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OPTIMAL CONTROL OF INFINITE DIMENSIONAL

BILINEAR SYSTEMS: APPLICATION TO

THE HEAT AND WAVE EQUATIONS

M. SOLEDAD ARONNA, J. FRÉDÉRIC BONNANS, AND AXEL KRÖNER

Dedicated to Terry Rockafellar on the occasion of his 80th birthday

September 4, 2016

Abstract. In this paper we consider second order optimality conditions for a
bilinear optimal control problem governed by a strongly continuous semigroup
operator, the control entering linearly in the cost function. We derive first and
second order optimality conditions, taking advantage of the Goh transform.
We then apply the results to the heat and wave equations.

Keywords: Optimal control, partial di↵erential equations, second-order optimality

conditions, Goh transform, semigroup theory, heat equation, wave equation, bilinear con-

trol systems.

1. Introduction

In this paper we derive no gap second order optimality conditions for optimal
control problems governed by a bilinear system being a�ne-linear in the control
and with pointwise constraints on the control; more precisely for a Banach space
H we consider optimal control problems for equations of type

(1.1)  ̇+A = f + u(B1 + B2 ); t 2 (0, T );  (0) =  0,

where A is the generator of a strongly continuous semigroup on H, and

(1.2)  0 2 H; f 2 L1(0, T ;H); B1 2 H; u 2 L1(0, T ); B2 2 L(H).

This general framework includes in particular optimal control problems for the
bilinear heat and wave equations.

Optimal control problems which are a�ne-linear in the control are important
when addressing problems with L1-control costs. However, for a�ne-linear control
problems, the classical techniques of the calculus of variations do not lead to the
formulation of second order su�cient optimality conditions. This problem has been
studied in the context of optimal control of ordinary di↵erential equations (ODEs)
based on the Legendre condition by Kelly [20], Goh [17], Dmitruk [12, 13], Poggi-
olini and Stefani [26], Aronna et al. [1], and Frankowska and Tonon [16]; the case of
additional state constraints was considered in Aronna et al. [2]. In the context of

The second and third author were supported by the project ”Optimal control of partial dif-
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funded by the Foundation Hadamard/Gaspard Monge Program for Optimization and Operations
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optimal control of PDEs there exist only a few papers on su�cient optimality con-
ditions for a�ne-linear control problems, see Bergounioux and Tiba [6], Tröltzsch
[27], Bonnans and Tiba [8], who discuss generalized bang-bang control. Bonnans
[7] discussed singular arcs in the framework of semilinear parabolic equations. Let
us also mention the results on second order necessary or su�cient conditions by
Casas [9] (for the elliptc case), Casas and Tröltzsch (review paper [11]), Casas, Ryll
and Tröltzsch (FitzHugh-Nagumo equation [10]).

Further, for optimal control of semigroups, the reader is referred to Li et al. [21,
22], Fattorini et al. [15, 14] and Goldberg and Tröltzsch [18].

The contribution of this paper is to derive su�cient second order optimality
condition using the Goh transform [17]. We generalize ideas in [7] to the case of
bilinear systems, in a semigroup setting. A general framework is presented which
allows to obtain su�cient optimality conditions under very general hypotheses. We
verify additionally that these conditions are satisfied in the case of control of the
heat and wave equations. We also discuss the case of a general diagonalizable
operator.

The paper is organized as follows. Section 2 presents the abstract control problem
in a semigroup setting and establishes some basic calculus rules. Necessary second
order optimality conditions are presented in Section 3. Su�cient ones are the
subject of Section 4. Applications to the control of the heat equation and wave
equation are presented in Section 5.

Notation. Given a Banach space H, with norm k · kH, we denote by H⇤ its
topological dual and by hh⇤, hiH the duality product between h 2 H and h⇤ 2 H⇤.
We omit the index H if there is no ambiguity. If A is a linear (possibly unbounded)
operator from H into itself, its adjoint operator is denoted by A⇤. We let | · | denote
the Euclidean norm and AC(0, T ) the space of absolutely continuous functions over
[0, T ]. By k · kp, for p 2 [1,1], we mean by default the norm of Lp(0, T ).

2. The abstract control problem in a semigroup setting

2.1. Semigroup setting. Let H be a reflexive Banach space. Consider the ab-
stract di↵erential equation (1.1) with data satisfying (1.2), the unbounded operator
A overH being the generator of a (strongly) continuous semigroup denoted by e�tA,
such that

(2.1) ke�tAkL(H)  cAe�At, t > 0,

for some positive cA and �A. Thus ([25, Ch. 1, Cor. 2.5]) A is a closed operator
and has dense domain defined by

(2.2) dom(A) :=

⇢
y 2 H; lim

t#0
e�tAy � y

t
exists

�

and, for y 2 dom(A):

(2.3) Ay = � lim
t#0

e�tAy � y

t
.

We define the mild solution of (1.1) as the function  2 C(0, T ;H) such that, for
all t 2 [0, T ]:

(2.4)  (t) = e�tA 0 +

Z t

0

e�(t�s)A�f(s) + u(s)(B1 + B2 (s))
�
ds.
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This fixed-point equation has a unique solution in C(0, T ;H). Indeed, letting
T ( )(t) denote the r.h.s. of (2.4), we see that T is a continuous mapping from
C(0, T ;H) into itself, and that given  1, 2 in that space we have that

(2.5) T ( 1)(t)� T ( 2)(t) =

Z t

0

e�(t�s)Au(s)B2

⇣
 1(s)� 2(s)

⌘
ds.

For t small enough, this is a contracting operator and, by induction, we deduce
that this equation is well-posed. We let  [u] denote the unique solution of (2.4)
for each u 2 L1(0, T ).

We recall that the adjoint of A is defined as follows: its domain is
(2.6)
dom(A⇤) := {' 2 H⇤; for some c > 0: |h', Ayi|  ckyk, for all y 2 dom(A)},

so that y 7! h', Ayi has a unique extension to a linear continuous form over H,
which by the definition is A⇤'. This allows to define weak solutions [4]:

Definition 2.1. We say that  2 C(0, T ;H) is a weak solution of (1.1) if  (0) =
 0 and, for any � 2 dom(A⇤), the function t 7! h�, (t)i is absolutely continuous

over [0, T ] and satisfies

d

dt
h�, (t)i+ hA⇤�, (t)i = h�, f + u(t)(B1 + B2 (t))i, for a.a. t 2 [0, T ].(2.7)

We recall the following result, see [4]:

Theorem 2.2. Let A be the generator of a strongly continuous semigroup. Then

there is a unique weak solution of (2.7) that coincides with the mild solution.

So in the sequel we can use any of the two equivalent formulations (2.4) or (2.7).
Let us set ⇣(t) := w(t)y(t), where w is a primitive of v 2 L1(0, T ) such that

w(0) = 0, and y 2 C(0, T ;H) is a mild solution for some b 2 L1(0, T ;H):

(2.8) ẏ +Ay = b

Corollary 2.3. Let y, w be as above. Then ⇣ := wy is a mild solution of

(2.9) ⇣̇ +A⇣ = vy + wb.

Proof. Observe that a product of absolutely continuous functions is absolutely
continuous with the usual formula for the derivative of the product. So, given
' 2 dom(A⇤), the function t 7! h', ⇣(t)i = w(t)h', y(t)i is absolutely continuous
and satisfies

(2.10)
d

dt
h', ⇣i+hA⇤', ⇣i = vh', yi+w

✓
d

dt
h', yi+ hA⇤', yi

◆
= vh', yi+wh', bi

meaning that ⇣ is solution of (2.9) in a weak sense. The conclusion follows with
Theorem 2.2. ⇤

Theorem 2.4 (Basic estimate). There exists � > 0 not depending on (f, u) such

that the solution  of (1.1) satisfies

(2.11) k kC([0,T ];H)  �
�k 0kH + kfkL1(0,T ;H) + kB1kHkuk1

�
e�kuk1 .
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Proof. From equation (2.4) we get

k (t)kH cAe�Atk 0kH + cA
Z t

0

e�A(t�s)
⇣
kf(s)kH + kB1kH|u(s)|

⌘
ds

+ cAe�AT kB2kL(H)

Z t

0

e��As|u(s)|k (s)kHds,

(2.12)

We conclude with the following Gronwall’s inequality: if ✓ 2 L1(0, T ) and a 2
L1(0, T ), then

(2.13) a(t)  � +

Z t

0

✓(s)a(s)ds implies a(t)  �e
R t
0 ✓(s)ds.

⇤

The control and state spaces are, respectively,

(2.14) U := L1(0, T ); Y := C(0, T ;H).

For s 2 [1,1] we set Us := Ls(0, T ). Let û 2 U be given and  ̂ solution of (1.1).
The linearized equation at ( ̂, û), to be understood in the mild or weak sense, is

(2.15) ż(t) +Az(t) = û(t)B2z(t) + v(t)(B1 + B2 ̂(t)); z(0) = 0,

where v 2 U . In view of the previous analysis, for given v 2 U , the equation (2.15)
has a unique solution that we refer as z[v].

Theorem 2.5. The mapping u 7!  [u] (mild solution of (2.4)) from U to Y is of

class C1
and we have that

(2.16) D [u]v = z[v], 8v 2 U .
Proof. In order to prove di↵erentiability of the mapping u 7!  [u], we apply the
Implicit Function Theorem to the mapping F : U ⇥ Y ! Y ⇥H defined by
(2.17)

F(u, ) :=

✓
 � e�tA 0 �

Z t

0

e�(t�s)A�f(s) + u(s)(B1 + B2 (s))
�
ds, (0)

◆
.

This bilinear and continuous mapping is of class C1 and it is easily checked that
F (u, ) is an isomorphism, that is, the linear equation

(2.18) z � e�tAz0 �
Z t

0

e�(t�s)Au(s)B2z(s)ds = g, z(0) = z0

has, for any (g, z0) 2 C(0, T ;H) ⇥ H, a unique solution z in C(0, T ;H), as can
be deduced from the fixed-point argument in the beginning of the section. The
conclusion follows. ⇤
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2.2. Regularity of the solution. The above result may allow to prove higher
regularity results.

Definition 2.6 (Restriction property). Let E be a Banach space, with norm de-

noted by k · kE with continuous inclusion in H. Assume that the restriction of

e�tA
to E has image in E, and that it is a continuous semigroup over this space.

We let A0
denote its associated generator, and e�tA0

the associated semigroup. By

(2.2)-(2.3), we have that

(2.19) dom(A0) :=
⇢
y 2 E; lim

t#0
e�tAy � y

t
belongs to E

�

so that dom(A0) ⇢ dom(A), and A0
is the restriction of A to dom(A0). We have

that

(2.20) ke�tA0kL(E)  cA0e�A0 t.

for some constants cA0
and �A0

. Assume that B1 2 E, and denote by B0
2 the

restriction of B2 to E, which is supposed to have image in E and to be continuous

in the topology of E, that is,

(2.21) B1 2 E; B0
2 2 L(E).

In this case we say that E has the restriction property.

Lemma 2.7. Let E have the restriction property,  0 2 E, and f 2 L1(0, T ;E)
hold. Then  2 C(0, T ;E) and the mapping u 7!  [u] is of class C1

from L1(0, T )
to C(0, T ;E).

Proof. This follows from the semigroup theory applied to the generator A0. ⇤

Remark 2.8. In view of [25, Thm. 2.4] the above Lemma applies with E = dom(A).

2.3. Dual semigroup. Since H is a reflexive Banach space it is known, e.g. [25,
Ch. 1, Cor. 10.6] that A⇤ generates another strongly continuous semigroup called
the dual (backward) semigroup on H⇤, denoted by e�tA⇤

, which satisfies

(2.22) (e�tA)⇤ = e�tA⇤
.

Let (y, p) be solution of the forward-backward system

(2.23)

⇢
(i) ẏ +Ay = ay + b,
(ii) �ṗ+A⇤p = a⇤p+ g,

where

(2.24)

8
<

:

b 2 L1(0, T ;H),
g 2 L1(0, T ;H⇤),
a 2 L1(0, T ;L(H)),

and for a.a. t 2 (0, T ), a⇤(t) 2 L(H⇤) is the adjoint operator of a(t) 2 L(H), so
that a⇤ 2 L1(0, T ;L(H⇤)).

The mild solutions y 2 C(0, T ;H), p 2 C(0, T ;H⇤) of (2.23), satisfy for a.a.
t 2 (0, T ):

(2.25)

8
>>><

>>>:

(i) y(t) = e�tAy(0) +
Z t

0

e�(t�s)A(a(s)y(s) + b(s))ds,

(ii) p(t) = e�(T�t)A⇤
p(T ) +

Z T

t

e�(s�t)A⇤
(a⇤(s)p(s) + g(s))ds.
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We have the integration by parts (IBP) Lemma:

Lemma 2.9. Let (y, p) 2 C(0, T ;H)⇥ C(0, T ;H⇤) satisfy (2.23)-(2.24). Then,

(2.26) hp(T ), y(T )i+
Z T

0

hg(t), y(t)idt = hp(0), y(0)i+
Z T

0

hp(t), b(t)idt.

Proof. Adding
R T

0
ha⇤(t)p(t), y(t)idt = R T

0
hp(t), a(t)y(t)idt to both sides of (2.26),

we get the equivalent equation
(2.27)

hp(T ), y(T )i+
Z T

0

ha⇤(t)p(t)+g(t), y(t)idt = hp(0), y(0)i+
Z T

0

hp(t), a(t)y(t)+b(t)idt.

By (2.25)(i), we have the following expression for the first term in the l.h.s. of
(2.27):

(2.28) hp(T ), y(T )i = he�TA⇤
p(T ), y(0)i+

Z T

0

he�(T�s)A⇤
p(T ), a(s)y(s) + b(s)ids.

Similarly, for the integrand in the second term in the l.h.s. of (2.27) we get, in view
of (2.25)(i),

ha⇤(t)p(t) + g(t), y(t)i
= he�tA⇤

(a⇤(t)p(t) + g(t)), y(0)i

+

Z t

0

he�(t�s)A⇤
(a⇤(t)p(t) + g(t)), a(s)y(s) + b(s)ids.

(2.29)

Adding (2.28) and (2.29), and regrouping the terms we get

(2.30) hp(T ), y(T )i+
Z T

0

ha⇤(t)p(t) + g(t), y(t)idt = R1 +R2,

where
(2.31)

R1 := he�TA⇤
p(T ), y(0)i+ h

Z T

0

e�tA⇤
(a⇤(t)p(t) + g(t))dt, y(0)i = hp(0), y(0)i,

and R2 is the remainder. Thanks to Fubini’s Theorem

R2 =

Z T

0

he�(T�s)A⇤
p(T ) +

Z T

s

e�(t�s)A⇤
(a⇤(t)p(t) + g(t))dt, a(s)y(s) + b(s)ids

=

Z T

0

hp(s), a(s)y(s) + b(s)ids

(2.32)

From (2.30)-(2.32) we get (2.27). The result follows. ⇤

Corollary 2.10. Let (y, p) be as in Lemma 2.9, and ' an absolutely continuous

function over (0, T ). Then

(2.33)Z T

0

'̇(t)hp(t), y(t)↵dt = ⇥'(t)hp(t), y(t)i⇤T
0
�
Z T

0

'(t)
⇣
hp(t), b(t)i � hg(t), y(t)i

⌘
dt.
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Proof. By the IBP Lemma 2.9, replacing T by an arbitrary time in (0, T ), we
see that h(t) := hp(t), y(t)i is a primitive of the integrable function hp(t), b(t)i �
hg(t), y(t)i. The Corollary follows then from the integration by parts formula in
the space of absolutely continuous functions. ⇤

Given (y, p) solution of (2.23) and B 2 L(H), set �(t) := By(t). Then � 2
L1(0, T ;H), is solution of an equation involving the operator AB � BA. In order
to defined properly the latter, consider the following hypotheses:

(2.34)

⇢
(i) B dom(A) ⇢ dom(A);
(ii) B⇤ dom(A⇤) ⇢ dom(A⇤).

Whenever these hypotheses hold, we may define the operators below, with domains
dom(A) and dom(A⇤), respectively:

(2.35)

(
[A, B] := AB �BA,

[B⇤,A⇤] := B⇤A⇤ �A⇤B⇤.

Let E be a subspace of H with norm denoted by k · kE , and continuous inclusion.
Consider the following bracket extension property

(2.36)

⇢
dom(A) ⇢ E ⇢ H.
[A, B] has an extension by continuity over E, say [A, B].

Proposition 2.11. (i) Let (2.34) hold, and consider (y,�) 2 dom(A)⇥ dom(A⇤).
Then y 2 dom([B⇤,A⇤]⇤), � 2 dom([A, B]⇤), and we have that

(2.37) h�, [A, B]yi = h[B⇤,A⇤]�, yi = h[A, B]⇤�, yi = h�, [B⇤,A⇤]⇤yi.
(ii) Let in addition (2.36) hold. Then

(2.38) h[B⇤,A⇤]�, yi = h�, [A, B]yi, for all y 2 E and � 2 dom(A⇤).

Proof. (i) We have that

(2.39)
h�, [A, B]yi = h�,AByi � h�, BAyi = hA⇤�, Byi � hB⇤�,Ayi

= hB⇤A⇤�, yi � hA⇤B⇤�, yi = h[B⇤,A⇤]�, yi
proving the first equality in (2.37). This equality implies that � 2 dom([A, B]⇤) as
well as the second equality (by the definition of the adjoint). We obtain the last
equality by similar arguments.
(ii) Let (yk) ⇢ dom(A), yk ! y in E. Then (2.37) holds for yk, and passing to the
limit in the first equality we get (2.38). ⇤

Remark 2.12. We do not have in general [A, B]⇤ = [B⇤,A⇤] since the l.h.s has a
domain which may be larger than the one of A⇤.

Let us define M 2 L(E,H) by

(2.40) My := [A, B]y,

so that M⇤ 2 L(H⇤, E⇤).
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Corollary 2.13. Let (2.34) and (2.36) hold, (y, p) be solution of (2.23)-(2.24),
and ' be an absolutely continuous function over (0, T ). (i) Let y 2 L1(0, T ;E).
Then �(t) = By(t) is a mild solution of

(2.41) �̇+A� = B(ay + b) +My = a�+Bb+ [B, a]�+My,

and we have that

Z T

0

'̇(t)hp(t),�(t)↵dt = ⇥'(t)hp(t),�(t)i⇤T
0

�
Z T

0

'(t)
⇣
hp(t), Bb+ [B, a]y +My(t)i � hg(t),�(t)i

⌘
dt.

(2.42)

(ii) Assume that E has the restriction property, and that M⇤p 2 L1(0, T ;H⇤). Then
the following IBP formula holds:

Z T

0

'̇(t)hp(t),�(t)↵dt = ⇥'(t)hp(t),�(t)i⇤T
0

�
Z T

0

'(t)
⇣
hp(t), Bb+ [B, a]yi+ hM⇤p(t), y(t)i � hg(t),�(t)i

⌘
dt.

(2.43)

Proof. (i) By Theorem 2.2, it su�ces to prove that � is a weak solution of (2.41).
Let � 2 dom(A⇤) and set f := ay + b. Then h�,�(t)i = hB⇤�, y(t)i is absolutely
continuous, and so, by (2.7) and the previous Proposition:

(2.44)

d

dt
h�,�(t)i =

d

dt
hB⇤�, y(t)i = �hA⇤B⇤�, y(t)i+ hB⇤�, fi

= �hB⇤A⇤�, y(t)i+ h[B⇤,A⇤]�, y(t)i+ h�, Bfi
= �hA⇤�,�(t)i+ h[B⇤,A⇤]�, y(t)i+ h�, Bfi
= �hA⇤�,�(t)i+My(t) + h�, Bfi,

where we use proposition 2.11(ii) in the last equality. Point (i) follows.
(ii) Let y0k in E converge to y0 in H, and bk 2 L1(0, T ;E), bk ! b in L1(0, T ;H).
Since E has the restriction property, the associated yk belong to C(0, T ;E) and
therefore (2.42) holds for (bk, yk). Since M 2 L(E,H) we have that
(2.45)Z T

0

'(t)hp(t),My(t)idt =
Z T

0

'(t)hM⇤p(t), y(t)iEdt =
Z T

0

'(t)hM⇤p(t), y(t)iHdt

where in the last equality we use the fact that M⇤p 2 L2(0, T ;H), and that since E
is a subspace of H with dense inclusion, the action of H⇤ over E can be identified
to the duality pairing in H. So, (2.43) holds with (bk, yk). Passing to the limit in
the latter we obtain the conclusion. ⇤

2.4. The optimal control problem. Let q and qT be continuous quadratic forms
over H, with associated symmetric and continuous operators

(2.46) Q,QT 2 L(H,H⇤); q(y) := hQy, yi; qT (y) := hQT y, yi.
Given

(2.47)  d 2 L1(0, T ;H);  dT 2 H,
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we introduce the cost function

(2.48) J(u, ) := ↵

Z T

0

u(t)dt+ 1
2

Z T

0

q( (t)� d(t))dt+
1
2qT ( (T )� dT )

with ↵ 2 R. The reduced cost is

(2.49) F (u) := J(u, [u]).

The set of feasible controls is

(2.50) Uad := {u 2 U ; um  u(t)  uM a.e. on [0, T ]},
with um < uM given constants. The optimal control problem is

(P) Min
u

F (u); u 2 Uad.

We say that û 2 Uad is a minimum (resp. weak minimum) of problem (P) if
F (û)  F (u), for any u 2 Uad (resp. u 2 Uad, su�ciently close to û in the norm of
L1(0, T )).

Given (f, y0) 2 L1(0, T ;H)⇥H, denote by y[y0, f ] the mild solution of

(2.51) ẏ(t) +Ay(t) = f(t), t 2 (0, T ), y(0) = y0.

The compactness hypothesis is

(2.52)

⇢
For given y0 2 H, the mapping f 7! B2y[y0, f ]
is compact from L2(0, T ;H) to L2(0, T ;H).

Lemma 2.14. Let (2.52) hold. Then the mapping u 7!  [u] is sequentially con-

tinuous from U1 endowed with the weak⇤ topology, to C(0, T ;H) endowed with the

weak topology.

Proof. If B2 = 0, the mapping u 7!  [u] is linear continuous, and therefore weakly
continuous from U1 to C(0, T ;H).

Otherwise, for a bounded sequence (uk) in U1 and associated sequence of states
( k), extracting if necessary a subsequence, we have that (uk) weakly⇤ converges
to some ũ in U1, and  k strongly converges in L2(0, T ;H) to some  ̃, so that
ukB2 k weakly converges in L2(0, T ;H) to ũB2 ̃. Hence, by the expression of mild
solutions,  k weakly converges in C(0, T ;H) to  ̃ and  ̃ is the state associated
with ũ. ⇤

Theorem 2.15. Let (2.52) hold. Then problem (P ) has a nonempty set of minima.

Proof. Let us first notice that the problem is feasible. Since Uad is a bounded
subset of U , any minimizing sequence (uk) has a weakly⇤ converging subsequence
to some ũ 2 U . Reindexing, we may assume that (uk) weakly⇤ converges to ũ.
So (uk) also weakly converges to ũ in L2(0, T ). Since Uad is a closed subset of
L2(0, T ), necessarily ũ 2 Uad. By Lemma 2.14,  [uk] !  [ũ] weakly in L2(0, T ;H).
Since J is convex and continuous in L2(0, T ) ⇥ L2(0, T ;H), it is weakly l.s.c. so
that J(ũ, [ũ])  limk!1 J(uk, [uk]). Since the limit in the right hand-side of
latter inequality is the optimal value, necessarily (ũ, [ũ]) is optimal. The result
follows. ⇤
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The costate equation is

(2.53) � ṗ+A⇤p = Q( � d) + uB⇤
2p; p(T ) = QT ( (T )� dT ).

We denote by p[u] its mild (backward) solution:
(2.54)

p(t) = e(t�T )A⇤
QT ( (T )� d(T ))+

Z T

t

e(t�s)A⇤�
Q( (s)� d(s))+u(s)B⇤

2p(s)
�
ds.

We set

(2.55) ⇤(t) := ↵+ hp(t),B1 + B2 ̂(t)i.
Theorem 2.16. The mapping u 7! F (u) is of class C1

from U to R and we have

that

(2.56) DF (u)v =

Z T

0

⇤(t)v(t)dt, for all v 2 U .

Proof. That F (u) is of class C1 follows from Theorem 2.5 and the fact that J is
of class C1. This also implies that, setting  :=  [u] and z := z[u]:

DF (u)v = ↵

Z T

0

v(t)dt+

Z T

0

Q( (t)� d(t), z(t))dt+QT ( (T )� dT , z(T )).

We deduce then (2.56) from Lemma 2.9. ⇤

Let for u 2 Uad and Im(u) and IM (u) be the associated contact sets defined, up
to a zero-measure set, as

(2.57)

(
Im(u) := {t 2 (0, T ) : u(t) = um},
IM (u) := {t 2 (0, T ) : u(t) = uM}.

The first order optimality necessary condition is given as follows.

Proposition 2.17. Let û be a weak minimum of (P). Then, up to a set of measure

zero, there holds

(2.58) {t; ⇤(t) > 0} ⇢ Im(û), {t; ⇤(t) < 0} ⇢ IM (û).

Proof. F is di↵erentiable and attains its minimum over the convex set Uad at û and
thus, if û+ v 2 Uad, then

(2.59) 0  lim
�#0

F (û+ �v)� F (û)

�
= DF (û)v.

Since DF (û)v =
R T

0
⇤(t)v(t)dt, this means that

(2.60)

Z T

0

⇤(t)(u(t)� û(t))dt � 0, for all u 2 Uad,

from which the conclusion easily follows. ⇤

Set � :=  �  ̂. We note for future reference that, since u � û ̂ = u� + v ̂,
we have that � is the mild solution of:

(2.61)
d

dt
� (t) +A� (t) = u(s)B2� (s) + v(t)(B1 + B2 ̂(t)).

Thus, ⌘ := � � z is solution of

(2.62) ⌘̇(t) +A⌘(t) = ûB2⌘(t) + v(s)B2� (s).
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We get the following estimates.

Lemma 2.18. The linearized state z solution of (2.15), the solution � of (2.61),
and ⌘ = � � z solution of (2.62) satisfy, whenever v remains in a bounded set of

L1(0, T ):

kzkL1(0,T ;H) = O(kvk1),(2.63)

k� kL1(0,T ;H) = O(kvk1),(2.64)

k⌘kL1(0,T ;H) = O(k� vkL1(0,T ;H)) = O(kvk21).(2.65)

Proof. By arguments close to those in the proof of Theorem 2.4, we get

(2.66) kzkL1(0,T ;H)  �0kvk1e�0kvk1

for some �0 not depending on v, which, since kvk1 is bounded, proves (2.63). Then,
we also have by (2.61)
(2.67)

k� kL1(0,T ;H)  K(kuk1, kB2kL(H)) (kB1kH + kB2kL(H)k ̂kL1(0,T ;H))kvk1,
which implies (2.64). Finally, it holds with (2.62)

k⌘kL1(0,T ;H)  K
�kûk1, kB2kL(H)

�kvB2� kL1(0,T ;H)

 K
�kûk1, kB2kL(H)

�kB2kL(H)k� vkL1(0,T ;H),
(2.68)

that yields the first equality in (2.65). The second one follows in view of (2.64). ⇤

3. Second order optimality conditions

3.1. A technical result. Let û 2 U , with associated state  ̂ =  [û] and costate
p̂ solution of (2.54), v 2 L1(0, T ), and z 2 C(0, T ;H). Let us set

(3.1) Q(z, v) :=

Z T

0

⇣
q(z(t)) + 2v(t)hp̂(t),B2z(t)i

⌘
dt+ qT (z(T )).

Proposition 3.1. Let u belong to U . Set v := u� û,  ̂ :=  [û],  :=  [u]. Then

(3.2) F (u) = F (û) +DF (û)v + 1
2Q(� , v).

Proof. We can expand the cost function as follows:

F (u) = F (û) + 1
2 (q(� ) + qT (� (T )))

+ ↵

Z T

0

v(t)dt+

Z T

0

Q( ̂(t)� d(t), � ))dt+QT ( ̂(T )� d(T ), � (T )).
(3.3)

Applying Lemma 2.9 to the pair (z, p̂), where z is solution of the linearized equation
(2.15), and using the expression of ⇤ in (2.55), we obtain the result. ⇤

Corollary 3.2. Let u and û be as before, and set z := z[v]. Then

(3.4) F (u) = F (û) +DF (û)v + 1
2Q(z, v) +O(kvk31).
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Proof. We have that

(3.5) Q(� , v)�Q(z, v) =

Z T

0

Q(� (t) + z(t), ⌘(t)) + 2v(t)hp(t), B2⌘(t)idt
+QT (� (T ) + z(T ), ⌘(T )).

By (2.63)-(2.65) we have that

(3.6) k� kL1(0,T ;H) + kzkL1(0,T ;H) = O(kvk1),

(3.7) k⌘kL1(0,T ;H) = O(kvk1k� kL1(0,T ;H)) = O(kvk21).
The result follows. ⇤

Note that we will derive a refined Taylor expansion in Proposition 4.3.

3.2. Second order necessary optimality conditions. Given a feasible control
u, the critical cone is defined as

(3.8) C(u) :=

(
v 2 L1(0, T ) | ⇤(t)v(t) = 0 a.e. on [0, T ],

v(t) � 0 a.e. on Im(u), v(t)  0 a.e. on IM (u)

)
.

Theorem 3.3. Let û be a weak minimum of (P). Then there holds,

(3.9) Q(z[v], v) � 0 for all v 2 C(û).

Proof. Let v 2 C(û) with v 6= 0. For 0 < " < uM � um, we set

(3.10) v"(t) :=

⇢
0, if û(t) 2 (um, um + ") [ (uM � ", uM ), or |v(t)| > 1/",

v(t), otherwise.

Then DF (û)v" = 0, and for � 2 (0, "2), we have that û + �v" 2 Uad. Hence, from
Corollary 3.2, we get for z" := z[v"] that

0  2 lim
�!0

F (û+ �v")� F (û)

�2
= Q(z", v").(3.11)

Since v" ! v in L1(0, T ) when " ! 0, then we obtain from Lemma 2.14 that
z" ! z[v] in C(0, T ;H) and the assertion follows from (3.11) and the continuity
of Q. ⇤

3.3. Principle of Goh transform.

3.3.1. Goh transform. We now introduce the Goh transform on di↵erential equa-
tions and on quadratic forms. We need to perform variants of it for equations
(2.61)-(2.62) satisfied by � and ⌘. So, we consider a general setting. Next let y
be the mild solution of

(3.12) ẏ +Ay = ay + b0v, y(0) = 0,

with

(3.13) a 2 L1(0, T ;L(H)); b0 2 C(0, T ;H),

and b0 is a mild solution of

(3.14) ḃ0 +Ab0 = g0 2 L2(0, T ;H).
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Given v 2 L1(0, T ) and y the corresponding solution of (3.12), let us consider
the Goh transform associated with (3.12) as the mapping that, given (a, b0, g0),
associates to the pair (v, y) the pair (w, ⇠y) 2 AC(0, T )⇥ C(0, T ;H) defined by

(3.15) w(t) :=

Z t

0

v(s)ds, ⇠y := y � wb0.

We set b1 := ab0 � g0 and note that the norms below are well-defined:

(3.16) kak1 := kakL1(0,T ;L(H)); kbiks := kbikLs(0,T ;H); i = 0, 1; s 2 [1,1],

although using the same notation for di↵erent norms, there is no danger of confu-
sion. In view of Corollary 2.3 and Theorem 2.4 we get:

Lemma 3.4. Let (3.12)-(3.14) hold. Then ⇠y is the mild solution of

(3.17) ⇠̇y +A⇠y = a⇠y + wb1; ⇠(0) = 0.

In addition there exists c : R+ ! R+ nondecreasing such that the constant ca :=
c(kak1) satisfies

k⇠ykC([0,T ];H)  cakb1k2kwk2,(3.18)

kyk2 
⇣
T 1/2cakb1k2 + kb0k1

⌘
kwk2.(3.19)

Proof. By the semigroup theory there exists c : R+ ! R+ nondecreasing such that

k⇠ykC([0,T ];H)  c(kak1)kb1 wkL1(0,T ;H)  c(kak1)kb1k2kwk2,(3.20)

so that (3.18) holds. Since y = ⇠y + wb0, we get

(3.21) ky(t)kH  c(kak1)kb1k2kwk2 + kb0k1|w(t)|, for a.a. t 2 (0, T ),

implying (3.19). ⇤

Remark 3.5. The Goh transform has the same structure as in the ODE case (see
e.g. equations (27)-(30) in [1]). In fact, if we write the equation (3.12) in the form
ẏ = (a�A)y+b0v, in view of (3.17), ⇠y defined by Goh transform (3.15) is solution
of ⇠̇y = (a�A)⇠y + wb1, with b1 = (a�A)b0 � ḃ0 = ab0 � g0.

We assume the existence of E1 ⇢ H with continuous inclusion having the re-
striction property, and such that

(3.22) dom(A) ⇢ E1.

We can use B2 to denote the restriction of B2 to E1, with no risk of confusion,
and let us write Bk

i to refer to (Bi)k. In the remainder of the paper we make the
following hypothesis:

(3.23)

8
>>>>>><

>>>>>>:

(i) B1 2 dom(A),
(ii) B2 dom(A) ⇢ dom(A), B⇤

2 dom(A⇤) ⇢ dom(A⇤),
(iii) for k = 1, 2 :

⇥A,Bk
2

⇤
has a continuous extension to E1,

denoted by Mk,
(iv) f 2 L1(0, T ;H); M⇤

k p̂ 2 L1(0, T ;H⇤), k = 1, 2,
(v)  ̂ 2 L2(0, T ;E1); [M1,B2] ̂ 2 L1(0, T ;H).

We refer to Section 5, where examples of problems, where these hypotheses are
easily checked, are provided.
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Remark 3.6. Observe that (3.23) (ii) implies that

(3.24) Bk
2 dom(A) ⇢ dom(A), (Bk

2 )
⇤ dom(A⇤) ⇢ dom(A⇤), for k = 1, 2.

So, [A,B2] is well-defined as operator with domain dom(A), and point (iii) makes
sense.

3.3.2. Goh transform for z. Let û 2 U have associated state  ̂. Recall that z is
solution of the linearized state equation (2.15). Set

(3.25) B(t) := B1 + B2 ̂(t).

We apply Corollary 2.13 with B := B2 and y :=  ̂, so that (a, b) = (ûB2, f + ûB1).
Then � := B2 ̂ satisfies

(3.26) �̇+A� = B2(f + ûB) +M1 ̂.

Setting �0 := B = B1 + �, thanks to (3.23), we get

(3.27) �̇0 +A�0 = gz, where gz := AB1 + B2(f + ûB) +M1 ̂.

We next apply Lemma 3.4 to the linearized state equation (2.15), with here the
pair (a, b) corresponding to (az, bz) = (ûB2,B). Clearly az 2 L1(0, T ;L(H)),
bz 2 C(0, T ;H), and by (3.27), we have that �̇0 + A�0 belongs to L2(0, T ;H) in
the sense of mild solutions. It follows that the dynamics for ⇠ := z � wB with
w :=

R t

0
v(s)ds reads

(3.28) ⇠̇ +A⇠ = ûB2⇠ + wb1z;

where

(3.29) b1z = azbz � gz = �B2f �M1 ̂�AB1.

Proposition 3.7. The solution z of the linearized state equation (2.15) satisfies

the following estimate

(3.30) k⇠kC(0,T ;H) + kzkL2(0,T ;H) = O
�kwk2

�
.

Proof. This follows from the restriction property and since hypothesis (3.23) guar-
antees that b1z 2 L1(0, T ;H). ⇤

3.4. Goh transform of the quadratic form. Let again û 2 U , and set  ̂ =  [û]
and p̂ = p[û]. We recall the definition of the operator M in (2.40). Consider the
space

(3.31) W :=
�
L2(0, T ;E1) \ C([0, T ];H)

�⇥ L2(0, T )⇥ R.
We introduce the continuous quadratic form over W, defined by

(3.32) bQ(⇠, w, h) = bQT (⇠, h) + bQa(⇠, w) + bQb(w),

where bQb(w) :=
R T

0
w2(t)R(t)dt and

bQT (⇠, h) := qT (⇠(T ) + hB(T )) + h2hp̂(T ),B2B1 + B2
2 ̂(T )i+ hhp̂(T ),B2⇠(T )i,

(3.33)

bQa(⇠, w) :=

Z T

0

⇣
q(⇠) + 2whQ⇠,Bi+ 2whQ( ̂� d),B2⇠i � 2whM⇤

1 p̂, ⇠i
⌘
dt,

(3.34)
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with R 2 L1(0, T ) given by

(3.35)

(
R(t) := q(B) + hQ( ̂� d),B2Bi+ hp̂(t), r(t)i,
r(t) := B2

2f(t)�AB2B1 + 2B2AB1 �
⇥
M1,B2

⇤
 ̂.

Theorem 3.8. For v 2 L1(0, T ) and w 2 AC(0, T ) given by Goh transformation

(3.15), there holds

(3.36) Q(z[v], v) = bQ(⇠[w], w, w(T )).

Proof. For the contributions of the terms with q(·) and qT (·), we replace z by ⇠+wB.
For the contribution of the bilinear term in (3.1) we proceed as follows. There holds
(3.37)Z T

0

v(t)hp̂(t),B2z(t)idt =
Z T

0

v(t)w(t)hp̂(t),B2B(t)idt+
Z T

0

v(t)hp̂(t),B2⇠(t)idt
=: l1(w) + l2(w).

There holds

(3.38)
l1(w) =

Z T

0

v(t)w(t)hp̂(t),B2B1i+ v(t)w(t)hp̂(t),B2
2 ̂(t)idt

=: g1(w) + g2(w).

We apply several times Corollary 2.13 for a := ûB2 and (as can be checked in each
case) [B, a] = 0, and to begin with

(3.39) y := B1; B := B2; b := AB1 � ûB2B1.

By (3.23) and since û 2 L1(0, T ), (2.23)-(2.24) holds. We get:
(3.40)

g1(w) =
1
2w(T )

2hp̂(T ),B2B1i � 1
2

Z T

0

w(t)2hp̂(t),B2(AB1 � ûB2B1)idt

+ 1
2

Z T

0

w(t)2hQ( ̂(t)� d(t)),B2B1idt� 1
2

Z T

0

w(t)2hp̂(t),M1B1idt.

Applying (with similar arguments) Corollary 2.13 with

(3.41) y :=  ̂; B := B2
2; b := f + ûB1,

we get
(3.42)

g2(w) =
1
2w(T )

2hp̂(T ),B2
2 ̂(T )i+ 1

2

Z T

0

w(t)2hQ( ̂(t)� d(t)),B2
2 ̂(t)idt

� 1
2

Z T

0

w(t)2(M⇤
2 p̂(t),  ̂(t)idt� 1

2

Z T

0

w(t)2(p̂(t),B2
2(f(t) + û(t)B1)idt.

Finally setting

(3.43) y := ⇠; B := B2; b := wb1z,

we get with Corollary 2.13 with b1z defined in (3.29):

(3.44)

l2(w) = w(T )hp̂(T ),B2⇠zT i+
Z T

0

w(t)hQ( ̂(t)� d(t)),B2⇠(t)idt

�
Z T

0

w(t)2hp̂(t),B2b
1
z(t)idt�

Z T

0

w(t)hM⇤
1 p̂(t), ⇠(t)idt.
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Combining the previous equalities, the result follows. ⇤

Given û 2 Uad, we write PC2(û) for the closure in the L2 ⇥ R–topology of the
set

(3.45) PC(û) := {(w, h) 2 W 1,1(0, T )⇥ R, ẇ 2 C(û); w(0) = 0, w(T ) = h}.
The final value of w becomes an independent variable when we consider this closure.

Lemma 3.9. Let û be a weak minimum for problem (P). Then

(3.46) bQ(⇠[w], w, h) � 0 for all (w, h) 2 PC2(û).

Proof. Let (w, h) 2 PC(û) with ẇ = v 2 C(û). By Theorem 3.3, Q(z[v], v) � 0,
and so by Theorem 3.8, 0  Q(z[v], v) = bQ(⇠[w], w, w(T )). By (3.23), bQ(⇠, w, h) has
a continuous extension to the spaceW defined in (3.31). The conclusion follows. ⇤

Definition 3.10 (Singular arc). A control u 2 Uad is said to have a singular arc
over (t1, t2), with 0  t1 < t2  T , if, for all ✓ 2 (0, 1

2 (t2 � t1)), there exists " > 0
such that

(3.47) u(t) 2 [um + ", uM � "], for a.a. t 2 (t1 + ✓, t2 � ✓).

We may also say that (t1, t2) is a singular arc itself. We call (t1, t2) a lower bound-
ary arc if u(t) = um for a.a. t 2 (t1, t2), and an upper boundary arc if u(t) = uM

for a.a. t 2 (t1, t2). We sometimes simply call them boundary arcs. We say that a

boundary arc (c, d) is initial if c = 0, and final if d = T .

Corollary 3.11. Let û be a weak minimum for problem (P). Assume that

(3.48)  d 2 L1(0, T,H),

and that

(3.49) the mapping w 7! ⇠[w] is compact from L2(0, T ) to L2(0, T ;H).

Let (t1, t2) be a singular arc. Then R 2 L1(0, T ;H) defined in (3.35) satisfies

(3.50) R(t) � 0 for a.a. t 2 (t1, t2).

Proof. Consider the set

(3.51) P := {(w, h) 2 PC2(û); w(t) = 0 a.e. over (0, T ) \ (t1, t2).} .
By definition, P ⇢ PC2(û) and, therefore,

bQ(⇠[w], w, h) � 0, for all (w, h) 2 P.

Over P , bQ is nonnegative (and therefore convex), and continuous, and hence, is
weakly l.s.c. By (3.49), the terms of bQ where ⇠ is involved are weakly continuous.
So, bQb must be weakly l.s.c. over P . As it is well known, see e.g. [19, Theorem
3.2], this holds i↵ R(t) � 0 a.e. on (t1, t2). The conclusion follows. ⇤

4. Second order sufficient optimality conditions

Given û and u in Uad with associated states  ̂ and  resp., setting v := u � û
and z := z[v], we recall that � :=  �  ̂ and ⌘ := � � z are solution of (2.61)
and (2.62), resp.
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4.1. Goh transform for � . We apply Lemma 3.4 to (2.61), with here (a� , b� ) =
(uB2,B). Using again (3.27) we obtain by the same arguments that the dynamics
for ⇠� := � � wB reads

(4.1) ⇠̇� +A⇠� = uB2⇠� + wb1� ;

Since g� = gz, we have by (3.23) that the amount below belongs to L2(0, T ;H):

(4.2) b1� = uB2B � g� = vB2B � B2f �M1 ̂�AB1.

Corollary 4.1. We have that

(4.3) k⇠� kC(0,T ;H) = O(kwk2),

(4.4) k� kL2(0,T ;H) = O(kwk2).
Proof. Consequence of Lemma 3.4 with here b0 = B. ⇤

4.2. Goh transform for ⌘. We next apply Lemma 3.4 to the equation (2.62),
with now (a⌘, b⌘) = (ûB2,B2� ). We need to apply Corollary 2.13 with B := B2

and y := � . Similarly to (3.26) we obtain that � := By satisfies

(4.5) �̇+A� = g⌘, with g⌘ := uB2
2� + vB2B +M1� .

The dynamics for ⇠⌘ := ⌘ � wB2� reads

(4.6) ⇠̇⌘ +A⇠⌘ = ûB2⇠⌘ + wb1⌘;

with

(4.7) b1⌘ = a⌘b⌘ � g⌘ = �vB2
2� � vB2B �M1� .

Lemma 4.2. We have that

(4.8) k⌘kL1(0,T ;H) = O
�kvk2kwk2

�
.

Proof. By Corollary 4.1, we have that

(4.9) kv� kL1(0,T ;H)  kvk2k� kL2(0,T ;H) = O(kvk2 kwk2).
We conclude with the first equality in (2.65). ⇤

4.3. Main results. In this section we state a su�cient optimality condition, that
needs a new notion of optimality. The control û is said to be a Pontryagin minimum

(see e.g. [24]) for problem (P) if there exists " > 0 such that û is optimal among all
the controls u 2 Uad verifying ku� ûk1 < ". A bounded sequence (vk) ⇢ L1(0, T )
is said to converge to 0 in the Pontryagin sense if kvkk1 ! 0.

We need some additional hypotheses:

(4.10)

(
(i) B2

2f 2 C(0, T ;H);  d 2 C(0, T ;H),

(ii) M⇤
k p̂ 2 C(0, T ;H⇤), k = 1, 2.

The following result states a refinement of the Taylor expansion stated in Corol-
lary 3.2.
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Proposition 4.3. Let û 2 Uad and let (vk) converge to 0 in the Pontryagin sense.

Then

(4.11)

J(û+ vk) = J(û) +

Z T

0

⇤(t)vk(t)dt+
1
2
bQ(⇠[wk], wk, wk(T )) + o(kwkk22 + wk(T )

2),

where (⇠[wk], wk) is obtained by the Goh transform.

Proof. First observe that, in view of the definitions of ⇠ and ⇠� , and of (3.30) and
(4.3), we have that

(4.12) kz(T )kH  k⇠(T )kH + |h|kBkL1(0,T ;H) = O(kwk2 + |h|),
and

(4.13) k� (T )kH  k⇠� (T )kH + |h|kBkL1(0,T ;H) = O(kwk2 + |h|).
We skip indexes k. Recalling that u = û+v, � and z are the solutions of (2.61)

and (2.15), respectively, and ⌘ = � �z, there holds the identity
(4.14)

Q(� , v)�Q(z, v) =

Z T

0

hQ(� (t) + z(t)), ⌘(t)idt+ hQT (� (T ) + z(T )), ⌘(T )i

+ 2

Z T

0

v(t)hp̂(t),B2⌘(t)idt.

By (4.12)-(4.13), Corollary 4.1 and Lemma 4.2, the first and second terms of the
r.h.s. are of order o(kwk22 + h2). Recall now (2.62), and set

(4.15) y := ⌘, a := ûB2, b := vB2� , B := B2.

Using Corollary 2.13 (in fact, several times in the proof), the last integral in (4.14)
can be rewritten as
(4.16)Z T

0

v(t)hp̂(t),B2⌘(t)idt = [whp̂,B2⌘i]T0 +

Z T

0

w(t)hQ( ̂(t)� d(t)),B2⌘idt

�
Z T

0

w(t)v(t)hp̂(t),B2
2 � (t)idt�

Z T

0

w(t)hM⇤
1 p̂(t), ⌘(t)idt.

By arguments already used, all terms of the r.h.s. of (4.16) are of order o(kwk22+h2),
except maybe for the third term. Recall the equation (2.61) for � and define

(4.17) a := ûB2, b := vB2� + vB, B := B2
2,

and we have:

(4.18)

Z T

0

w(t)v(t)hp̂(t),B2
2 � (t)idt

= 1
2 [w

2hp̂,B2
2 � i]T0 + 1

2

Z T

0

w(t)2hQ( ̂(t)� d(t)),B2
2 � (t)idt

� 1
2

Z T

0

w(t)2
D
p̂(t), v(t)B2

2

�B2� + B(t)�
E
dt

� 1
2

Z T

0

w(t)2
D
M⇤

2 p̂(t), � (t)
E
dt
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Here, again, by the same arguments, using that v is uniformly essentially bounded
and (4.4) we find that all terms are of order o(kwk22 + h2), except maybe for the

integral
R T

0
w(t)2v(t)hp̂(t),B2

2B(t))idt, which can be integrated using Corollary 2.13
for

(4.19) y := B, a := ûB2, b := AB1 +M1 ̂+ B2f, B := B2
2.

Hence we get
Z T

0

w(t)2v(t)hp̂(t),B2
2B(t))idt =

1

3
[w3hp̂,B2

2Bi]T0

+
1

3

Z T

0

w(t)3hQ( (t)� d(t)),B2
2Bidt

� 1

3

Z T

0

w(t)3hp̂(t),B2
2(AB1 +M1 ̂+ B2f)idt

� 1

3

Z T

0

w(t)3hM⇤
2 p̂(t),Bidt,

(4.20)

The first term in the right-hand side of (4.20) is of order o(h2), while the other

three have the form
R T

0
w3(t)q(t)dt for q 2 L1(0, T ). Note in particular that

(4.21) hp̂(t),M1 ̂(t)iH = hM⇤
1 p̂(t),  ̂(t)iE1 = hM⇤

1 p̂(t),  ̂(t)iH
combined with (4.10)(ii) implies that the above product is essentially bounded.
Then the following estimate holds

(4.22)

�����

Z T

0

w(t)3q(t)dt

�����  kwk1kwk22kqk1 = o(kwk22),

we get

(4.23) Q(� , v)�Q(z, v) = o(kwk22 + h2).

Finally, with Proposition 3.1 and Theorem 2.16 the result follows. ⇤

Remember that ⇤ was defined in (2.55). In the following we assume that the
following hypotheses hold:

(1) finite structure:

(4.24)

⇢
there are finitely many boundary and singular maximal arcs
and the closure of their union is [0, T ],

(2) strict complementarity for the control constraint (note that ⇤ is a continu-
ous function of time)

(4.25)

⇢
⇤ has nonzero values over the interior of each boundary arc, and
at time 0 (resp. T ) if an initial (resp. final) boundary arc exists,

(3) letting TBB denote the set of bang-bang junctions, we assume

(4.26) R(t) > 0, t 2 TBB .
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Proposition 4.4. Let û 2 Uad satisfy (4.24)–(4.25). Then PC2(û), that was de-

fined before (3.45), satisfies
(4.27)

PC2(û) =

8
<

:

(w, h) 2 L2(0, T )⇥ R; w is constant over boundary arcs,

w = 0 over an initial boundary arc

and w = h over a terminal boundary arc

9
=

; .

Proof. Similar to the one of [1, Lemma 8.1]. ⇤

Consider the following positivity condition: there exists ↵ > 0 such that

(4.28) bQ(⇠[w], w, h) � ↵(kwk22 + h2), for all (w, h) 2 PC2(û).

We say that û satisfies a weak quadratic growth condition if there exists � > 0 such

that for any u 2 Uad, setting v := u� û and w(t) :=
R T

0
v(s)ds, we have

(4.29) F (u) � F (û) + �(kwk22 + w(T )2), if kvk1 is small enough.

The word ‘weak’ makes reference to the fact that the growth is obtained for the L2

norm of w, and not the one of v.

Theorem 4.5. Let û be a weak minimum for problem (P), satisfying (4.24)-(4.26).
Then (4.28) holds i↵ the quadratic growth condition (4.29) is satisfied.

Proof. Let (4.28) hold and let (vk, wk) contradict the weak quadratic growth con-
dition (4.29), i.e.

û+ vk 2 Uad, vk 6= 0, kvkkL1(0,T ) ! 0, wk(t) =

Z t

0

vk(s)ds,(4.30)

with

J(û+ vk)  J(û) + o(�k)(4.31)

for �k := �(wk, wk,T ) where �(w, h) := kwk22 + h2, for any (w, h) 2 L2(0, T ) ⇥ R.
Set hk := wk,T , and (ŵk, ĥk) := (wk, hk)/

p
�k that has unit norm in L2(0, T )⇥ R.

Extracting if necessary a subsequence, we have that there exists (ŵ, ĥ) in L2(0, T )⇥
R, such that ŵk converges weakly in L2(0, T ) to ŵ and ĥk ! ĥ. Let ⇠̂k and ⇠̂
denote the solution of (3.28) associated with ŵk and ŵ, respectively. Since w 7!
⇠[w] is linear and continuous L2(0, T ) ! L1(0, T ;H), ⇠̂k weakly converges to ⇠̂ in
L1(0, T ;H). By the compactness hypothesis (2.52) we also have that ⇠̂k ! ⇠̂ in
L2(0, T ;H).

We proceed in three steps, starting by proving the su�ciency of (4.28). We
obtain in Step 1 that (ŵ, ĥ) 2 PC2(û), and in Step 2 that (ŵk, ĥk) ! 0 strongly
in L1(0, T )⇥R, which contradicts the fact that (ŵk, ĥk) has unit norm. Finally in
Step 3 we prove the necessity of (4.28).

Step 1. From Proposition 4.3 we have

J(û+ v) = J(û) +

Z T

0

⇤(t)v(t)dt+O(�k).(4.32)

Note that the integrand on the right hand-side of the previous equation is nonneg-
ative in view of the first order conditions given Proposition 2.17. Using (4.31), it
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follows that

(4.33) lim
k!1

1p
�
k

Z T

0

⇤(t)vk(t)dt = 0.

Consider now a maximal boundary arc [c, d] and let " > 0 be su�ciently small such
that c+" < d�". In view of hypotheses (4.25), ⇤ is uniformly positive (respectively,
uniformly negative) on [c+ ", d� "], and therefore, from (4.33) we get

(4.34) 0 = lim
k!1

1p
�
k

Z d�"

c+"

vk(t)dt = lim
k!1

ŵk(d� ")� ŵk(c+ ").

Since ŵk is monotonous on [c, d] and " > 0 is arbitrarily small, it follows that,
extracting if necessary a subsequence, we can assume that ŵk converges uniformly
on [c + ", d � "] to a constant function. By a diagonal argument we may assume
that ŵ is constant on every of (the finitely many) boundary arcs [c, d].

For an initial (resp. final) boundary arc, in view of the strict complementarity
hypothesis (4.25) we have a similar argument using integrals between 0 and d � "
(resp. between c+ " and T ). Since ŵk(0) = 0 (resp. ŵk(T ) = ĥk), we deduce that,
on this arc, ŵ equals 0 (resp. h). Hence, we showed that (ŵ, ĥ) 2 PC2 as desired.

Step 2. From (4.29), Proposition 4.3, the non-negativity of
R T

0
⇤(t)vk(t)dt,

(4.31), and the convergence of ⇠k to ⇠̂ in L2(0, T ;H) we deduce that

bQ(⇠̂k, ŵk, ŵT,k)  o(1).(4.35)

Let us consider the set IS := [0, T ]\(Im[IM ) the closure of the union of singular
arcs, and recall the definition of TBB in (4.25). We set for " > 0

(4.36) I"SBB := {t 2 [0, T ]; dist(t, IS [ TBB)  "}, I"0 := [0, T ] \ I"SBB .

Recalling that wk converges uniformly on [c + ", d � "] for any bang arc [c, d] and
" > 0 su�ciently small, we deduce that wk convergence uniformly on the set I"0 .

Recall the definition of R in (3.35). Observe that R(t) is continuous in view of
the continuity of f(t) and  d(t) in H, and of  ̂(t) in E. By (4.28), there exists
↵ > 0, such that the quadratic form bQ(⇠[w], w, h) � ↵�(w, h) is nonnegative over
PC2(û). So, by hypothesis (4.26) and Corollary 3.11, we have that

(4.37) R(t) � 1
2↵ over I"SBB .

We split the form bQ defined in (3.32) as bQ = bQT,a + bQ1
b +

bQ2
b , where

(4.38)

bQT,a := bQT + bQa, bQ1
b(w) :=

Z

I"
SBB

R(t)w(t)2dt, bQ2
b(w) :=

Z

I"
0

R(t)w(t)2dt.

By (3.49), bQT,a(⇠[·], ·, h) : L2(0, T ) ⇥ R ! R is weakly continuous. By (4.37), the

restriction of bQ1
b to L

2(I"SBB) is a Legendre form (it is weakly l.s.c. and, if wk weakly

converges to ŵk and bQ1
b(wk) ! bQ1

b(wk), then wk ! !̂ strongly in L2(I"SBB)). Thus
we have

bQT,a(⇠̂, ŵ, ĥ) = lim
k

bQT,a(⇠̂k, ŵk, ŵk,T ),

bQ1
b(ŵ)  lim inf

k!1
bQ1
b(ŵk),

bQ2
b(ŵ) = lim

k!1
bQ2
b(ŵk).

(4.39)
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The last equality uses the fact that ŵk ! ŵ uniformly on I"0 . From (4.28), (4.39)
and (4.35) and step 1, we get:

↵�(ŵ, ĥ)  bQ(⇠̂, ŵ, ĥ)  lim
k!1

bQT,a(⇠̂k, ŵk, ŵk,T ) + lim sup
k!1

bQ1
b(ŵk) + lim

k!1
bQ2
b(ŵk)

= lim sup
k!1

bQ(⇠̂k, ŵk, ĥk)  0.

(4.40)

Then, (ŵ, ĥ) = 0 and bQ1
b(ŵk) ! bQ1

b(ŵ) = 0. Since bQ1
b is a Legendre form, ŵk !

ŵ = 0 in L2(I"SBB). Given that ŵk converges uniformly to ŵ on I"0 , we get that

(ŵk, ĥk) strongly converges to (0, 0) on L2(0, T )⇥R. This leads to a contradiction
since (ŵk, ĥk) is a unit sequence. Thus, the quadratic growth (4.29) holds.

Step 3. Conversely, let the weak quadratic growth condition (4.29) be given for

� > 0. Further let v 2 L2(0, T ) and w[v](s) :=
R T

0
v(s)ds. Applying the second

order necessary condition (see Lemma 3.9) to problem

(4.41) min J(u, )� ��̂, �̂ :=

Z T

0

w[v](s)2ds+ w[v](T )2

we obtain condition (4.28). ⇤

5. Applications

In this application section, after a general discussion for the case of diagonal-
izable operators, where the semigroup properties can be related to the structure
of the spectrum, we consider two important application fields, the heat and wave
equations. It is of interest to see the great qualitative di↵erence between them, re-
lated in particular to the fact that for the wave equation, the commutators involve
no di↵erential operators.

5.1. Diagonalizable operators. In our applications H is a separable Hilbert
space with a Hilbert basis {ek; k 2 N}, of eigenvectors of A, with associated (real)
eigenvalues µk. Let  2 H, with components  k := ( , ek)H, where (·, ·)H denotes
the scalar product in H.

We have that

(5.1) dom(A) =

(
 2 H;

X

k2N
|µk|2| k|2 < 1

)
.

Given an initial condition  0 =
P

k2N 0kek 2 H, the semigroup verifies the fol-
lowing expression:

(5.2) e�tA 0 =
X

k2N
e�tµk 0kek.

Since  0 2 H we have that
P

k2N k 0kk2H < 1. Let us note that the eigenvalues
µk have to comply with condition (2.1), i.e.

(5.3)
X

k2N
|e�tµk |2| k(t)|2  �cAe�At

�2X

k2N
| k(t)|2.
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Letting Re denote the real part, we observe that |e�tµk | = e�tRe(µk), so that the
above condition (5.3) is equivalent to

(5.4)
X

k2N
e�2tRe(µk)| k(t)|2  �cAe�At

�2X

k2N
| k(t)|2.

Considering the case when  0 = ek, for some k 2 N, we observe that (5.4) holds i↵
the following bounded deterioration condition holds:

(5.5) � := inf
k
µk > �1.

Then (5.4) holds with cA = 1 and �A = �, and consequently:

(5.6) ke�tAkL(H)  e��t, t > 0.

Observe that, if � � 0, then the semigroup results a contraction semigroup.
In this setting we have the regularity results that follow. Set, for q > 0,

(5.7) Hq := { 2 H;
X

k2N
(1 + |µk|q)| k|2 < 1},

(so that H2 = dom(A)), endowed with the norm

(5.8) k kHq :=

 
X

k2N
(1 + |µk|q)| k|2

!1/2

.

Then Hq is a Banach space with dense, continuous inclusion in H. Since, for
0 < q < p and a > 0, it holds aq  1 + ap, we have that Hq ⇢ Hp. Furthermore,
under the bounded deterioration condition (5.5), it holds e�tA(Hq) ✓ Hq and the
restriction of e�tA to Hq is itself a semigroup.

Remark 5.1. By the Hille-Yosida Theorem, A is the generator of a semigroup i↵, for
some M > 0 and ! 2 R, for all � > !, and n = 1, 2, . . . , (�I +A) has a continuous
inverse that satisfies

(5.9) k(�I +A)�nkL(H)  M/(�� !)n.

That is, �+ µk 6= 0 for all k, and for all f =
P

k fkek 2 H,

(5.10)
X

k

|�+ µk|�2n|fk|2  M2(�� !)�2n
X

k

|fk|2.

This holds i↵, for all k, |�+ µk|�2n  M2/(�� !)2n, that is,

(5.11) |�+ µk| � (�� !)/M1/n.

Now, consider M = 1 and note that (5.11) is equivalent to

(5.12) 2�(! + µk) � |µk|2 + !2.

Dividing by � and taking � to 1, we get ! + µk � 0. As expected, we recover the
bounded deterioration condition (5.5) with ! = ��, and we conclude that, with
these choices of M and !, the Hille-Yosida condition holds.

In this setting we have some compact inclusions.

Lemma 5.2. Let 0 < q < p. Then the inclusion of Hp
into Hq

is compact i↵

|µk| ! 1.
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Proof. Part 1. Let |µk| ! 1. Reordering if necessary, we may assume that |µk| is
a nondecreasing sequence. Let ( n) be a bounded sequence in Hp. Consider the
truncation at order N , say 'N,n :=

P
k<N  

n
kek 2 Hp. The order N can be taken

large enough, so that |µN | > 1. It is easily checked that

(5.13)
1 + |µk|q
1 + |µk|p  1 + |µN |q

1 + |µN |p , for any k > N .

Then

(5.14)

k n � 'N,nk2Hq =
P

k�N (1 + |µk|q)| n
k |2

 1 + |µN |q
1 + |µN |p

X

k�N

(1 + |µk|p)| n
k |2

 1 + |µN |q
1 + |µN |p k 

nk2Hp .

By a diagonal argument we may assume that {'N,n}n2N has, for every N , a limit
say wN in Hq. By (5.14), for any " > 0, we can choose N large enough such that
kwN � nkHq  ". It follows that  n is a Cauchy sequence in Hq.
Part 2. If there exists a subsequence (kj) ⇢ N, such that µkj is bounded, then
(ekj ) is necessarily a bounded sequence in Hp (and therefore in Hq) that converges
to zero weakly, but not strongly, so that the inclusion of Hp into Hq cannot be
compact. ⇤

Lemma 5.3. If, for some q > 0:

(5.15) B1 2 Hq; B2 2 L(Hq); f 2 L1(0, T ;Hq);  0 2 Hq,

then the solution of (1.1) belongs to C(0, T ;Hq).

Proof. Consequence of Lemma 2.7 concerning the restriction property. ⇤

5.2. Link with the variational setting for parabolic equations. The vari-
ational setting is as follows. Assuming as before H to be a Hilbert space, let V
be another Hilbert space continuously embedded in H, with dense and compact
inclusion. We identify H with its dual and therefore, by the Gelfand triple theory,
with a dense subspace of V ⇤. Given a continuous bilinear form a : V ⇥ V ! R, we
consider the equation

(5.16) h ̇(t), viV + a( (t), v) = (f(t), v)H, for a.a. t 2 (0, T )

with f 2 L2(0, T ;H) and the initial condition  (0) =  0 2 H. It is assumed that
the bilinear form is semicoercive, that is, for some ↵ > 0 and � 2 R:
(5.17) a(y, y) � ↵kyk2V � �kyk2H, for all y 2 V .

By the Lions-Magenes theory [23], equation (5.16) has a unique solution in the
space

(5.18) W (0, T ) := {u 2 L2(0, T, V ); u̇ 2 L2(0, T, V ⇤)}.
It is known that W (0, T ) ⇢ C(0, T ;H), so that W (0, T ) ⇢ L2(0, T ;H). By Aubin’s
Lemma [3],

(5.19) the inclusion W (0, T ) ⇢ L2(0, T ;H) is compact.
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Let AV 2 L(V, V ⇤) be defined by

(5.20) hAV u, vi = a(u, v), for all u, v in V .

The adjoint A⇤V 2 L(V, V ⇤) satisfies

(5.21) hA⇤
V u, vi = a(v, u), for all u, v in V .

Since V ⇢ H we can consider the following unbounded operators AH and A⇤
H in

H, with domain

(5.22) dom(AH) := {v 2 V ; AV v 2 H}; dom(A⇤
H) := {v 2 V ; A⇤

V v 2 H},
and AHv := AV v for all v 2 dom(AH), A⇤

Hv := A⇤
V v for all v 2 dom(A⇤

H). Then
one can check that A⇤

H is the adjoint of AH.

Lemma 5.4. In the above setting, AH is the generator of a semigroup, and when

f 2 L2(0, T ;H) the variational solution coincides with the mild solution.

Proof. We first check that AH is the generator of a semigroup thanks to the Hille-
Yosida Theorem. Let � be given by the semicoercivity condition (5.17). Set
a�(y, z) := a(y, z) + �(y, z)H. Let f 2 H. By the Lax-Milgram Theorem, there
exists a unique y 2 V such that

(5.23) a(y, z) = (f, z)H, for all v 2 V ,

and in addition

(5.24) |hAV y, zi| = |a(y, z)| = |(f, z)H|  kfkHkzkH
proving that AV y 2 H, and therefore y 2 dom(AH). Also,

(5.25) (AHy, z)H = hAV y, ziV = (f, z)H,

for any z 2 V (and therefore for any z 2 H), means that AHy = f .
In order to end the proof, in view of Theorem 2.2, it su�ces to prove that

weak and variational solutions coincide. We only need to check that the strong
formulation implies the weak one. Taking v =  ' in (5.16), with  2 D(0, T ) and
' 2 dom(A⇤

V ) we get

(5.26)

Z T

0

 (t)
h
h ̇(t),'i+ a( (t),')� hf(t),'i

i
dt = 0.

Since  is an arbitrary element of D(0, T ), the L2(0, T ) function in the brackets is
necessarily equal to zero. We conclude observing that a( (t),') = hA⇤

V ', (t)iV
for a.a. t. ⇤

Theorem 5.5. Let hypothesis (3.23) hold. Then the compactness condition (2.52)
is satisfied, and problem (P) has a nonempty set of minima.

Proof. By our hypotheses, the mapping f 7!  ̂ is continuous from L2(0, T ) into
W (0, T ). By (5.19), the mapping u 7!  ̂[u] is compact from L2(0, T ) to L2(0, T ;H).
So, the compactness hypothesis (2.52) holds, and the existence of a minimum follows
from Theorem 2.15. ⇤

5.3. Heat equation.
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5.3.1. Statement of the problem. We first write the optimal control in an informal
way. Let ⌦ be a bounded open subset of Rn with C2 boundary.

The state equation, where y = y(t, x), is

(5.27)

8
>><

>>:

@y(t, x)

@t
+AHy(t, x) = f + u(b1(x) + b2(x)y(t, x)) in (0, T )⇥ ⌦,

y(0, x) = y0 in ⌦,

y(t, x) = 0 on (0, T )⇥ @⌦.

Here AH stands for the di↵erential operator in divergence form, for (t, x) 2 (0, T )⇥
⌦:

(5.28) (AHy)(t, x) = �
nX

j,k=1

@

@xk


ajk(x)

@y(t, x)

@xj

�
,

where ajk 2 C0,1(⌦̄) satisfy, for each x 2 ⌦̄, the symmetry hypothesis ajk = akj as
well as, for some ⌫ > 0:

(5.29)
nX

j,k=1

ajk(x)⇠j⇠k � ⌫|⇠|2, for all ⇠ 2 Rn, x 2 ⌦.

Let H := L2(⌦) and V = H1
0 (⌦). We apply the abstract framework with H equal

to H. We choose dom(AH) := H2(⌦)\V . The pair (H,V ) satisfies the hypothesis
of the abstract parabolic setting, namely, that V is continuously embedded in H,
with dense and compact inclusion. We next define AV 2 L(V, V ⇤) by

(5.30) hAV y, ziV :=
nX

j,k=1

Z

⌦

ajk(x)
@y

@xj

@z

@xk
dx, for all y, z in V .

The bilinear form over V defined by a(y, z) := hAV y, ziV is continuous and satisfies
the semicoercivity condition (5.17). Since AV y = AHy for all y in H2(⌦) \ V , AH
is nothing but the generator of the semigroup built in the previous section. This
semigroup is contracting, since the Hille Yosida characterization of a generator
given in Lemma 5.4 holds with M = 1, n = 1 and ! = 0.

In the sequel of this study of the heat equation, we assume

(5.31) f 2 C(0, T ;H), b1 2 dom(AH), b2 2 W 2,1
0 (⌦).

The corresponding data of the abstract theory are B1 := b1 and B2 2 L(H) defined
by (B2y)(x) := b2(x)y(x) for y in H and x 2 ⌦. By Lemma 5.4, equation (5.27)
has a mild solution y in C(0, T ;H) which coincides with the variational solution in
the sense of (5.16).

The cost function is, given ↵ 2 R:

(5.32)
J(u, y) := ↵

Z T

0

u(t)dt+ 1
2

Z

(0,T )⇥⌦
(y(t, x)� yd(t, x))

2dxdt

+ 1
2

Z

⌦

(y(T, x)� ydT (x))
2dx.

We assume that

(5.33) yd 2 C(0, T ;H); ydT 2 V.
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For u 2 L1(0, T ), write the reduced cost as F (u) := J(u, y[u]). The optimal control
problem is, Uad being defined in (2.50):

(5.34) MinF (u); u 2 Uad.

5.3.2. Commutators. Given y 2 dom(AH), we have by (5.28) that

(5.35)

M1y = (AHB2 � B2AH)y

= �
nX

j,k=1

✓
@

@xk


ajk

@

@xj
(b2y)

�
� b2

@

@xk


ajk

@y

@xj

�◆

= �
nX

j,k=1

✓
@

@xk


b2(ajk

@y

@xj
) + ajky

@b2
@xj

�
� b2

@

@xk


ajk

@y

@xj

�◆

= �
nX

j,k=1

✓
@b2
@xk


ajk

@y

@xj

�
+

@

@xk


ajky

@b2
@xj

�◆
.

As expected, this commutator is a first order di↵erential operator that has a con-
tinuous extension to the space V . In a similar way we can check that [M1,B2] is
the “zero order” operator given by

(5.36) [M1,B2]y = �2
nX

j,k=1

ajk
@b2
@xj

@b2
@xk

y.

Remark 5.6. In the case of the Laplace operator, i.e. when ajk = �jk, we find that

(5.37) M1y = (AHB2 � B2AH)y = 2rb2 ·ry + y�b2; [M1,B2]y = 2y|rb2|2,
and then for p 2 V :

(5.38)

(M⇤
1 p, y)H =

Z

⌦

(2rb2 ·ry + y�b2) pdx

=

Z

⌦

(�2 div(prb2) + p�b2) ydx

=

Z

⌦

(2rp ·rb2 � p�b2) ydx

so that we can write

(5.39) M⇤
1 p = 2rp ·rb2 � p�b2.

We have similar expressions for M2 and M⇤
2 , replacing b2 by b22.

5.3.3. Analysis of the optimality conditions. For the sake of simplicity we only dis-
cuss the case of the Laplace operator and assume that b1(x) = 0 for all x 2 ⌦. The
costate equation is then

(5.40) � ṗ��p = y � yd + ub2p in (0, T )⇥ ⌦; p(T ) = y(T )� ydT .

Recalling the expression of b1z in (3.29), we obtain that the equation for ⇠ := ⇠z
introduced in (3.28) reduces to

(5.41) ⇠̇ ��⇠ = ûb2⇠ � w(b2f + 2rb2 ·ry � y�b2) in (0, T )⇥ ⌦; ⇠(0) = 0.

The quadratic forms Q and bQ defined in (3.1) and (3.32) are as follows:

(5.42) Q(z, v) =

Z T

0

⇣
kz(t)k2H + 2v(t)(p̂(t), b2z(t))H

⌘
dt+ kz(T )k2H ,
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and as we recall from our general framework

(5.43) bQ(⇠, w, h) = bQT (⇠, h) + bQa(⇠, w) + bQb(w),

with bQb(w) =
R T

0
w2(t)R(t)dt, R 2 C(0, T ), and

bQT (⇠, h) = k⇠(T ) + hb2ŷ(T )k2H + h2(p̂(T ), b22ŷ(T ))H + h(p̂(T ), b2⇠(T ))H ,(5.44)

bQa(⇠, w) =

Z T

0

⇣
k⇠k2H + 2w(2b2ŷ � b2yd � 2rp̂ ·rb2 + p̂�b2, ⇠)H

⌘
dt,(5.45)

R(t) = kb2ŷk2H + (ŷ � yd, b
2
2ŷ)H + (p̂(t), b22f(t)� 2|rb2|2ŷ)H .(5.46)

Theorem 5.7. Let û be a weak minimum for problem (5.34). Then (i) the second

order necessary condition (3.46) holds, i.e.,

(5.47) bQ(⇠[w], w, h) � 0 for all (w, h) 2 PC2(û),

(ii) R(t) � 0 over singular arcs,

(iii) if additionally (4.24)-(4.26) are satisfied, then the second order optimality con-

dition (4.28) holds i↵ the quadratic growth condition (4.29) is satisfied.

Proof. (i) It su�ces to check the hypotheses for Lemma 3.9. Relations (3.23),
where we choose E1 := V , follows from (5.31), (5.33), and the above computation
of commutators. Since ydT 2 V we have that

(5.48) p̂ 2 L2(0, T ;V \H2(⌦)) \H1(0, T ;H) ⇢ C(0, T ;V ),

so that M⇤
1 p̂ 2 C(0, T ;H). Point (i) follows.

(ii) This follows from Corollary 3.11, the compactness hypothesis (3.49) being a
standard result.
(iii) We apply Theorem 4.5, which assumes hypothesis (4.10), and the latter are
satisfied in our present setting. ⇤

Remark 5.8. In the present framework, the generator of the semigroup is diago-
nalizable with a sequence of real eigenvalues µk ! 1. By (5.1), the space H2 of
section 5.1 coincides with H2 \ V .

Remark 5.9. It is not di�cult to extend such results for more general di↵erential
operators of the type, where the ajk are as before, b 2 C0,1(⌦)n and c 2 C0,1(⌦)n:
(5.49)

(AHy)(t, x) = �
nX

j,k=1

@

@xk


ajk(x)

@

@xj
y(t, x)

�
+

nX

j=1

@(bj(x)y(t, x))

@xj
+ cy(t, x).

5.4. Wave equation.

5.4.1. Statement of the problem. Again, let ⌦ be an open bounded subset of Rn

with C2 boundary. The state equation is
(5.50)8
>>>><

>>>>:

@2y1(t, x)

@t2
+AHy1(t, x) = f2(t, x) + u(b1(x) + b2(x)y1(t, x)) in (0, T )⇥ ⌦,

y1(0, x) = y01(x),
@

@t
y1(0, x) = y02(x) in ⌦,

y1(t, x) = 0 on (0, T )⇥ @⌦,
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with AH as defined in (5.28), and again ajk 2 C0,1(⌦̄). Setting y2(t) := ẏ1(t), we
can reformulate the state equation as a first-order system in time given by

(5.51) ẏ +AW y = f + u(B1 + B2y) t 2 (0, T ), y(0) = y0,

with
(5.52)

AW :=

✓
0 �id

AH 0

◆
, B1 :=

✓
0
b1

◆
, B2 :=

✓
0 0
b2 0

◆
, f :=

✓
0
f2

◆
, y0 =

✓
y01
y02

◆
.

Set H := V ⇥H with V := H1
0 (⌦) and H := L2(⌦). We endow the space H with

the norm

(5.53) kykH :=
�ky1k2V + ky2k2H ,

�1/2
,

where for z 2 V :

(5.54) kzkV :=

0

@
nX

i,k=1

ai,k(x)

Z

⌦

@z

@xj

@z

@xk
dx

1

A
1/2

.

It is known that AW is the generator of a contraction semigroup with dom(AW ) =
H2

0,1 ⇢ H, where

(5.55) H2
0,1 := (H2(⌦) \ V )⇥ V.

We verify the Hille Yosida characterization of a generator of a contraction semigroup
(5.9) with n = 1 and ! = 0 given by, for � > 0:

(5.56) ky1k2V + ky2k2H  1

�2

⇣
kf1k2V + kf2k2H

⌘
.

Indeed, consider for (f1, f2) 2 H the system

�(y1, v)V � (y2, v)V = (f1, v)V , for all v 2 V,(5.57)

(AHy1, w)H + �(y2, w)H = (f2, w)H , for all w 2 H.(5.58)

Estimate (5.56) follows by setting (v, w) = (y1, y2), adding the two equations, and
using the Cauchy Schwarz inequality. Taking � = 0 and f = 0 we obtain by
similar arguments that the operator AW is antisymmetric. One can also rely on
the eigenvector decomposition. See more in [5, p. 59, vol. I].

In this section we assume

(y1, y2) 2 H2,1
0 , b1 2 H2(⌦) \ V, b2 2 W 1,1

0 (⌦), f2 2 L2(0, T ;V ).(5.59)

Lemma 5.10. Under the assumptions (5.59) equation (5.50) has a unique mild

solution y in C(0, T ;H2,1
0 ).

Proof. Consequence of Remark 2.8. ⇤

Furthermore, let the cost be given by

(5.60) J(u, y) := ↵

Z T

0

u(t)dt+ 1
2

Z T

0

ky(t)� yd(t)k2Hdt+ 1
2ky(T )� ydT k2H.

We assume that

(5.61) yd 2 C(0, T ;H); ydT 2 H.
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For u 2 L1(0, T ), write the reduced cost as F (u) := J(u, y[u]). The optimal control
problem is, Uad being defined in (2.50):

(5.62) MinF (u); u 2 Uad.

Lemma 5.11. Problem (5.62) has at least one minimum.

Proof. Set H̃ := L2(0, T ;H). By Aubin’s Lemma, the mapping f 7! b2y1[y0, f ] is
compact from H̃ into L2(0, T ;H). Indeed, it is continuous from H̃ to L2(0, T ;V )\
H1(0, T ;H). We then easily pass to the limit in a minimizing sequence in the
nonlinear term of the state equation, that involves only the first component of the
state. ⇤

5.4.2. Commutators. We have

(5.63) M1 =

✓�b2 0
0 b2

◆
; [M1,B2] =

✓
0 0
2b22 0

◆
; M2 = 0.

Here the commutator is a zero order di↵erential operator.

5.4.3. Analysis of optimality conditions. Again, for the sake of simplicity we only
discuss the case of the Laplace operator and assume that b1(x) = 0 for all x 2 ⌦.
Lemma 5.12. Let d1 2 W 1,1(⌦) and d2, d3 belong to L1(⌦). Define N : H ! H
by

(5.64) Ny :=

✓
d1 0
d2 d3

◆✓
y1
y2

◆
=

✓
d1y1

d2y1 + d3y2

◆
.

Then with the same convention

(5.65) N⇤v =

✓
A�1

V (d1AV v1) +A�1
V (d2v2)

d3v2

◆
.

Proof. Let y, z belong to H, then

(5.66) (z,Ny)H = (z1, d1y1)V + (z2, d2y1)H + (z2, d3y2)H .

Clearly

(5.67) (z1, d1y1)V = hAV z1, d1y1iV = (A�1
V (d1AV z1), y1)V .

Now

(5.68) (z2, d2y1)H = (d2z2, y1)H = (A�1
V (d2z2), y1)V .

Finally

(5.69) (z2, d3y2)H = (d3z2, y2)H .

The result follows. ⇤

Note that the above results uses the fact that AV is a symmetric operator. As
a consequence

(5.70) M⇤
1 p̂ =

✓�A�1
V (b2AV p̂1)
b2p̂2

◆
; (M⇤

1 p̂, ⇠)H = �hb2AV p̂1, ⇠1iV + (b2p̂2, ⇠2)H .
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One easily checks that A⇤
W =

✓
0 id

�AH 0

◆
has the same domain as AW . Therefore

the costate equation reads

(5.71)

⇢ �ṗ1 � p2 = uA�1
H (b2p̂2) + y1 � y1d,

�ṗ2 +AHp1 = y2 � y2d,

with final condition p(T ) = ydT .
The equation in ⇠ := ⇠z introduced in (3.28) is given by

(5.72) ⇠̇ +AW ⇠ = ûB2⇠ + wb1z; ⇠(0) = 0 with b1z = �B2f �M1ŷ.

Since B2f = 0 the dynamics for ⇠ reduces to

(5.73)

⇢
⇠̇1 � ⇠2 = wb2ŷ1,
⇠̇2 +AH⇠1 = ûb2⇠1 � wb2ŷ2.

The quadratic forms Q and bQ defined in (3.1) and (3.32): First

(5.74) Q(z, v) =

Z T

0

⇣
kz(t)k2H + 2v(t)(p̂2(t), b2z1(t))H

⌘
dt+ kz(T )k2H ,

and second, bQ(⇠, w, h) = bQT (⇠, h) + bQa(⇠, w) + bQb(w), where

(5.75) bQb(w) =

Z T

0

w2(t)R(t)dt.

Here, R 2 C(0, T ) and

bQT (⇠, h) = k⇠1(T )k2V + k⇠2(T ) + hb2ŷ1(T )k2H + h(p̂2(T ), b2⇠1(T ))H ,

(5.76)

bQa(⇠, w) =

Z T

0

⇣
k⇠k2H + 2w(⇠2, b2ŷ1)H

⌘
dt

(5.77)

+

Z T

0

⇣
2w(ŷ2 � y2d, b2⇠1)H + 2w(hb2AV p̂1, ⇠1iV � (b2p̂2, ⇠2)H)

⌘
dt,(5.78)

R(t) = kb2ŷ2k2H � 2(p̂2(t), b
2
2ŷ1)H .(5.79)

Theorem 5.13. Let û be a weak minimum for problem (5.62). Then (i) The second
order necessary condition (3.46) holds, i.e.,

(5.80) bQ(⇠[w], w, h) � 0 for all (w, h) 2 PC2(û).

(ii) R(t) � 0 over singular arcs.

(iii) Let (4.24)-(4.26) hold. Then the second order optimality condition (4.28) holds
i↵ the quadratic growth condition (4.29) is satisfied.

Proof. (i) Again, it su�ces to check the hypotheses for Lemma 3.9. Relations
(3.23), where we choose E1 := H, follow from (5.52), and (5.61), and the above
computation of the commutator which contains no derivative. In particular M⇤

1 p̂ 2
C(0, T ;H). Point (i) follows.

(ii) To apply Corollary 3.11 we check the compactness hypothesis (3.49). We
have

(5.81) w 7! ⇠[w], L2(0, T ) ! L2(0, T ;H),



32 M. SOLEDAD ARONNA, J. FRÉDÉRIC BONNANS, AND AXEL KRÖNER

with ⇠[w] being the solution of (5.73). Since ⇠[w] 2 Z := C(0, T ;H2
0,1(⌦)) and

⇠̇[w] 2 L2(0, T ;H ⇥ H�1(⌦)). Since H2
0,1 is compactly embedded in H, and H ⇢

H ⇥H�1(⌦) with continuous inclusion, we conclude by Aubin’s Lemma.
(iii) We apply Theorem 4.5, which assumes hypothesis (4.10), which is satisfied in
our present setting. ⇤

Remark 5.14. As for the heat equation the framework can be extended to more
general di↵erential operators AH of type (5.49).
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