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Abstract. The orientation problem for ternary cyclic order relations has been attacked in the literature
from combinatorial perspectives, through rotations, and by connection with Petri nets. We propose here
a two-fold characterization of orientable cyclic orders in terms of symmetries of partial orders as well
as in terms of separating sets (cuts). The results are inspired by properties of non-sequential discrete
processeses, but also apply to dense structures of any cardinality.

1 Introduction

In girum imus nocte et consumimur igni1.
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Fig. 1. Cyclic orders

Partial orders can be seen as the canonical way of de-
scribing or specifying distributed and interacting processes in
all technical areas. Their axiomatization is simple, and their
theory is rich in results and algorithms. On the other hand,
systems that repeat the same actions and states periodically,
suggest an intuitive way of ordering in cycles: On the left
hand side of Figure 1, event b always occurs between a and
c, c always between b and d, etc. It is obvious that under
the cyclic symmetry, an axiomatization of this relation with
binary transitive relations will not be able to express the ori-
entation of the cycle: since every event “precedes” every other,
precedence is an equivalence here. The axiomatizations existing in the literature use either

– ternary relations ([ANP91,ChN83,Gen71,IC00,Jak94,Meg76,Nov83,Qui89,Qui91] and the present arti-
cle),

– pairs of binary relations ([ER94]),

– or tuples/words of variable length ≥ 2 ([Hun16,Hun24a,Hun24b,Hun38,Ste98]).

We will focus here on a canonical ternary relation framework.

The distinction between total and partial orders carries over from the acyclic to the cyclic case. While
the left hand side of Figure 1 gives a total cyclic arrangement of four elements, the right hand side illustrates
a truly partial cyclic order: b and u are both ordered w.r.t. all other elements, since they are between a and
c, yet there is no ordering between the two. This article deals precisely with the connection between partial
cyclic orders and partial acyclic orders . – The following Section 2 introduces or recalls key concepts ; Section
3 proves the main results, and Section 4 concludes.

1 ‘̀We enter the circle after dark and are consumed by fire”; Latin palindrome said to describe the movement of
moths around (and into) a flame; author unknown



2 Problem Statement

Partial Orders and Szpilrajn’s theorem. Π = (X , <) with X a non-empty set and < a binary relation
over X is a partial order (PO) or poset iff < is i) transitive: x < y and y < z imply x < z; and ii)
irreflexive: x 6< y.
Let li , (< ∪ <−1) denote comparability and co , (X ×X )\(idX ∪ li) incomparability of pairs of nodes;
here, idX , {(x, x) | x ∈ X} is the identity relation. If X 2 = li ∪ idX , then < is a total order (TO).
According to Szpilrajn’s Theorem [Szp30], every PO has an embedding into some TO, called its linearization.

We will examine which axioms are meaningful for cyclic ordering; the counterpart of Szpilrajn’s theorem
will turn out to hold only in a non-trivial important subclass for cyclic orders, for which we give a novel
characterization in terms of partial orders.

Stehr [Ste98] shows that for discrete cyclic orders, global orientation is equivalent to (i) having a Petri
net representation and (ii) existence of a true cut (called cycle separator below), i.e. an set of pairwise
independent nodes that separates all cycles. Here, we prove a generalization of this result, for general cyclic
orders and only requiring existence of some superstructure that contains a separator, and also showing a
close connection between acyclic partial orders, i.e. posets, and the orientable cyclic orders.

We first fix some notations and definitions. An n-ary relation over X is a non-empty subset R ⊆ Xn;
the important cases here will be n = 2 (binary) and n = 3 (ternary). Write x1 R x2 to express that
(x1, x2) ∈ R for a binary relation R; if R is ternary, we write R(x1, x2, x3) iff (x1, x2, x3) ∈ R. For Y ⊆ X ,
Y non-empty, and R an n-ary relation over X , denote by R|Y the restriction of R to Y. If X1 ⊆ X2 and
R1 = R2|X1

, call Θ1 = (X1,R1) a substructure of Θ2 = (X2,R2), and Θ2 a superstructure of Θ1. If for
R1 and R2 of same arity and over the same set X it holds that R2 ⊆ R1, say that R1 embeds R2 (or:
R1 is an embedding for R2).

If Π1, Π2 are POs and Π1 is a substructure of Π2, call Π1 a SubPO of Π2 and Π2 a SuperPO of Π1.
An equivalence is a transitive, symmetric and reflexive binary relation. A non-empty set E ⊆ X is an

R-clique iff x R y for all x, y ∈ E such that x 6= y.

2.1 Cyclic Orders and Orientability
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Fig. 2. Ternary Transitivity

We represent cyclic orders as ternary rather than bi-
nary relations. This is not an arbitrary choice: it re-
quires a ternary structure to discern senses of ro-
tation, i.e. tell “clockwise” from “counterclock-
wise”. In artificial intelligence, some recent work on
qualitative spatial reasoning uses ternary cyclic order-
ing, see [IC00]; the situation there, however, is simpli-
fied by the absence of co (only total cyclic orders are
used, see below). The following is the usual2 definition
of partial cyclic orders (see [Qui91,Qui89,Jak94,Ste98]).

Definition 21 (Cyclic Orders) Let ^ be a ternary relation over the set X . Then Γ = (X ,^) is a cyclic
order (CyO) iff it satisfies, for a, b, c, d ∈ X :

1. inversion asymmetry: If ^(a, b, c), then ^(b, a, c) does not hold;
2. rotational symmetry: If ^(a, b, c), then ^(c, a, b);
3. ternary transitivity: If [^(a, b, c) ∧ ^(a, c, d)], then ^(a, b, d).

Definition 22 Call a ternary relation R simple iff R(x, y, z) implies that x 6= y 6= z 6= x.

From Definition 21, one obtains:

Lemma 23 If (X ,^) is a CyO, then ^ is simple.

2 The non-ternary approach of Stehr [KS97,Ste98]) provides an equivalent representation of cyclic orders; the results
here carry over after careful translation.



Proof: Assume ^ is not simple. Then rotational symmetry implies that there exist x, y ∈ X such that
^(x, x, y); hence inversion asymmetry is violated. 2

Note that ternary transitivity resembles binary transitivity; compare Figure 2.

e

 h
 l

  i

j

f

g

bd
k

c

 a

e

 h
 l

  i

j

f

g

bd
k

c

 a

Fig. 3. Top: a cyclic order ; bottom: one of its li-oriented extensions. Neither version is orientable.

Definition 24 A CyO Γtot = (X ,^tot) is called total or a TCO if for all a, b, c ∈ X ,

(x 6= y 6= z 6= x)⇒ ^(a, b, c) ∨ ^(b, a, c).

Note that there are only two different ways to orient a given triple in a cyclic order, since all other arrange-
ments are rotations of either (a, b, c) or (b, a, c).

Orientations of cyclic orders. Let Γ = (X ,^) be a CyO. If there exists a total CyO Γtot on X such
that Γtot embeds Γ , then Γ is called orientable, and Γtot an orientation of Γ . The existence of an
orientation for Γ is equivalent to Γ having a graphical representation by clock cycles, i.e. as a collection
of directed loops in the two-dimensional plane such that the origin is avoided and such that all loops run
clockwise around the origin3. Orientable CyOs are therefore also called globally oriented ([Ste98]). They
are characterized by the fact that a counterpart to Szpilrajn’s Theorem [Szp30] hold. The cyclic order Γ of
Figure 5 is orientable. In fact, it is already given in clock cycles, an orientation is found by projecting, from
the center, to some cycle surrounding N , and then ordering in an arbitrary way those transitions or places
that may happen to be mapped to the same point (as could be the case, say, for α and β): in Γ , such nodes
were necessarily in co.

Is every CyO orientable ? The answer is negative: additional properties are needed to ensure orientability.
Consider the example on top of Fig. 3; there,

^(a, b, c), ^(a, c, d), ^(l, k, j), ^(l, j, i),
^(a, e, j), ^(a, j, f), ^(a, e, d), ^(d, h, i),
^(d, i, e), ^(c, g, l), ^(c, l, h), ^(b, f, k),
^(b, k, g), ^(d, h, c) ^(c, g, b), ^(b, f, a),
^(e, j, i), ^(i, l, h) ^(g, l, k), ^(f, k, j),

plus the triples obtained using transitivity and rotation. This structure4 can be shown to have no orientation
and no clock cycle representation at all. Informally speaking, any total order that contains (a, b, c) and

3 cf. the arc orders in Alles, Nešetřil, Poljak [ANP91].
4 the example is due to Genrich [Gen71], with completion by Stehr[Ste98]; for a different example of a non-orientable

cyclic order, cf. Megiddo [Meg76]



(a, c, d) as well as (i, l, k) and (i, k, j), will violate one of the other triples; the readers are invited to attempt
this totalization themselves ! Hence the example cannot be extended into an orientable superstructure, since
any CyO is orientable iff all its SubCyOs are.

Thus, the orientability problem consists in finding minimal additional properties that, together with
the above axioms, ensure orientability. Some further formal preparations next:

Definition 25 Let Γ = (X ,^) be a CyO. Set

li , {(x, y) | ∃ z : ^(x, y, z) ∨ ^(x, z, y)} and co , X 2 − (idX ∪ li),

and denote the maximal cliques of li as rounds and those of co as cuts. We will denote rounds by O and
the set of all rounds of Γ as O(Γ ); for cuts, we use c and C(Γ ) as in the acyclic case.

The names li and co are a tribute to the axiomatic Concurrency Theory initiated by C. A. Petri, see
[Pet96,Pet96,KS97]. The graph of li is the Gaifman graph of Γ ; a total CyO satisfies co = ∅. Note that all
rounds have at least three elements. We shall require a strong link between them ^:

Definition 26 A cyclic order Γ = (X ,^) is round-oriented or a ROCO iff for any round {a, b, c} of li,
either ^(a, b, c) or ^(b, a, c).
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Fig. 4. Global vs
round-orientability

Figure 4 shows that round-orientability is independent of global orientation. The
CyO represented is not round-oriented (consider {a, b, c}). Yet there exists a round-
oriented extension: add (b, a, c) and its rotations. This extension is also globally
oriented, since the CyO given by the single cycle 〈b, a, u, v, c, w〉 provides an orien-
tation. Comparison with Figure 3 shows that round-orientation is (necessary, but)
insufficient for global orientation. Round-orientation is a stronger condition than the
requirements in Quilliot [Qui91,Qui89], Jakub́ık [Jak94] etc.; cf. Stehr [Ste98]. Some
CyO’s that are not round-oriented may be completed to aROCO; not all CyOs will
allow this. It is obvious, however, that only those CyO’s extensible to a ROCO can be
globally oriented, and that they are globally oriented iff one of their round-oriented
super-CyO’s is; therefore, we restrict our attention to ROCOs.

2.2 Windings of posets

We focus on cyclic orders that can be obtained from periodic partial orders. For this, we will now introduce
windings, and show how they lead to a two-fold characterization of orientable ROCOs; the main result on
orientability is Theorem 313 below.

Observe that N in Figure 5 and its associated poset are periodic: they display translational symmetries,
corresponding to particular order automorphisms, that is, bijections G : X → X of a poset Π = (X , <)
such that for all x, y ∈ X , one has x < y ⇔ Gx < Gy. We define:

Definition 27 For any mapping φ : X → X and subset A ⊆ X , we say that φ contracts A iff φ(A) ⊆ A,
and that A is φ-invariant iff φ(A) = A. Further, let Π = (X , <) be a poset and G an automorphism of Π.
Then G is called a shift if x < Gx for all x ∈ X .

Let Π = (X , <) be a poset with a shift G, and G the group of Π-automorphisms generated by G; G is
isomorphic to (Z,+). Write x ∼G y iff there exists k ∈ Z such that Gkx = y; then ∼G is an equivalence
relation on X . The equivalence class [x] , [x]∼G

of x is the G-orbit of x; the associated winding map is
βG : X → X , x 7→ [x]∼G

. We will note orbits by simple lower case letters x, y, ..., and their elements as
overlined lower case letters x, y, ... Orbits are obviously shift-invariant. We define:

Definition 28 Let Π = (X , <) a poset with shift G, and X , X∼G
. Define

^ (x, y, z) iff ∃

x ∈ x
y ∈ y
z ∈ z

 : x < y < z < Gx,

where we identify an element x ∈ X with the orbit [x] in X . We say that Γ = (X ,^) is wound from Π
using G (or, equivalently, βG).
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Fig. 5. A cyclic order (bottom) wound from the acyclic order on top

For an example, consider Figure 5: ^(α, c, γ) holds since α0 < c0 < γ0 < α1 = Gα0, where G is the shift
that takes each dashed vertical line in Figure 5 to its right neighbor. In this way, G winds the partial order
on N to a cyclic order on N .

Lemma 29 Let Γ1 = (X1,^1) be a ROCO and Γ2 = (X2,^2) a sub-ROCO of Γ1, i.e. X2 ⊆ X1 and
^2 = ^1|X2

. If Γ1 is obtained by winding, then so is Γ2.

Proof: Let Π1 = (X 1, <1) be wound to Γ1 using G, and set X 2 , G−1(X2) ⊆ X 1. With <2,<1|X2
, one

checks that Π2 , (X 2, <2) is wound to Γ2 using G2 , G1|X . 2

We say that a winding is loop-free (LF) iff for all x ∈ X , there exist y, z ∈ X s.th. x < y < z < Gx.
Under loop-freeness, all nodes of X are contained in some triple of ^, and there is no pair x, y ∈ X such that
x < y < Gx but ¬([x] li [y]) in ^. If a winding has a loop, the result may not be a cyclic order; consider the
total order (X , <) with X = {xi, yi | ı ∈ Z} and < given by xi < yi < xi+1 for all i ∈ Z with the obvious shift
xi 7→ xi+1, yi 7→ yi+1. Then X = {x, y}, which allows no triple, and therefore yields an empty ^-relation.
On the other hand, we have:

Theorem 210 LF windings generate ROCOs.

Proof: Let Π = (X , <) be wound to Γ = (X ,^) using G, and let β , βG.
To show inversion asymmetry, suppose ^(x, y, z) and ^(y, x, z). Then there exist x ∈ β−1(x), y ∈
β−1(y), and z ∈ β−1(z) such that x < y < z < Gx, but also some k ∈ Z such that Gk(y) < Gkx < Gkz <
Gk+1y. Applying G−k yields y < x, contradicting the acyclicity of <.
For rotational symmetry, suppose ^(x, y, z); then there exist x ∈ β−1(x), y ∈ β−1(y), and z ∈ β−1(z)
such that x < y < z < Gx, hence z < Gx < Gy < Gz. Since β(Gx) = β(x) = x and β(Gy) = β(y) = y,
we thus obtain ^(z, x, y).



For ternary transitivity, assume ^(x, y, z) and ^(x, z, u). Then there exist x ∈ β−1(x), y ∈ β−1(y),
z ∈ β−1(z) and u ∈ β−1(u) such that

x < y < z < Gx (1)

∃ k ∈ Z : Gkx < Gkz < Gku < Gk+1x. (2)

But since G is an automorphism, it follows that x < z < u < Gx, thus x < y < u < Gx by transitivity of
<, and therefore ^(x, y, u).
For round-orientation, assume there exist three distinct elements x, y, z ∈ X such that x li y, y li z,
and x li z. Then, by definition of ^, and the fact than G is an order automorphism, one has that for
every x ∈ β−1G x, there exists y ∈ β−1G y such that

x < y < Gx < Gy. (3)

Using the same arguments, one finds that there exists z ∈ β−1G z such that

y < z < Gy < Gz. (4)

Since x li z, we have Gx li z. Now, (3) and (4) imply that x < z < G2y; it remains to determine the
ordering of Gx and z. Assume first that Gx < z; then also G2x < Gz. Combining this with (3) and
(4), we obtain

Gx < z < Gy < G2x < Gz < G2y.

This yields ^(x, z, y) since βG(Gx) = βG(x) = x and βG(Gy) = βG(y) = y. Now, if z < Gx, then
x < y < z < Gx and thus ^(x, y, z); in either case, the set {x, y, z} is ordered by ^. 2

3 Characterizing Orientability

In the light of Theorem 210, two questions arise:
1) Is it also true that any loop-free winding will preserve successor relations ?
2) Which properties characterize those ROCOs that have a representation as a winding ?

3.1 Mind the gap !

Not all loop-free windings preserve successor relations; a study of this issue will reveal the dangers of gaps
(compare [BF88]). We first need some supplementary relations for both acyclic and cyclic orders:

Definition 31 Let (X , <) be aposet and (X ,^) a cyclic order. Define the successor relations <· for an
acyclic order, and ·̂ for a cyclic order, by

– x <· y iff

1. x < y and
2. for all z ∈ X , x < z < y implies z ∈ {x, y};

– x ·̂ y iff (a) x li y, and (b) for all z ∈ X − {x, y}, x li z and z li y imply that ^(x, y, z).

1. x covers y from below, written x Y y, iff (a) x < y, and (b) for all z ∈ X , z < y implies z 6 x.
2. y covers x from above, written y Z x, iff (a) x < y, and (b) for all z ∈ X , x < z implies y > z.
3. In (X ,^), x covers y, written xAy, iff (a) x li y, and (b) for all z, u ∈ X , ^(z, u, y) implies ^(z, u, x).

Using this terminology, we define gaps to be successor pairs without covering:

Definition 32 1. A gap in (X , <) is a pair x, y such that x <·y holds, but neither x Z y nor y Y x.
2. A gap in (X ,^) is a pair x, y such that x ·̂ y holds, and xAy does not hold.
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Fig. 6. Left: A partial order with a winding that destroys the successor relation; right: a gap-free version of the partial
order from the left hand side. It admits no shift symmetry and therfore no winding.

Note that yZx does not imply xYy, nor the converse: on the right hand side of Figure 6, w0Zf0 and a0Yf0,
but neither f0 Z a0 nor f0 Y w0 hold. The right hand side of Figure 6 is gap-free; on the left hand side, all
pairs an, wn and cn, un+1 are gaps for n ∈ Z.

Lemma 33 Suppose (X , <) is gap-free and βG winds (X , <) to (X ,^). If βG is loop-free, then βG maps <·
surjectively to ·̂ .

Proof: Let x <·y; then either a) xYy or b) yZx. Consider case a); b) is analogous. We then have Gx <·Gy;
since y < Gy, the assumptions imply y < Gx <·Gy. Since βG is loop-free, there exists z ∈ X such that
y < z < Gx <·Gy, and hence ^(x, y, z), where βG(x) = x,βG(y) = y, and βG(z) = z as usual. Now,
suppose there exists u ∈ X such that ^(x, u, y); then there must be a u ∈ β−1G ({u}) such that x < u < y,
contradicting the assumption x <·y. Hence we have x ·̂ y. 2

Figure 6 shows that gaps may be responsible for loss of successor relations in a winding: one has successor
relation a0 <·w0 but no a ·̂w, not even a li w in fact; the reason is that there is no n > 0 such that w0 < an.
The cyclic order obtained under the winding degenerates into two separate components, all links between the
subsets are lost. The right hand side shows an extension of the partial order in which all gaps have been filled
by new elements ek, fk, k ∈ Z. But now there is no winding at all anymore: since ekcoel for all k 6= l, there
exists only the trivial shift for this partial order, and no winding. That is, filling the gaps helped detect an
intrinsic lack of symmetry of the partial order. Note that dense orders (i.e. where <· is empty) are gap-free.

3.2 Separators in Partial Orders

Definition 34 In a partial order Π, a maximal clique of li is called a line, and the set of lines is denoted
L(Π). Dually, let C(Π) be the set of cuts of Π, i.e. its maximal co-cliques.

A cut c can be viewed as a global state of the set of local processes that are represented by lines.
The intersection of c with line L then yields the state of L, seen as a local process, on the “snapshot” c.

This leads to the question whether c does intersect every L. We define:

Definition 35 Let Π = (X , <) be a partial order. Then we say that c ∈ C(Π) is a separator5 iff c∩L 6= ∅
for all L ∈ L(Π). Π is weakly separable iff it has a separator, and (strongly) separable iff every cut
of Π is a separator.

5 called a true cut in [Ste98]



Strong separability of partial orders has been extensively studied, see for instance [BF88] (where it is called
K-density). It should be noted that separability can be destroyed by gaps in the sense introduced below,
or by the presence of infinite lines; [BF88] gives an extensive tableau on strong separability. We add the
following result on weak separability:

Lemma 36 Let X be a non-empty set and Π = (X , <) a partial order. Then there exist a weakly separable
super-poset Π of Π.

Proof: Consider any total extension Πtot = (X , <tot) of Π, and fix x ∈ X ; we will insert “x-witnesses”
into all lines of Π. Let Y be a set such that X ∩ Y = ∅, and ψ : L(Π)→ Y, L 7→ yL injective. Set

X ] , X ∪ ψ(L(Π))

<] , < ∪{(u, yL) | u ∈ L ∧ u <tot x} ∪ {(yL, u) | u ∈ L ∧ x <tot u}
∪{(u, v) | u < v ∧ u <tot x <tot v}.

Then Π] , (X ], <]) is a SuperPO of Π. By construction, cx , {yL | L ∈ L(Π)} is a separator of Π].
2

Note that Lemma 36. does not carry over to cyclic orders, as we will see below. Theorem 313 shows that
this property is intrinsically linked to orientability, as indicated by the results in [Ste98] in finitary settings.
In order to generalize the notion of cycle from graph theory, we need first the following auxiliary notions:

Definition 37 Let Π = (X , <) be a poset, x, y ∈ X , and x < y. The intervals spanned by x and y are

]x, y[ , {z | x < z < y}
[x, y[ , ]x, y[ ∪ {x},
]x, y] , ]x, y[ ∪ {y}
[x, y] , ]x, y] ∪ {x}.

For x 6< y, [x, y] =]x, y] = [x, y[=]x, y[, ∅. An edge of Π is a li -clique E such that there exist a, b ∈ X
satisfying a li b and E ⊆ [a, b], and E is maximal relative [a, b], i.e. for any u ∈ [a, b] such that v li u for
all v ∈ E, one has u ∈ E (observe that also a, b ∈ E). Let start(E) , a and end(E) , b be the start and end
elements of E, respectively.

a d

b c

u w

x

v

Fig. 7. A ROCO.

Moving from acyclic to cyclic orders, we have to consider separately
rounds and cycles, respectively. Intuitively, cycles are arbitrary closed
paths, while rounds are special cycles that ’wrap around the structure only
once’.A cycle is composed of a sequence of edges, i.e. segments of a total
cyclic sub-order (compare Def. 37).

Definition 38 For a CyO Γ = (X ,^) and a li b, define :

]a, b[ , {x ∈ X | ^(a, x, b)}
[a, b[ , ]a, b[ ∪ {a},
]a, b] , ]a, b[ ∪ {b}
[a, b] , ]a, b] ∪ {a}.

Definition 39 An edge of Γ is a li-clique E such that there exist a, b ∈ X
with a li b and E ⊆ [a, b], and E is maximal relative [a, b]: for any u ∈ [a, b]
such that ∀ v ∈ E : v li u, one has u ∈ E.

If E is an edge, set start(E) , a and end(E) , b. Note that, as in the acyclic case, start(E) ∈ E and end(E) ∈ E ,
and every edge E can be represented as the intersection of an appropriate round OE with [start(E), end(E)].
So we are ready to define:



Definition 310 (Cycles of a ROCO) Let Γ = (X ,^) be a ROCO. C ⊆ X is a cycle of Γ iff there exist

edges E1, . . . , En such that start(E1) = end(En), start(Ei+1) = end(Ei) for 1 6 i 6 n − 1, and C =
⋃n−1
i=1 Ei.

Denote as D(Γ ) the set of cycles of Γ .

So every round in Γ is a cycle, but the converse is not true:: in Figure 5, the cycle through transitions
α, ζ, θ, λ, β, δ, η, κ is not a round since α co β, etc.

Definition 311 Let Γ be a ROCO. A cut c is called a separator iff c ∩ O 6= ∅ for all O ∈ O(Γ ), and
a cycle separator iff c ∩ γ 6= ∅ for all γ ∈ D(Γ ); Γ is called weakly (cycle) separable 6 iff there
exists a (cycle) separator c ∈ C(Γ ), and strongly (cycle) separable iff all its cuts are (cycle) separators.
If there is a superstructure cyclic order Γ ′ of Γ such that Γ ′ is (strongly) cycle separable, then Γ is called
(strongly) saturable.

Thus cycle separation implies round separation etc., but the converse is not true: Figure 7 shows a cyclic
order with a cut {u, v, w, x} that is a separator since it intersects each round {b, c, v}, {c, dw}, {d, a, x},
and {u, a, b}, but is not a cycle separator since it fails to intersect the cycle 〈a, b, c〉. Note: that structure is
nonetheless weakly cycle separable since {a, c} is a cycle separator.

To conclude, consider the following special case: Since a total CyO contains only one cycle, every singleton
is a cycle separator; hence, since all cuts are singletons in total cyclic orders, we obtain:

Lemma 312 Every total CyO is strongly separable.

Before turning to the orientability of general ROCOss, observe that every total CyO has a winding rep-
resentation : in fact, let {x} be a strong separator of (X ,^) (which must exist according to Lemma312).
Then one obtains a winding representation by taking copies (xk)k∈Z of x, ”gluing” successive copies Xk of X
”between” xk and xk+1. More formally, set X , X × Z, and let < be the smallest transitive binary relation
on X such that for all k ∈ Z and y ∈ X\{x}, one has xk < yk < yk+1; then one checks that (X , <) is a
winding representation of (X ,^). Looking at Lemma312 once again, it appears that winding representations
and separability might be linked in a more general way : in fact, the following theorem 313 establishes exactly
this, using a construction that extends the informal ”unwinding” sketched above, from total CyO s to the
general case.

3.3 Characterization of Orientable ROCOs

We have now completed the preparations for our central theorem. The result shows the connection be-
tween cycle separability, winding representability, and orientability; it characterizes all orientable ROCOs,
regardless of their cardinality.

Theorem 313 Let X 6= ∅, and Γ = (X ,^) a ROCO. Then the following are equivalent:

1. Γ is strongly saturable;
2. there exists a winding representation for Γ , i.e. a partial order Π = (X , <) with shift G such that
X = X /G , and φG winds Π to Γ ;

3. Γ is orientable.

Proof: (1) ⇒ (2): By Lemma 29, we only have to consider the case where Γ is itself weakly cycle
separable. So let c ∈ C(Γ ) be a cycle separator; we have to construct a partial order wound to Γ . Set
X , X × Z; we write xk for (x, k). Let G : X → X be given by Gxk = xk+1 for k ∈ Z. Define relation ≺
on X by:

R0 , {(a0, b0) | a ∈ c ∧ a li b}
∪ {(a0, b0) | ∃ x ∈ c : ^(a, b, x)}
∪ {(ak, ak+l) | a ∈ X , k ∈ Z, l ∈ N}

≺ , {(al+k, bm+k) | al R0 bm, k ∈ Z} .
6 In a setting that corresponds to discrete cyclic orders, cycle separability has been introduced as “F -density” in

[KS97,Ste98]



By construction, (i) ∀ u, v ∈ X ∀ k,m ∈ Z : uk ≺ vm ⇒ k 6 m, and (ii) the set of minimal elements
with index 0 is c× {0}, i.e.

{x ∈ X × {0} | ∀ y ∈ (X\{x})× {0} : ¬ (y ≺ x)}
= (c× {0});

Now, let < be the transitive closure of ≺. We claim that < is a partial order. It suffices to show that < is
irreflexive; so assume uk < uk for some u ∈ X , k ∈ Z. Without loss of generality, k = 0. Then there exist
n ∈ N, elements y1, . . . , yn ∈ X , and indices k1, . . . , kn ∈ N such that (i) u0 ≺ y1k1 , (ii) yiki R1 y

i+1
ki+1

for

i ∈ {1, . . . , n − 1}, and (iii) ynkn R1 u0. If u ∈ c, this is impossible for any value of ν since it contradicts
(i),(ii). So assume u 6∈ c, and let n be minimal with the above properties; then by 3.3.), ki = 0 for all
1 6 i 6 n. Now, since yi 6∈ c for all i by the choice of the yi, there exist n+1 elements xi ∈ c, 1 6 i 6 n+ 1,
that satisfy ^(u, y1, x1) and ^(yn, u, xn+1), and ^(yi−1, yi, xi) for 2 6 i 6 n. So one can choose edges Ej ,
1 6 j 6 n− 1, such that start(E1) = end(En) = u, and end(Ej) = start(Ej+1) = yj , and such that the

cycle Cu ,
⋃n
j=1 Ej does not intersect c (since no Ej does); this contradicts the assumption that c is cycle

separating. Hence Π = (X , <) is a poset; moreover, G is a shift for Π, and by construction, the mapping
βG : (X × Z)→ X , (x, z) 7→ x, winds Π to Γ .
(2) ⇒ (3): Let Π] be a weakly separable SuperPO of Π, and c0 a separator of Π]. Let ck be the cut

ck , Gkc0, and define Uk , U ]k ∩ X , where

U ]k ,
⋃

yk ∈ ck
yk+1 ∈ ck+1

[yk, yk+1[.

Then the Uk are pairwise disjoint and cover X . Moreover, < induces a partial order <k on Uk. Now, set
Πk , (Uk, <k); then G induces, for every n,m ∈ Z, an order isomorphism Gn,m : Un → Um from Πn to
Πm. By Szpilrajn’s Theorem, there exists a total ordering Πtot

0 on U0 embedding <0. Now, the mapping
σ : X → X , given by σ|Uz

, G0,z ◦ id0 ◦Gz,0 for z ∈ Z, is a well-defined order isomorphism; σ embeds Π

into a total order Πtot on X , whose restriction to Uz is Π. Then, by construction, G ◦ σ = σ ◦G, and
Πtot under the winding βG◦σ induces an orientation of Γ .
(3) ⇒ (1): If Γ is total, we are done by Lemma 312. So assume Γ is not total, and let Γtot = (X ,^tot)
be an orientation of Γ . As in the proof of Lemma 36, fix x ∈ X , let Y be a set disjoint from X , and
ψ : O → Y injective; then, set Ax , {O ∈ O(Γ ) | x 6∈ O} and Xx , X ∪ ψ(Ax), and let ιx : X → Xx be
the insertion of X into Xx. For every cycle O ∈ Ax, set xO , ψ(O); further, for every edge [si, ei] of O ,
let ^x(si, xO , ei) if ^tot(si, x, ei), and ^x(si, ei, xO) otherwise. Γx = (Xx,^x) is a superstructure of Γ . We
have O(Γx) = (O(Γ )\Ax)∪{O ∪{xO} | O ∈ Ax}. Moreover, cx , ψ(O(Γ )) is a co-clique by construction.
cx is also maximal with this property since, for every round O ∈ O(Γ )\Ax, one has cx ∩O = {x}, and for
all O ∈ Ax, cx ∩O ∪{xO} 3 {xO}; this also shows that cx is a separator. We claim that cx is also a cycle

separator for Xx: Let C =
⋃k
i=1 Ei be a cycle; we have to show cx ∩ C 6= ∅. If there is an index 1 6 j 6 k

such that start(Ej) ∈ cx or end(Ej) ∈ cx, we are done. Otherwise, we will show that there exists at least
one index 1 6 ν 6 k such that ^tot(start(Eν), x, end(Eν)). In fact, suppose this is not true. Denote, for all
i, si , start(Ei) and ei , end(Ei). Then we have Γtot(x, si, si+1) for all 1 6 i 6 n− 1; by transitivity, this
implies Γtot(x, s1, sn). But since en = s1, our assumption also implies that Γtot(x, sn, s1), a contradiction.
For the ν thus found, let O ∈ O(Γ ) such that Eν = O∩[start(Eν), end(Eν)]; then ^x(start(Eν), xO , end(Eν))
by construction, so xO ∈ Eν , and hence (Cx ∩ C) 6= ∅. 2

We close by some remarks on the results:

Remark 1. Inspection of Part “(1) ⇒ (2)” of the proof of Theorem 313 shows that for a given Γ and fixed
cycle separator c for Γ , there is a unique unwinding Πc(X c, <) and associated shift G obtained from the
above construction; denote this automorphism as G(Γ, c). In this, any separator c′ of Π will be wound to
cycle separator c′ of Γ ; all cycle separators c̃ obtained in this way are equivalent to c in the sense that there
exists an isomorphism Ψc,c̃ from Πc to Πc̃ such that

Ψc,c̃ ◦G(Γ, c) = G(Γ, c̃)

Ψc,c̃ ◦ βG(Γ,c) = βG(Γ,c̃).



Remark 2. In Alles, Nešetřil, Poljak [ANP91], a CyO Γ = (X ,^) is generated from a poset Π = (X , <) on
the same set X by simply taking the rotational (symmetric) closure; that is, set

^◦ := {(a, b, c) | a < b < c} ,

and let ^ be the smallest superset of ^◦ that is rotationally symmetric, i.e., (x, y, z) ∈ ^ implies (y, z, x) ∈ ^.
This is not at all equivalent to windings. Obviously, the rotational closure acts injectively, so the cyclic
order has as many elements as its generating poset, whereas all pre-images under windings are infinite. But
even the restriction to one section of the wound poset does not yield an isomorphic cyclic order: in Figure 5,
consider only the elements with index 0. Then the cyclic order generated by rotational closure contains the
triple (α0, γ0, λ0), but (α, γ, λ) does not belong to the cyclic order winding since co(λ0, α1). More generally,
one has from the construction that, for any a < b in a poset Π = (X , <), the structure Γ = (X ,^) generated
from Π by rotational closure satisfies ¬(a co b). This means also that the orientable cyclic order in Figure
5 cannot be obtained as a rotational closure ! As a consequence, we also see that orientability cannot be
characterized by rotational closure.

Gaps revisited. Recall that in the presence of gaps in a partial order, winding may lead to cyclic orders that
do not reflect all successor relations. However, the reverse is not possible:

Lemma 314 Let Γ = (X ,^) a ROCO, and let Π = (X , <) and G be the poset and shift, respectively,
constructed in the first part of the proof of Theorem 313. Then βG preserves <·, i.e. x <·y implies x ·̂ y.

Proof: By construction of Π = (X , <), x <·y implies x ≺ y, and therefore x li y. Now suppose ^(x, z, y);
then there is z ∈ X such that x ≺ z ≺ y, contradicting the assumption that x <·y. 2

4 Conclusion

In this article, we have studied the connection between partial orders with shifts and cyclic ordering; a
central result was the equivalence - under mild saturation conditions - between oriented cyclic ordering and
the existing of a winding.

This connection allows to reduce problems concerning cyclic orders to known ones for partial orders.
Supposing that a separator c is known for Γ = (X ,^), an unwinding prefix Π1 from c0 to c1 is sufficient,
e.g., for constructing a total cyclic order that embeds Γ , by computing a totalization of Π1 that respects the
winding morphism on c0 and c1.

Finally, note that the saturability properties required in Theorem 313 resemble Dedekind cuts; see
[PeSm86] for a discussion of Dedekind continuity in the context of partial orders.

Acknowledgments: I would like to thank several unknown referees for their comments, which greatly
helped to improve on earlier versions of this article. Moreover, I wish to thank Stephan Roch for helpful
suggestions concerning the examples, and the Net Theory group at Hamburg University for countless dis-
cussions on concurrency and Petri Nets; special thanks to R. Valk, the supervisor of my thesis, and to O.
Kummer and M.-O. Stehr.Moreover, I thank Philippe Darondeau and Eric Goubault for their interest and
insightful remarks.

References
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