
HAL Id: hal-01359812
https://hal.inria.fr/hal-01359812

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rover: Poor (but Elegant) Man’s Testbed
Zacharie Brodard, Hao Jiang, Tengfei Chang, Thomas Watteyne, Xavier

Vilajosana, Pascal Thubert, Géraldine Texier

To cite this version:
Zacharie Brodard, Hao Jiang, Tengfei Chang, Thomas Watteyne, Xavier Vilajosana, et al.. Rover:
Poor (but Elegant) Man’s Testbed. ACM International Symposium on Performance Evaluation of
Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN), Nov 2016, Valletta, Malta. �hal-
01359812�

https://hal.inria.fr/hal-01359812
https://hal.archives-ouvertes.fr

Rover: Poor (but Elegant) Man’s Testbed

Zacharie Brodard
Cisco Systems
Paris, France

brodazac@cisco.com

Hao Jiang
Cisco Systems
Paris, France

hjiang2@cisco.com

Tengfei Chang
Inria, EVA team
Paris, France

tengfei.chang@inria.fr
Thomas Watteyne

Inria, EVA team
Paris, France

thomas.watteyne@inria.fr

Xavier Vilajosana
Univ. Oberta de Catalunya

Barcelona, Catalunya, Spain
xvilajosana@uoc.edu

Pascal Thubert
Cisco Systems, France

Telecom Bretagne, France
pthubert@cisco.com

ABSTRACT
This paper presents the OpenVisualizer Rover testbed, a
simple, easy-to-deploy and cheap testbed for the Internet of
Things (IoT). The OpenWSN project provides a free and
open-source implementation of a standards-compliant pro-
tocol stack for the IoT, as well as all the necessary network
management and debugging tools. The network manage-
ment software, OpenVisualizer, is portable across popular
operating systems, and connects the OpenWSN low-power
wireless mesh network to the Internet. In the current setup,
motes are connected to the USB ports of the computer the
OpenVisualizer runs on. The OpenVisualizer monitors the
internal state of those motes, which it presents through a
web interface. Rover extends the OpenVisualizer by al-
lowing motes plugged into different computers to remotely
connect to it. Once connected, a user monitors and man-
ages the motes exactly as if they were connected locally.
This offers endless experimentation possibilities, as the re-
sulting testbed can be quickly (re)deployed in realistic envi-
ronments. An example Rover testbed has been deployed at
the Cisco Paris Innovation and Research Lab. This paper
discusses the Rover architecture, the deployment, and the
experimental research done with it.

CCS Concepts
•Networks→ Network experimentation; Network pro-
tocol design; Network measurement;

Keywords
Internet of Things; Testbed; OpenWSN; OpenMote.

1. INTRODUCTION
With the development of new technologies in ICT, we are

witnessing during the last few years the emergence and fast
growth of the Internet of Things (IoT). To exploit, test and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PE-WASUN’16 13–17 November 2016, Valletta, Malta
c© 2016 ACM. ISBN XXX-XXXX-XX-XX/XX/XX. . . $15.00

DOI: XX.XXX/XXX X

Figure 1: A Rover node.

verify new IoT technologies and standards, several experi-
mental testbeds have been developed and deployed to enable
experimental research and benchmarking. FIT IoT-lab [1]
is a testbed deployed in 6 sites across France, composed of
2728 low-power wireless nodes and 117 mobile robots, avail-
able for experimenting with large-scale wireless IoT tech-
nologies. Indriya [2] is another large-scale wireless sensor
network testbed deployed at the National University of Sin-
gapore. It uses TelosB devices and is built on an active-USB
infrastructure. Tutornet1 is a testbed running in Ronald Tu-
tor Hall at University of Southern California. It consists of
13 clusters, each cluster composed of a stargate and several
motes attached via USB cables. A central PC can program
any mote in the testbed through the communication with
these stargates over WiFi.

Such shared testbeds have a couple of shortcomings. First,
they are shared by nature: one has to wait for the motes to
become available before being able to start an experiment.
Second, they only feature a handful of types of motes (hard-
ware) and its hard – if at all possible – to swap the hardware
used. Third, they are deployed in a single location, which is
not representative of the variety of environments low-power
networks are deployed in. Forth, these testbeds are com-
plex and expensive to install, and often require a team of

1 http://testbed.usc.edu/

Figure 2: The OpenWSN protocol stack.

full-time engineers or grad students to keep them up and
running. And finally, these testbeds are academic/open by
nature, and not appropriate for in-house developments or
proprietary technology. The goal of the Rover architecture
presented in this paper is to address these shortcomings.

Rover combines the strengths of the OpenMote hardware
and the OpenWSN software. OpenMote2 [6] is an open-
hardware prototyping ecosystem designed to accelerate the
development of the Industrial Internet of Things (IIoT). The
OpenMote-CC2538 is the core of this ecosystem. It is a
4 cm × 3 cm board which provides computation and com-
munication capabilities. Its main component is the Texas
Instrument CC2538, a System-on-Chip (SoC) with a 32-bit
ARM Cortex-M3 micro-controller and a 2.4GHz IEEE802.15.4
radio transceiver. OpenWSN3 [7] provides an open-source
implementation of a fully standards-based protocol stack
for the IoT, running on a variety of hardware and software
platforms. With a suite of free and open-source debugging
and integration tools, it aims to help academia and indus-
try verify the applicability of these standards to the Inter-
net of Things. It is the reference open-source implementa-
tion of the IEEE802.15.4-2015 Time Synchronized Channel
Hopping (TSCH) standard and IPv6 over TSCH (6TiSCH).
Fig. 2 depicts the protocol stack implemented in OpenWSN.
OpenMote and OpenWSN have been designed together.

The Raspberry Pi4 is a credit-card sized single-board com-
puter, which aims at providing low-cost, high-performance
computers to stimulate the education of basic computer sci-
ence at schools. It features a Broadcom BCM2835 SoC, and
uses an SD card for booting and long-term storage. The dif-
ferent Debian and Arch Linux flavors that run on it comes
with a Python interpreter. It has become very popular gate-
way computer for IoT networks. Rover uses it as the default
platform to connect OpenMote boards to.

The goal of Rover is to offer all the pieces necessary for
building a testbed which is easily (re-)deployable, cheap and
running cutting-edge IOT protocols and standards. The
Rover testbed integrates the Raspberry Pi, OpenMote and

2 www.openmote.com
3 www.openwsn.org
4 www.raspberrypi.org

OpenWSN projects.
The contribution of this paper is threefold:

• It presents Rover, an easy-to-deploy, cheap, standards-
ready testbed for the IoT.

• It shows an example deployment of a Rover testbed at
Cisco-Paris.

• It discusses cases for which this type of testbed in par-
ticularly suited.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the OpenVisualizer, the software running
on the PC controller the testbed. Section 3 presents the
Rover architecture, highlights the components developed as
an contribution to the OpenVisualizer, and lists the key fea-
tures of the Rover testbed. Section 4 describes how a Rover
tesbed is currently deployed at Cisco-Paris. Section 5 dis-
cusses example use cases in which Rover-based experimen-
tation is particularly suitable. Finally, Section 6 concludes
this paper and discusses future work.

2. OPENVISUALIZER
The OpenVisualizer is a Python-based debugging and vi-

sualization tool that runs on a Windows/Linux/OSX com-
puter and interacts with the motes connected to it over se-
rial ports. It includes 6LoWPAN Low-power Border Router
(LBR) functionality, i.e. it translates 6LoWPAN packets
into IPv6 packets, thereby connecting the low-power wireless
mesh to the Internet. Its web-based user interface provides
relevant information about the OpenWSN network. This
includes the internal states of each mote (neighbor table,
communication schedule, routing table, a.o.), the multi-hop
routing structure, and the debug/error messages generated
by the motes. The OpenVisualizer also sends commands
and data to the motes, in particular packets coming from
the Internet.

The OpenVisualizer is built following the “Event Bus”
software design pattern. Components connected to the Event
Bus use a publish-subscribe approach to send messages to
one another. This modular software architecture makes the
code maintainable, flexible and extensible. The Event Bus
has proven to be a powerful tool to write applications and
support the ongoing development of communication stan-
dards and protocols.

Fig. 3 depicts the general architecture of the OpenVisu-
alizer. The Event Bus provides the messaging framework
for the full chain of services between a mote and the exter-
nal network. Components are conceptually grouped into the
functional areas shown on the bus. Each component imple-
ments an event handler and provides a specific service. The
openTun component creates and uses an IPv6 virtual TUN in-
terface, allowing motes to communicate with external appli-
cations running on the Internet. LBR is the component that
provides low-power border router translation between IPv6
packets on the external network, and 6LoWPAN packets in
the low-power wireless mesh. The RPL component manages
the multi-hop routes by implementing the RPL standard.
It receives the RPL DAO messages sent by the motes, and
maintains a central view of the RPL topology; it uses that
view to build source routes for packet sent into the mesh.
Each moteConnector is the primary interface for an individ-
ual mote; it pushes events out from the mote onto the bus,
for other components to display/interpret.

OpenVisualizer

Event Bus

IPv6

TUN interface

Application

LBR

RPL

moteState

UDPLatency Topology

BspRadio_{id}

Computer

moteProbe

Mote

moteProbe

Serial

Mote

OpenTun

IPv6

moteConnector
@{serial}

SourceRoute moteState
@{moteConnector}

v6ToInternet

v6ToMeshv6ToMesh

v6ToInternetgetSourceRoute

bytesToMeshupdateParents

getSourceRoute

updateParents

getParents

getParents
cmdToMote

fromMote.status

bytesToMesh

cmdToMote

fromMote.status

fromMote.data

fromMote.data

fromMoteConnector@{serial}

fromMoteProbe@{serial} fromMoteConnector@{serial}

fromMoteProbe@{serial}

Figure 3: OpenVisualizer without Rover.

Each moteConnector communicates with a mote over a
serial port using a moteProbe component. For each message
received from the mote, the moteProbe encapsulates it as
an event which it publishes on the Event Bus. Similarly,
the moteProbe subscribes to fromMoteConnector@{serial}

notifications at the Event Bus, to forward them to the mote
over its serial port. The serial frames between the mote
and the computer are framed using HDLC, implementing
RFC1662 [4]. The payload of the HDLC frame has a leading
1-byte “type”field which indicates the format of the followed
payload.

With each mote connected to the OpenVisualizer through
the serial, and almost all the necessary information about
the low-power wireless mesh fully visualized, it becomes easy
to conduct IoT research and development activities. Yet, it
requires for all the nodes to be physically connected to a
same computer, severely limiting the scalability of the ap-
proach.

3. THE ROVER TESTBED
In any realistic deployment, the different motes of the

mesh are not close enough to be connected directly to the
same computer running the OpenVisualizer. What is needed
is a mechanism to allow some motes to connect remotely.
This paper presents the improvement to the OpenVisualizer
which allows just that. We implemented the “Rover” mod-
ule, a version of the moteProbe which is connected to the
serial port of the mote, and connects to the main Event Bus
of the OpenVisualizer remotely.

3.1 Architecture
The new architecture can be divided into two parts, with

most components running in the central OpenVisualizer,
and the moteProbe components running remotely on each
Rover node. The architecture defines a new remoteConnec-

torServer component for the OpenVisualizer, and a re-

moteConnectorRover component for the Rover node. These
bridge the signaling data between the motes and the cen-
tral computer, without removing any of the OpenVisualizer
functionality. Fig. 4 shows the resulting OpenVisualizer ar-
chitecture.

The original moteProbe component still remains available;
the new architecture supports both local and remote motes,
concurrently. RemoteConnnectorServer is the new Open-

OpenVisualizer

Event Bus

IPv6

TUN interface

Application

LBR

RPLUDPLatency Topology

BspRadio_{id}

Computer

OpenTun

IPv6

v6ToInternet

v6ToMeshv6ToMesh

v6ToInternetgetSourceRoute

bytesToMeshupdateParents

getSourceRoute

updateParents

getParents

SourceRoute

getParents

moteState
@{moteConnector}

cmdToMote

fromMote.status

fromMote.data

moteConnector
@{serial} (@{roverIP})

bytesToMesh

cmdToMote

fromMote.status fromMote.data

fromMoteConnector@{serial} (@{roverIP})

fromMoteProbe@{serial} (@{roverIP})

fromMoteConnector@{serial}
(@{roverIP})

moteProbe

Mote

moteProbe

Serial

Mote

fromMoteConnector@{serial}

fromMoteProbe@{serial}

ZeroMQ

remoteConnectorServer

MoteMote

Rover

fromMoteProbe@{serial}
(@{roverIP})

Figure 4: OpenVisualizer with Rover.

Visualizer component which allows the mote to connect re-
motely. It maintains a TCP session between each Rover
node and the main OpenVisualizer. Through that session,
it transfers all the events destined to a remote Rover node.
Simlarly, it receives incoming events from the Rover nodes,
and dispatches them in the local Event Bus. No other
changes to the core components of the OpenVisualizer were
necessary.

The remoteConnectorServer communicates with each re-

moteConnectorRover using ZeroMQ5. ZeroMQ is an asyn-
chronous messaging system which offers one-to-many com-
munication between the OpenVisualizer and the Rover nodes.
Components exchange messages using a publish-subscribe
pattern: the remoteConnectorServer publishes events the
Rover nodes subscribe to, and subscribes to all the Rover
nodes to receive their events. The result is that the Event
Bus of OpenVisualizer is extended remotely to each Rover
node; all events are transparently transferred between com-
ponents, whether local or remote.

3.2 Additional Features
The Rover functionality is built into the OpenPi plat-

form6, the OpenWSN-ready distribution for the Raspberry
Pi. In the OpenPi, an OpenVisualizer Rover program runs
as a service called “openrover”, and serves socket connection
requests from the central OpenVisualizer.

Once the remote connection is established, the OpenVisu-
alizer is able to monitor and manage all the motes, regardless
of whether they are local or remote. It also allows the user
to remotely reset or reflash the motes with any arbitrary
firmware.

The Rover code was contributed to the OpenWSN project,
and is available under an open-source BSD license7.

4. EXAMPLE DEPLOYMENT
Fig. 1 shows a Rover node, consisting of an OpenMote

and a Raspberry Pi. Fig. 5 show the block diagram of

5 http://zeromq.org/
6 openpi.openwsn.org
7 As an online addition to this paper, all source code is avail-
able at https://github.com/openwsn-berkeley/openpi under
a BSD open-source license.

Raspberry Pi

OpenRover

ZeroMQ

remoteConnectorRover

Event Bus

Central Computer

moteProbe

Mote

moteProbe

Serial

Mote

fromMoteProbe@{serial}

fromMoteProbe@{serial}fromMoteConnector@{serial}

fromMoteConnector@{serial}

Event Bus

remoteConnectorServer

Figure 5: Functional block diagram of a Rover node.

OpenMote-CC2538 75 e
Raspberry Pi 3 35 e
enclosure 5 e
SD card 15 e
RJ45 cable 5 e

Total 135 e

Table 1: Approximate cost of a Rover node.

the software running on the Raspberry Pi The moteProbe

component is equivalent to that running in the OpenVisu-
alizer. It is the remoteConnectorRover component which
maintains the (remote) connection to the OpenVisualizer
The remoteConnectorRover component subscribes to the
fromMoteProbe@{serial} events from the local Event Bus,
and forwards them to the OpenVisualizer. Similarly, the
remoteConnectorRover component republishes fromMote-

Connector@{serial}@{roverIP} events received from the
OpenVisualizer into local Event Bus.

The remoteConnectorRover communicates with the re-

moteConnectorServer on the OpenVisualizer using ZeroMQ.
Each time a Rover node connects, the OpenVisualizer cre-
ates dedicated moteState and moteConnector components,
identified by the “@{roverIP}” and “@{serial}” suffixes.
From that moment on, Rover node and the OpenVisualizer
exchange all relevant information.

Table 1 gives an approximate cost of a Rover node.
A Rover-based testbed is currently deployed on the sixth

floor of the Cisco Innovation and Research Lab in Paris,
France. Fig. 6 shows the 8-node topology, each label are the
last 2 bytes of the OpenMote’s MAC address, in hexadecimal
notation. Mote 9E-D9 is the DAGroot, and is connected
to the Raspberry Pi which serves as the central computer
running the OpenVisualizer. The remaining nodes remote,
each connected to a Raspberry Pi running the OpenRover
software. For this experiment, The topology is hardcoded

Blackout Blinds

Projection screen

P
ro

je
c
ti
o

n
 s

c
re

e
n Existing

Air con

MDF board screen

Existing 2no.
racks

W
ri
te

a
b

le
 w

a
ll

M
X

3
0

0

White Board Wall

J1-3

640

F5-7A

J1-6

Q1-2

M1-11A

F3-10

J1-4

C4-11

R1-2

M5-13

629
G3-6

J1-1

T1-2

G4-11

R1-11

Q1-11

F5-7

G4-7

A1-14

614

F1-5

G4-6

652

G3-1A

M4-4

F4-3

666

M1-11

F1-8

618

679

M5-15

A1-11

G4-8

M4-3

F1-9

M1-2

O5-5A

F4-11

Q1-1

653

671

670

E5-11

S1-2

615

616

604

605

606

607

613

610

641

642

643
644

645

617

636

668

F1-6

F1-2

F1-1

E1-6

E1-2

E1-1

C5-2

C5-6 C5-7

E5-1

G2-2

O5-10

P5-1

P5-6

T1-7

T1-1

S1-7

S1-1

R1-7

R1-1

Q1-9

Q1-3

Q1-4

M1-7

M1-1

667

683

G4-3

Q1-7

635

S1-11

M1-8

A1-10

M1-12

601

E1-5

D1-7A

M5-8

G3-7

673

A1-1A

Q1-6

J1-5

T1-11

682

623A

F2-5

638

F3-11

608

609

611

612

C5-1

B5-5B5-4B5-1A5-5

E5-6

F5-1

F5-6

F5-2

G4-1 G4-2

G3-2F3-5 G3-1

G2-1

A1-1

A1-6

A1-2

A1-7

D1-11

D1-6
D1-12

D1-7
D1-1

D1-2

E1-7

F1-7

I1-11

I1-12

I1-7

I1-6

I1-1

I1-2

L1-12

L1-7

L1-2
L1-11

L1-6

L1-1

M1-6

P1-12

P1-7

P1-2

P1-11

P1-6

P1-1

Q1-8

R1-6

S1-6

T1-6

P5-10 Q5-6

O5-5

619 621

620

622

637
639

J1-2

APR 622

INNOVATION CENTER

APR 624

Gov. Affairs Office

EIFFEL

APR 6-1

SH-14

SH-13

ELEV4ELEV3

SH-20

SH-2

STAIR1

SH-1

SH-3

SH-4

SH-5

SH-6

600

600A

656

654 655

627

626

628

625

624

669

665

C-3

C-2

C-13

623

SH-17

SH-18

SH-9
SH-7

STAIR2

SH-8

ELEV2ELEV1

STAIR3

SH-16

SH-11SH-10

SH-19

SH-12

STAIR4

SH-15

FD

9E-C3

9E-F6

9E-EC

9E-D8

9E-C7

9F-02

9F-4A

9E-D9 (DAGroot)

Figure 6: Bird view of the Rover testbed running at
Cisco-Paris.

in a general shape of a ladder, and each mote check at layer
2 if each received packet comes from one of their neighbors,
if not the packet is simply dropped.

5. EXAMPLE USE CASE
This section illustrates how the Rover testbed is used

to conduct research on 6TiSCH [5] schedule management
with Traffic Engineering for Bit Indexed Explicit Repliation
(BIER-TE).

BIER (Bit Indexed Explicit Replication) is a new multi-
cast forwarding protocol [8]. When a multicast data packet
enters a BIER domain, the ingress router determines a set
of egress routers to which the packet needs to be sent, and
then encapsulates the packet in a BIER header. The BIER
header contains a bitstring in which each bit represents ex-
actly one egress router in the domain. To send a packet to a
particular set of egress nodes, the ingress node sets the bits
for each of those egress nodes, and clears other bits in the
bitstring. Each packet can then be forwarded along the uni-
cast shortest path tree from the ingress node to the egress
nodes based on some routing protocol.

BIER-TE [3] is a Traffic Engineering technique inspired
from BIER and being standardized. It forwards and repli-
cates packets based on BIER-like bitstrings, but does not
require an routing protocol. The key differences over BIER
are: (1) BIER-TE replaces in-network, autonomous, and
IGP-based path calculation by explicit paths calculated of-
f-path by a controller; (2) in BIER-TE, every bitposition of
the bitstring of a BIER-TE packet indicates one or more ad-
jacencies – instead of a set of destination nodes as in BIER;
(3) in BIER-TE, each node has no routing table but only
a BIER-TE Forwarding Table (BIFT). The BIFT specifies
how the node should replicate packets to its adjacencies ac-
cording to the bitstring contained in the BIER header of
the packet. BIER-TE can thus be used to enable path di-
versity by controlling replication and elimination by tuning
the bitstring in the BIER header. The output bitstring from
the last node in path can be used to identify transmission
failures, and this information can be passed to the central
controller, which in turn can modify the bitString for the
next packets.

To explore the performance of BIER-TE on a 6TiSCH low-
power wireless mesh, we implemented BIER-TE on Open-
WSN and evaluated its performance on the Cisco-Paris Rover
testbed. Fig. 7 depicts how the test is used. The Open-
Visualizer shows the network topology in real time. Upon
receiving a new flow, the OpenVisualizer computes a com-

OpenVisualizer

Mote

Mote

Mote

Mote

Mote

Mote

Mote

Mote

bitmap update bitmap feedback

BIER packet
 replicaiton & elimination

source destination

scheduling

Figure 7: Using the Rover testbed to benchmark
BIER-TE on OpenWSN.

plex path, reserves timeslots, and installs a BIFT into each
node over their serial port. An associated bitmap for this
flow is then assigned by the OpenVisualizer in the ingress
node, and inserted into the BIER header of each packet.
Each node along the path receiving the packet examines the
bitmap against its BIFT and performs packet forwarding,
replication or elimination operations. When the destination
node receives the packet, it forwards the payload data to the
upper layer and feeds the bitmap and delay back to Open-
Visualizer. With the Rover testbed, various experiments are
conducted to benchmark the performance of BIER-TE over
6TiSCH. For each experiment, the code is instrumented to
measure jitter, latency, loss ratio and reliability.

The Rover testbed thus proved itself essential to conduct
this real-world experimental study. It integrates both the
advanced OpenWSN software and the state-of-the-art Open-
Mote hardware. It includes an open-source and up-to-date
implementation of a complete protocol stack based on IoT
standards, which makes the testbed complete and powerful.
The real-time network visualization makes it simple and easy
to use. The OpenVisualizer offers network monitoring and
management capabilities, no matter whether the mote is lo-
cal or remote, real or simulated. The fact that each Rover
node can be positioned anywhere while maintaining the con-
nection with the central OpenVisualizer is a critical feature.
Because of their Ethernet connectivity, and the low cost of
the nodes, the testbed can be redeployed in minutes. We
strongly believe the Rover architecture is key tool for con-
ducting benchmarking and feasibility studies, in particular
for the standards for the Industrial IoT.

6. CONCLUSION
This paper introduces Rover, an IoT testbed which com-

bines OpenWSN software and OpenMote hardware in an
easy-to-use, flexible and cheap solution. It offers an ideal
real-world experimentation environment for both academic
and industry R&D activities, and will help shape the future
of the Internet of Things. It improves to the OpenVisualizer
software by allowing node to connect remotely. Through the
connection, the OpenVisualizer and Rover node exchange
signaling and data.

We are currently working on a mechanism for the Open-
Visualizer to automatically discover the Rover nodes which
are in the local network, either through mDNS, or by using a
registration mechanism to a resource directory. We are also
working towards a Rover node which uses an Intel Edison
rather than a Raspberry Pi. This will allow Rover nodes to
connect to WiFi (at 5 GHz) rather than Ethernet, offering
even more flexibility.

Acknowledgment
This work was partly supported by the European Commis-
sion’s Horizon 2020 Framework Programme, through the
H2020 F-Interop and H2020 ARMOUR projects.

7. ADDITIONAL AUTHORS
Additional author: Geraldine Texier (Telecom Bretagne,

email: geraldine.texier@telecom-bretagne.eu).

8. REFERENCES
[1] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton,

T. Noel, R. Pissard-Gibollet, F. Saint-Marcel,
G. Schreiner, J. Vandaele, and T. Watteyne. FIT
IoT-LAB: A large scale open experimental IoT testbed.
In World Forum on Internet of Things (WF-IoT),
pages 459–464, Milan, Italy, 14-16 December 2015.
IEEE.

[2] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda.
Indriya: A Low-cost, 3D Wireless Sensor Network
Testbed. In International ICST Conference on Testbeds
and Research Infrastructures for the Development of
Networks and Communities (TridentCom), pages
302–316, Shanghai, China, 17-19 April 2011. Springer.

[3] T. Eckert, G. Cauchie, W. Braun, and M. Menth.
Traffic Engineering for Bit Index Explicit Replication
BIER-TE, 8 July 2016.

[4] W. A. Simpson. PPP in HDLC-like Framing. RFC1662,
July 1994.

[5] P. Thubert. An Architecture for IPv6 over the TSCH
mode of IEEE 802.15.4. draft-ietf-6tisch-architecture-10
[work-in-progress], 10 June 2016.

[6] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister.
OpenMote: Open-Source Prototyping Platform for the
Industrial IoT. In 7th EAI International Conference on
Ad Hoc Networks (AdHocNets), pages 211–222, San
Remo, Italy, 1-2 September 2015. Springer.

[7] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim,
K. Weekly, Q. Wang, S. Glaser, and K. Pister.
OpenWSN: a Standards-based Low-Power Wireless
Development Environment. Transactions on Emerging
Telecommunications Technologies (ETT),
23(5):480–493, 2012.

[8] I. Wijnands, E. C. Rosen, A. Dolganow, T. Przygienda,
and S. K. Aldrin. Multicast using Bit Index Explicit
Replication. draft-ietf-bier-architecture-04
[work-in-progress], 18 July 2016.

