straightforward corollary of Theorems 3.10 and 3.11.

Theorem 3.12 Let � 2 L2(⌃) and q 2 L1(�); q � �; for some � > 0. Then, the

Kohn-Vogelius function J� is di↵erentiable with respect to the discontinuity points of ⌘

and we have:

J�(⌘h)� J�(⌘) =


1

⌘

� ✓
⌘
@v⌘
@⌧

(mi)

◆2

�
✓
⌘
@u⌘
@⌧

(mi)

◆2
!
k'0(↵i)kh+ h"(h).

where "(h) ! 0 as h ! 0.

Remark 3.13 We have established in the previous theorem that the cost function J�
is di↵erentiable with respect to the discontinuity points of ⌘ which allows us to use an

algorithm of gradient type to determine the unknown parameter ⌘. The following Lemma

allows us to prove that the state u⌘ is not di↵erentiable with respect to the discontinuity

points of ⌘ and then the theorem 3.12 cannot be established as a simple consequence of

the state derivatives.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator15

Lemma 3.14 Let v 2 C1(⌦) and eh = u⌘h � u⌘, then we have:
Z

⌦

rehrv +

Z

�

qehv +

Z

�

⌘
@eh
@⌧

@v

@⌧
= k'0(↵i)k(ci � ci�1

ci�1
)

✓
⌘
@u⌘
@⌧

◆
(mi)

@v

@⌧
(mi)h+ h"(h)

with "(h) ! 0 as h ! 0.

Proof. By using the variational formulations of u⌘ and u⌘h , we simply get:
Z

⌦

rehrv +

Z

�

qehv +

Z

�

⌘
@eh
@⌧

@v

@⌧
= �

Z

#i,h

(⌘h � ⌘)
@u⌘h
@⌧

@v

@⌧
.

Then we have
Z

⌦

rehrv +

Z

�

qehv +

Z

�

⌘
@eh
@⌧

@v

@⌧
= (

ci � ci�1

ci�1
)

Z

#i,h

⌘h
@u⌘h
@⌧

@v

@⌧
.

Consequently,
Z

⌦

rehrv+

Z

�

qehv+

Z

�

⌘
@eh
@⌧

@v

@⌧
= (

ci � ci�1

ci�1
)

Z

#i,h

⌘
@u⌘
@⌧

@v

@⌧
+(

ci � ci�1

ci�1
)

Z

#i,h

(⌘h
@u⌘h
@⌧

�⌘@u⌘
@⌧

)
@v

@⌧

where the function: ⌘
@u⌘
@⌧

@v

@⌧
2 C0(�). Then, we have:

Z

#i,h

⌘
@u⌘
@⌧

@v

@⌧
= k'0(↵i)k

✓
⌘
@u⌘
@⌧

◆
(mi)

@v

@⌧
(mi)h+ h"(h).

Moreover, one can prove like in (20) the existence of a constant C > 0 such that
�����

Z

#i,h

(⌘h
@u⌘h
@⌧

� ⌘
@u⌘
@⌧

)
@v

@⌧

�����  Ch
3
2 .

Consequently,
Z

⌦

rehrv+

Z

�

qehv+

Z

�

⌘
@eh
@⌧

@v

@⌧
= k'0(↵i)k(ci � ci�1

ci�1
)

✓
⌘
@u⌘
@⌧

◆
(mi)

@v

@⌧
(mi)h+ h"(h).

⇤

Theorem 3.15 If [⌘](mi) 6= 0 and ⌘ @u⌘
@⌧

(mi) 6= 0, then we cannot find a function u1 2 H

such that
u⌘h�u⌘

h
* u1 weakly in H (i.e the state u⌘ is not weakly di↵erentiable with

respect to mi).

Proof. Clearly the linear mapping

 : C1(⌦) �! R, v 7�! @v

@⌧
(mi)

cannot be extended by density to a continuous mapping from H to R. Then using

Lemma 3.14 we can conclude that if [⌘](mi) 6= 0 and ⌘ @u⌘
@⌧

(mi) 6= 0, the state u⌘ is not

weakly di↵erentiable with respect to the discontinuity point mi.

⇤
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Reconstruction of discontinuous parameters in a second order impedance boundary operator16

4. Numerical algorithm and results

In this section, we present some validating numerical results using a minimization

algorithm of gradient type. The numerical examples are based on synthetic data

numerically simulated using the FreeFem++ software [13]. We also use the same

software in solving the inverse problem and make a special attention to avoid “inverse

crimes” by using di↵erent meshes and adding random noise to the synthetic data.

Description of the numerical algorithm From the identifiability study presented in

section 2 of the paper, we already see that at least two di↵erent measurements are needed

to guarantee unique determination of the parameter ⌘. Since our algorithm is based on

minimizing the cost functional J�, one also has to avoid (as much as possible) the

presence of local minima. We numerically observed that this can be done by increasing

the number of used fluxes �. More specifically, given N linearly independent fluxes

�1, �2, ...,�N , the cost functional J(⌘) that we shall consider is

J(⌘) :=
NX

j=1

J�j(⌘).

Let us denote by {'(↵) = (x(↵), y(↵));↵ 2 [�⇡, ⇡[} a parametrization of the curve �.

The impedance function ⌘ is then sought as a piecewise constant function of ↵ 2 [�⇡, ⇡)
parametrized by the number of discontinuity points n, the points of discontinuities

mi = (x(↵i), y(↵i)) and the values ci > 0 of ⌘ on ]↵i�1,↵i[ for i = 1, . . . , n where we

have set ↵0 = ↵n and assumed that ↵i < ↵i+1. The cost functional J can then be

seen as a function of ↵i and ci, i = 1, . . . n. The derivative of J with respect to these

parameters can be written as

@J

@ci
=

NX

j=1

@J�j
@ci

,
@J

@↵i

=
NX

j=1

@J�j
@mi

,

where
@J�j
@ci

is given by the Corollary 3.5 and
@J�j
@mi

by the Theorem 3.12. Our algorithm

alternates iterations on ci and ↵i and can be synthetically written as

ck+1
i = cki � ⇢kc

@J

@ci
(ck1, . . . , c

k
n,↵

k
1, . . . ,↵

k
n),

↵k+1
i = ↵k

i � ⇢k⌘
@J

@↵i

(ck+1
1 , . . . , ck+1

n ,↵k
1, . . . ,↵

k
n).

At each iteration, the steps ⇢kc and ⇢k⌘ are determined so that the cost functional

decreases. This is done by reducing the step size by a factor � < 1 if the cost functional

does not decrease till a small tolerances ✏c and ✏⌘. The algorithm stops if

����⇢
k
c

@J

@ci
(ck1, . . . , c

k
n,↵

k
1, . . . ,↵

k
n)

���� < ✏c and

����⇢
k
⌘

@J

@↵i

(ck+1
1 , . . . , ck+1

n ,↵k
1, . . . ,↵

k
n)

���� < ✏⌘.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator17

In the case on unknown number of singularities, an additional constrain is used in our

algorithm to prevent instabilities coming from two identical singularity points. We shall

discuss two strategies. In the first one we enforce at each iteration step

|↵i+1 � ↵i| > ↵⇤ > 0 (23)

where ↵⇤ is a fixed parameter. In the second strategy, if (23) is not satisfied, then the

two discontinuity points are merged together.

Numerical experiments For our numerical validating examples we choose the fluxes �j

defined on ⌃ as

�j(~x) =
(~x� ~xj) · ~n
k~x� ~xjk2 ~x 2 ⌃

where ~n is the outer normal on ⌃ and where the “point source” ~xj is chosen as

~xj = R(cos(✓j), sin(✓j)) ✓j = 2⇡
j � 1

N
.

In the following examples, ⌃ is chosen to be the unit circle, R = 1.3 and the impedance

function q(x, y) = (6x+ 7)/(x3 � 3x+ 3). The parameters for the inversion algorithm

are ✏c = 10�3 and ✏⌘ = 10�3. The synthetic data fj, j = 1, . . . , N are numerically

computed by solving (V ). In order to avoid an inverse crime, we used a di↵erent mesh

than the one used in the inversion algorithm and we corrupt the data with random

noise as f �j = fj(1 + �rj) where rj is a vector of uniformly randomly distributed values

between �1 and 1 and where the positive number � < 1 indicates the noise level

The case of a mildly non convex kite We first consider the case of � being a kite

parametrized as (
x(↵) = 0.6 cos(↵) + 0.2 cos(2↵)� 0.1,

y(↵) = 0.5 sin(↵),

and four discontinuity points at ↵1 = �3⇡
4 , ↵2 = 0, ↵3 =

⇡
4 and ↵4 =

3⇡
4 (See Figure 2).
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Reconstruction of discontinuous parameters in a second order impedance boundary operator18

Figure 2. Description of the geometry for the first example

Figure 3 indicates the two di↵erent meshes used for simulating the synthetic data
and in the inversion algorithm (where problems N and D are solved at each iteration).

Figure 3. The mesh used to compute the synthetic data (left) and the (refined) mesh
used for the inversion algorithm (right).

a. The case of known ci and n
We first discuss the case where only the discontinuity points mi are unknown. The
obtained results for a noise level � = 5% and di↵erent values of the number of used
fluxes N are depicted in Figures 4 and 5. We remark that the precision is indeed
increased by increasing the number of fluxes. If only one flux is used, we observe that
a di↵erent local minima is found. We observed that in the case of known ci and n the
number of local minima is usually drastically reduced as long as more than one flux is
used. This is attested by the quality of the reconstructions observed in Figures 4 and 5.
As a general conclusion of similar experiments conducted but not reported here, we can
reasonably say that the algorithm is e�cient and stable in this type of configurations,
i.e. when ci and n are known.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator19

Figure 4. Values of ⌘ versus ↵ 2 [�⇡,⇡[ for di↵erent number N of used fluxes: N = 1
left and N = 2 right. Exact ⌘: dashed line. Initial guess: dotted line. reconstructed
⌘: solid line. This experiment is associated with the geometry of Figure 2 for known
values of ci and known n. The noise level � = 5%.

Figure 5. Values of ⌘ versus ↵ 2 [�⇡,⇡[ for di↵erent number N of used fluxes: N = 4
left and N = 8 right. Exact ⌘: dashed line. Initial guess: dotted line. reconstructed
⌘: solid line. This experiment is associated with the geometry of Figure 2 for known
values of ci and known n. The noise level � = 5%.

Figure 6 indicates the evolution of the cost functional during iterations. One
observes that only few number of iterations is needed to obtain a small residual. The
number of needed iterations in fact increases if the number of fluxes is reduced.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator20

Figure 6. The cost functional J versus the number of iterations for the experiment
of Figure 5 right (8 fluxes).

b. The case of unknown ci but known n
We here consider the same experiment as the one of Figure 5 but we assume that the
values of ci, i = 1, . . . , 4 are not known. We choose as initial guess a constant value
and initiate the discontinuity points at ↵initial

1 = �2⇡
3 ,↵

initial
2 = �⇡

3 ,↵
initial
3 = ⇡

3 and
↵initial
4 = 2⇡

3 . In the case of 1 or 2 fluxes the algorithm converges to a local minimum
that is far from the exact solution. We observe that reasonable accuracy is obtained for
the case of 4 and 8 fluxes. We also observed that the convergence for the discontinuity
points is faster than the one for the discontinuity values. This means in particular that
the direct problem is more sensitive to mi than to ci.

Figure 7. Values of ⌘ versus ↵ 2 [�⇡,⇡[ for di↵erent number N of used fluxes: N = 4
left and N = 8 right. Exact ⌘: dashed line. Initial guess: dotted line. reconstructed ⌘:
solid line. This experiment is associated with the geometry of Figure 2 for unknown
values of ci but known n. The noise level � = 5%.

c. The case of unknown ci and unknown n.
We still consider the same experiment as the one of Figure 5 or Figure 7. We now treat
the case where one overestimates the number of discontinuity points n. We indicate in
Figure 8 the obtained reconstructions using the first strategy, i.e. enforcing (23) to hold
at each iteration, for two di↵erent values of the parameter ↵⇤ (0.2 and 0.5). For this
example we initialize ⌘ with 6 discontinuity points that are indicated in Figure 8. In
general, better reconstructions are obtained if we increase the value of ↵⇤.
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Reconstruction of discontinuous parameters in a second order impedance boundary operator21

Figure 8. Values of ⌘ versus ↵ 2 [�⇡,⇡[ for di↵erent values of ↵⇤ that controls the
minimal distance between two discontinuity points and for a number of fluxes N = 8.
Left: ↵⇤ = 0.2. Right: ↵⇤ = 0.4. Exact ⌘: dashed line. Initial guess: dotted line.
reconstructed ⌘: solid line. This experiment is associated with the geometry of Figure
2 for unknown values of ci and an over estimated initial number of discontinuity points
n = 6. The noise level � = 5%.

The second strategy, consisting in merging together two discontinuity points if the

distance is less that ↵⇤ is tested in Figure 9. We choose ↵⇤ = 0.001 and indicate the two

steps at which this tolerance is reached. The value of c is then taken as the average value

between the two intervals that have been merged. We clearly see that this procedure

lead to better reconstructions.

Figure 9. Values of ⌘ versus ↵ 2 [�⇡,⇡[ at the iteration steps where a distance
between two consecutive discontinuity points is less than ↵⇤ = 0.001. Final
reconstruction is on the right. Number of fluxes N = 8. Exact ⌘: dashed line.
Initial guess (at the current iteration): dotted line. reconstructed ⌘: solid line. This
experiment is associated with the geometry of Figure 2 for unknown values of ci and
an over estimated initial number of discontinuity points n = 6. The noise level � = 5%.

A kite with stronger “non convexity” We end our discussion by reproducing the

experiment of Figure 7 in the case where the geometry of the kite is modified as
(

x(↵) = 0.6 cos(↵) + 0.3 cos(2↵)� 0.15,

y(↵) = 0.4 sin(↵).

The location of the discontinuity points is indicated in Figure 10. Let us emphasize
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Reconstruction of discontinuous parameters in a second order impedance boundary operator22

Figure 10. Description of geometry (left) and the reconstructed discontinuity points
(right).

that in the case where the values of ci are known, there is no notable di↵erence with

the previous case in terms of accuracy and stability of the reconstructions of the

discontinuity points. However, when the values of ci are not known, the algorithm

becomes much more sensitive to the initial guess as the number of local minima

significantly increases. This is particularly the case when discontinuity points are located

in the non convex regions. This is what we consider in Figure 10. It appears that a

possible path to avoid as much as possible local minima is to increase gradually the

number of used fluxes. This is what we illustrate in Figure 11 where we start with two

fluxes and use the final result as an initial guess for the case where we multiply the

number of fluxes by 2 till reaching the case of 8 fluxes. While starting with 8 fluxes does

not give satisfactory results, the current procedure provide a better reconstruction as

attested by Figure 11-right. Let us notice that the accuracy of the reconstruction of the

discontinuity points is better represented by Figure 10-right since our parametrization

is not given in terms of the curvilinear abscissa.

Figure 11. Values of ⌘ versus ↵ 2 [�⇡,⇡[ when gradually increasing the number N
of used fluxes: N = 2 left, N = 4 right and N = 8 right. Exact ⌘: dashed line. Initial
guess: dotted line. reconstructed ⌘: solid line. This experiment is associated with
the geometry of Figure 10-left for unknown values of ci but known n. The noise level
� = 3%.
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