
HAL Id: hal-01360797
https://hal.archives-ouvertes.fr/hal-01360797

Submitted on 6 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rethinking the audio workstation: tree-based
sequencing with i-score and the LibAudioStream

Jean-Michaël Celerier, Myriam Desainte-Catherine, Jean-Michel Couturier

To cite this version:
Jean-Michaël Celerier, Myriam Desainte-Catherine, Jean-Michel Couturier. Rethinking the audio
workstation: tree-based sequencing with i-score and the LibAudioStream. Sound and Music Comput-
ing Conference, Aug 2016, Hamburg, Germany. �hal-01360797�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49344624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01360797
https://hal.archives-ouvertes.fr


Rethinking the audio workstation: tree-based sequencing with i-score and the
LibAudioStream

Jean-Michaël Celerier
LaBRI, Blue Yeti

Univ. Bordeaux, LaBRI, UMR 5800,
F-33400 Talence, France.

Blue Yeti, F-17110 France.
jcelerie@labri.fr

Myriam Desainte-Catherine
LaBRI, CNRS

Univ. Bordeaux, LaBRI, UMR 5800,
F-33400 Talence, France.

CNRS, LaBRI, UMR 5800,
F-33400 Talence, France.

INRIA, F-33400 Talence, France.
myriam@labri.fr

Jean-Michel Couturier
Blue Yeti, F-17110 France.

jmc@blueyeti.fr

ABSTRACT

The field of digital music authoring provides a wealth of
creative environments in which music can be created and
authored: patchers, programming languages, and multi-
track sequencers. By combining the I-SCORE interactive
sequencer to the LIBAUDIOSTREAM audio engine, a new
music software able to represent and play rich interactive
audio sequences is introduced. We present new stream
expressions compatible with the LIBAUDIOSTREAM, and
use them to create an interactive audio graph: hierarchi-
cal stream and send - return streams. This allows to cre-
ate branching and arbitrarily nested musical scores, in an
OSC-centric environment. Three examples of interactive
musical scores are presented: the recreation of a traditional
multi-track sequencer, an interactive musical score, and a
temporal effect graph.

1. INTRODUCTION

Software audio sequencers are generally considered to be
digital versions of the traditional tools that are used in a
recording studio: tape recorders, mixing desks, effect racks,
etc.

Most of the existing software follow this paradigm very
closely, with concepts of tracks, buses, linear time, which
are a skeuomorphic reinterpretation of the multi-track tape
recorder [1]. On the other side of the music creation spec-
trum, we find entirely interaction-oriented tools, such as
Cycling 74’ MAX/MSP, PUREDATA, CSOUND, or SU-
PERCOLLIDER. They allow to create musical works in
programming-oriented environments. In-between are tools
with limited interaction capabilities but full-fledged audio
sequencing support, such as Ableton LIVE, or Bitwig STU-
DIO. The interaction lies in the triggering of loops and the
ability to change the speed on the fly but is mostly sep-
arate from the ”traditional” sequencer integrated in these
software.

Copyright: © 2016 Jean-Michaël Celerier et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

In this paper, we present a graphical and hierarchical ap-
proach to interactive audio sequencing. We integrate the
LIBAUDIOSTREAM audio engine in the interactive control
sequencer I-SCORE. This forms an audio sequencing soft-
ware that allows to author music in a time-line with the
possibility to arbitrarily nest sounds and effects and trigger
sounds interactively while keeping the logical coherency
wanted by the composer. An extension is introduced to
arrange audio effects in an interactive temporal graph. For
instance, instead of simply applying a chain of effects to an
audio track, it is possible to apply temporal sequences of
effects: an effect would be enabled for ten seconds, then,
if an external condition becomes true, another effect would
be applied until the musician chooses to stop it.

We will first present the existing works in advanced au-
dio sequencing and workstations, and give a brief presen-
tation of both I-SCORE and the LIBAUDIOSTREAM. Then,
the new objects introduced in order to integrate these soft-
ware together, allowing for rich audio routing capabilities,
will be explained. Finally, three examples of usage in the
graphical interface of I-SCORE will be provided: a recre-
ation of a standard multi-track player, an interactive score,
and an effect graph applied to a sound.

2. EXISTING WORKS

Outside of the traditional audio sequencer realm, there are
multiple occurrences of graphical environments aiming to
provide some level of interactivity.

Möllenkamp presents in [2] the commons paradigms for
creating music on a computer: score-based with MUSIC
and CSOUND, patch-based with Cycling 74’ MAX/MSP or
PUREDATA, programming-based with SUPERCOLLIDER
and many of the other music creation languages, music
trackers such as FASTTRACKER which were used to make
the music in old video game consoles, and multitrack-like
such as Steinberg CUBASE, Avid PRO TOOLS. Ableton
LIVE and Bitwig STUDIO are given their own category
thanks to the ability to compose clips of sound interac-
tively.

DRILE [3] is a virtual reality music software. Loops are
manipulated and bound together in a 3D environment. Hi-
erarchy is achieved by representing the loops in a tree struc-
ture.

http://creativecommons.org/licenses/by/3.0/


KYMA [4] is a hybrid software and hardware environ-
ment for sound composition. It offers multiple pre-made
facilities for sound creation such as multi-dimensional pre-
set interpolation, sound composition by addition and mu-
tation, or sequential and parallel sound composition on a
time-line.

AUDIOMULCH [5] is an environment for live music per-
formance, which also provides preset space exploration
thanks to the Metasurface concept. Cantabile PERFORMER 1

is also an environment geared towards live performance,
with the ability to trigger sounds, and a temporal order-
ing. It is closer to the cue metaphor than the sequencer
metaphor.

Mobile and web applications are more and more used to
create music, but their are often embedded in a bigger score
or framework and act more as an instrument than other sys-
tems. An interesting example of web-based sequencer is
JAMON [6] which allows multiple persons to author music
interactively in collaboration by drawing in a web page. A
deeper overview of the collaborative music authoring en-
vironments is given in [7].

Finally, modern video game music engines such as FMOD
and AudioKinetic WWISE allow some level of interactiv-
ity: when some event occurs in a video game, a sound will
be played. Automation of parameters is possible, and these
environments are geared towards three-dimensional posi-
tioning of sound and sound effects such as reverb, echo.

For low-level audio engines, one of the predominant meth-
ods is the audiograph. Prime examples are Jamoma AU-
DIOGRAPH [8] and INTEGRA FRAMEWORK [9]. Audio
processing is thought of as a graph of audio nodes, where
the output of a node can go to the input of one or multiple
other nodes. Audio workstations such as Magix SAMPLI-
TUDE (with the flexible plug-in routing) and Apple LOGIC
PRO (with the Environment) provide access to the under-
lying audio graph.

3. CONTEXT

In this section, we will present the two tools that are used to
achieve rich audio sequencing: I-SCORE and the LIBAU-
DIOSTREAM. I-SCORE is an interactive sequencer for pa-
rameters, which allows to position events in time, and gives
the possibility to introduce interaction points and condi-
tions in the score. The detailed execution semantics are
given in [10].

The LIBAUDIOSTREAM [11] provides the ability to au-
thor audio expressions by creating and combining streams.
The notion of symbolic date, introduced in an extension of
the library, allows to start and stop the execution of streams
at a date not known until the performance.

The goal of this work is to bind the audio capabilities of
the LIBAUDIOSTREAM with the I-SCORE execution en-
gine and graphical interface, in order to allow the creation
of rich hierarchic and interactive musical pieces.

1 https://www.cantabilesoftware.com/

3.1 Presentation of i-score

The original goal of I-SCORE is to communicate and or-
chestrate other software in a timely manner, through the
OSC protocol. The software can send automations, cue-
like OSC messages at a given point in time, and call ar-
bitrary JavaScript functions, in a sequenced environment.
It supports arbitrary nesting: a score can be embedded in
another recursively. This is similar to the notion of group
tracks in many other sequencers, but without depth limit.
Besides, there is no notion of ”track” per se; rather, the
composer works with temporal intervals which contains ar-
bitrary data that can be provided by plug-ins.

Multiple possibilities of interactivity are provided in I-
SCORE: trigger points, conditions, mappings, speed con-
trol.

• Interactive triggers allow to block and synchronize
the score until a specific event happens. For instance,
when an OSC parameter fulfills a condition, such as
/a/b ≤ 3.14, then a part of the score can continue.

• Conditions allow to execute or disable part of the
score according to a boolean condition. It makes
if-then-else or switch-case programming constructs
easy to implement in a temporal way.

• Mappings allow to map an input parameter to an out-
put parameter, with a transfer function applied to the
input.

• The execution speed of hierarchical elements can be
controlled during the execution.

A span of time in I-SCORE might have a fixed or in-
definite duration; we refer to this span as a Time Con-
straint (TC) since it imposes both a logical and temporal
order to the elements before and after it.

A TC may contain data by the form of processes: automa-
tions, mappings, but also loops and scenarios; a scenario is
the process that allows nesting. When the TC stops, all its
processes are killed recursively.

TCs are linked together with Time Nodes, which allows
for synchronization and branching of multiple streams of
time.

An example of the temporal syntax of I-SCORE is pre-
sented in fig. 1. It is for instance used by Arias and Dub-
nov in [12] to construct a musical environment adapted to
improvisation by segmenting pre-recorded audio phrases,
to allow constrained improvisation according to high-level
musical structures. The resulting generated structures bear
similarity with the session concept in Ableton LIVE: one
can loop dynamically over particular sections of a sound
file.

3.2 Presentation of the LibAudioStream

The LIBAUDIOSTREAM [11], developed at GRAME, is a
C++ library allowing to recreate the constructs commonly
found in multi-track sequencers directly from code; it also
handles communication with the sound card hardware via
the common audio APIs found on desktop operating sys-
tems.

https://www.cantabilesoftware.com/


Time flow direction

Interactive
trigger 

State

Conditional

Synchronization

Span of time 
(Time Constraint)

Figure 1. Part of an I-SCORE scenario, showcasing the
temporal syntax used. A full horizontal line means that the
time must not be interrupted, while a dashed horizontal line
means that the time of this Constraint can be interrupted to
proceed to the following parts of the score according to an
external event.

One of the advantages of using a library instead of a graph-
ical interface is that it provides scripting capabilities to the
composer and makes algorithmic music composition eas-
ier. It has been used with success in OPENMUSIC [13].

Audio sounds and transformations are modeled by streams.
An algebra with the expected operations is applied to these
streams: serial and parallel composition, mixing, and multi-
channel operations. Streams are bound together in order to
construct complex audio expressions. For instance, two
sound files can be mixed together with a Mix stream ex-
pression:

auto sound = MakeMixSound(
MakeReadSound("a.wav"),
MakeReadSound("b.wav"),
0.75);

A stream can then be played through an audio player, with
audio sample accuracy:

StartSound(audioplayer, sound, date);

The play date must not necessarily be known in advance
thanks to the notion of symbolic date. Finally, FAUST [14]
audio effects can be applied to the streams.

4. PROPOSED AUDIO SYSTEM

In this section, we will explain the audio routing features
offered by the software.

First, we introduce new audio streams that allow a LIBAU-
DIOSTREAM expression to encapsulate the execution of a
virtual audio player, in order to allow for hierarchy.

We make the choice to allow for hierarchy by mixing the
played streams together. This is done in accordance with
the principle of least astonishment [15] in mind for the
composer: in most audio software, the notion of group-
ing implies that the grouped sounds will be mixed together
and routed to a single audio bus.

Then, we present the concept of audio buses integrated to
the LIBAUDIOSTREAM, with two special Send and Return
streams.

Finally, we exhibit the translation of I-SCORE structures
in LIBAUDIOSTREAM expressions, which requires the cre-
ation of a dependency graph between audio nodes.

4.1 Group audio stream

In order to be able to apply hierarchical effects on the streams,
and handle interactivity in recursive groups, we have to
introduce a way to use sound hierarchy in the LIBAU-
DIOSTREAM.

Our method employs two elements:

• A particular audio player that will be able to se-
quence the starting and stopping of interactive sounds.
Such players already exist in the LIBAUDIOSTREAM
but are tailored for direct output to the sound card

• A way to reintroduce the player into the stream sys-
tem, so that it is able to be pulled at regular intervals
like it would be by a real sound card while being
mixed or modified by subsequent stream operators.

We introduce matching objects in the LIBAUDIOSTREAM:

• A Group player. This is a player whose process-
ing function has to be called manually. Timekeeping
supposes that it will be pulled in accordance with the
clock rate and sample rate of the sound card.

• A Group audiostream. This particular audiostream,
of infinite length, allows to introduce a Group player
in a series of chained streams and takes care of hav-
ing the Player process its buffers regularly.

• A finite loop audiostream. This stream loops over its
content after a given duration.

The execution time of the nested objects will be relative
to the start time of the Group audiostream.

4.2 Send and return audio streams

In order to be able to create temporal effect graphs, we
introduce another couple of objects.

The Send audiostream by itself is a pass-through: it just
pulls the stream it is applied to. It possesses the same defi-
nition: same length, same number of channels. The Return
audiostream, constructed with a Send stream, will make
a copy of the data in the send stream and allow it to be
used by the processing chain it is part of. For instance, this
means that a single sound source can be sent to two effect
chains in parallel.

The Return stream is infinite in length: to allow for long-
lasting audio effects like reverb queues or delays, we sup-
pose that we can pull the data from the Send stream at any
point in time. If a Return stream tries to fetch the data of
a Send stream that has not started yet, or that has already
finished, a buffer of silence is provided instead.

The Send stream must itself be pulled regularly by being
played as a sound, either directly or by a stream that would
encapsulate it.



An example of such an audiostream graph is presented in
fig. 2.

Audio file

Audio effect

Audio file

Mix

Send

Audio effect

Mix

Audio effect

Audio fileReturn

Figure 2. An example of audio stream composition with
the Send and Return objects. An arrow from A to B means
that B pulls the audio data from A.

4.3 Audio processes

We provide multiple audio processes in I-SCORE, that map
to the existing LIBAUDIOSTREAM structures.

• Effect chain process: register multiple audio effects
one after the other. For instance:
Equalizer → Distortion → Reverb.
Currently only FAUST effects or instruments are sup-
ported. Interfaces are provided to allow the exten-
sion to other audio plug-in formats.

• Input process: allows to introduce the audio input of
a sound card in the stream.

• Sound file: reads a sound file from the file system.

• Explicit send and return processes for manual rout-
ing.

• Mixing process: it exposes a matrix which allows to
adjust the percentage of each sound-generating pro-
cess going to each input process, send, and parent.

An important feature of audio workstations is the support
for automation, that is, controlling the value of a param-
eter over time, generally with piecewise continuous func-
tions. In I-SCORE, automation is achieved by sending OSC
messages to a remote software. The OSC messages tree is
modeled as an object tree. We present the loaded effect
plug-ins to this object tree, so that automations and map-
pings are able to control audio effects and audio routing
volume.

A screen capture of a TC with processes is given in fig. 3.

4.4 Stream graph

One problem caused by the presence of routing is that it
is possible to create a data loop: if a Send is directly or
indirectly fed its own data through a Return, the output
would be garbage data. The Return would be asked to read

Figure 3. An example of a TC loaded with audio pro-
cesses in I-SCORE. Selecting a particular process shows a
complete widget for editing the relevant parameters. On a
single TC, there can be only a single Mixing process (the
table at the bottom), but there is no limit to the amount of
other processes: there can be multiple sound files, etc.

the currently requested output from the Send which has not
been written yet.

To prevent this, we create a graph where:

• Vertices are the sound generating elements associ-
ated to their output send: audio file reader, hierar-
chical elements, etc.

• Edges are the connections going from a send to a
return, or from an element to the element it is mixed
in.

The graph, implemented with the Boost Graph Library [16]
can then be used to check for acyclicity. The user will be
notified if that is not the case.

We provide here the method to build the graph.
Vertices are created recursively from the TCs in I-SCORE:

an I-SCORE document is entirely contained in a top-level
TC.

First, we iterate through all the processes of the given
constraint. If the process is hierarchical (Scenario, Loop),
then we call the algorithm recursively on the process.

In the case of the Scenario, it means that we call recur-
sively on all its Constraints. In the case of the Loop, we call
recursively on its loop pattern Constraint. In both cases, we
create a Group vertice to model the process. Edges are to
be added from each stream in the hierarchical time-line, to
the group stream.

If the process is a send or a return, we create a corre-
sponding vertice. Then, we create inner Sends for all the
streams and a vertice for the Constraint itself.

Once all the vertices are created, the edges are added as
mentioned before.

As mentioned before, there is an ordering between nodes



1

2

3
Direct

4 (Send)

0% 50%

100%

100%

25%

100%

100%
100%

Figure 4. Translation of the TC of fig. 3 in a dependency
graph. The edges in black represent the intra-Constraint
connections. The edges in blue (resp. orange) represent a
connection to a visible output of the Constraint. The per-
centages represent the level of mixing of the stream. Direct
corresponds to the signal that will be sent at the upper level
of hierarchy.

of the graph: the parent-most vertice has to be pulled be-
fore the others to reflect the causality.

Inside a TC, causality also has to be enforced. Since a
mixing matrix is provided, we have to ensure that an effect
bus cannot be routed in itself in a loop. To prevent this at
the user interface level, we disable by default the mixing
of audio effect chains into each other. In fig. 4, we show
the resulting graph for a TC.

When the graph is verified acyclic, we perform the stream
creation by iterating over the list of topologically sorted
vertices.

4.5 Stream creation

We detail in this section the stream creation for particular
elements.

4.5.1 Scenario

An I-SCORE scenario is an arrangement of temporal struc-
tures, as shown in fig. 1; it is a time-line of its own. Since
the execution and duration of these structures can change at
run-time due to interactivity and hierarchy, it is not mean-
ingful to directly use the tools provided by the LIBAU-
DIOSTREAM: sequence stream, parallel stream, mix stream.
We instead use the Group player to organize our elements
in time.

The creation of the Scenario stream is done as follows:

1. A Group player is created.

2. For each Time Node in the scenario, a symbolic date
is generated.

3. For each TC in the scenario, a stream is built; it is
started and stopped at the symbolic date matching
its start and end Time Nodes in the group player.

The Audio stream of this process is the group player. In
order to enforce sample-accuracy whenever possible, if the
i-score structures have a fixed date, we preset this date to

its computed value. If there is no interactivity involved, a
sound following another will start at the audio sample one
past the end of the first one. As soon as a sound’s execu-
tion time is fixed, an algorithm checks for all the following
sounds whose date could also be fixed.

4.5.2 Loop

Due to their interactive nature, loops in I-SCORE can be
entirely different from one iteration to another. They are
more similar to imperative programming do-while con-
structs, than audio sequencer loops. This prevents us from
directly using the LIBAUDIOSTREAM’s loop stream, since
it expects a looping sound of finite duration. Instead, if
the loop is interactive, we wrap the loop pattern TC’s au-
diostream in a Group player, reset the stream and start it
again upon looping. If the loop is not interactive, we can
reset it at a fixed interval of time with the fixed loop stream
introduced earlier. This allows for sample accurate hierar-
chic looping with I-SCORE’s processes semantics.

4.5.3 Time Constraint

As explained earlier, a TC is a process container. Such pro-
cesses can be the sound processes presented in section 4.3,
and the control processes such as automation, etc.

The creation of the Constraint audio stream is done as
follows:

1. For each sound-generating process, a stream and a
send are created.

2. For each effect chain, the effects are instantiated and
an effect stream is created with a mix of the returns
of the elements to which this effect applies. A send
is also created.

3. The mixing matrix is used to create mix audio streams
from the sends and returns, which are routed either
in the user-created sends, or in the stream correspond-
ing to the TC. A time-stretching audio stream is in-
serted before the send: it is linked to the execution
speed of the TC in I-SCORE which can vary interac-
tively.

4.5.4 A note on real-time performance

Since a real-time audio input is provided, we ought to be
able to use the system as a multi-effect, hence with the low-
est possible latency. The time-stretching effect itself may
impose a latency high enough to make playing through the
system impossible.

To solve this, when creating the graph, the parents of each
Input node are recursively marked with a flag to indicate
real-time processing. The TCs with this flag will not be
able to be time-stretched, and will only be affected by the
latency due to the effects manually introduced by the com-
poser.

5. EXAMPLES

We present in this part three examples of usage of the pre-
sented system.



5.1 Recreation of a multi-track sequencer

The first example, in fig.5, is a recreation of the multi-track
audio sequencer metaphor, with the primitives presented in
this paper.

This score has three tracks, Guitar, Bass, and Drums,
which are implemented with three TCs. Each TC has a
Sound process and an Effect process; the Mixing process
is hidden for clarity. The bass track is a looping one-note
sound. Automations are applied either at the ”track” level,
as for the drums, or at the ”clip” level, as for the guitar
outro clip. However, in the model there is no actual differ-
ence between track and clip, it is solely a particular orga-
nization of the score.

Figure 5. Multi-track sequencing.

5.2 Interactive scenario

The second example, in fig.6, gives an overview of the in-
teractive possibilities when creating a song.

The score behaves as follows: for a few seconds, intro
will play. Then, if an external event happens, like a foot
switch being pressed, multiple things may happen:

• In all cases, the eqcontrol part will play, and auto-
mate a value of a global effect.

• If a first condition is true (case1), then case1.B will
start playing immediately, and case1.A will start play-
ing after a slight delay. If another external event hap-
pens, case1.A will stop playing immediately.

• If a second condition is true, at the same time, case2
will start playing.

• After eqcontrol finishes, a hierarchical scenario outro
is played, which contains two sounds and a parame-
ter mapping.

If no external event happens, after some time, when reach-
ing the end of the triggerable zone delimited by the dashed
line, the triggering occurs anyways.

Figure 6. An interactive musical score.

5.3 Temporal effect graph

This last example, in fig. 7 shows how to arrange not sound,
but sound processing temporally. In this case, we have a
sound playing, which is routed in the send process. Then,
a hierarchical scenario with multiple TCs is used. Two TCs
have return processes connected to the previously created
send. Automations are applied to parameters of these ef-
fects.

Second effect will be triggered after an external event
happens. By using loops, effects, and TCs with infinite
durations, this same mechanism would allow to simulate
a guitar pedal board with switchable effects, and to create
temporal transitions between the various sounds.



Figure 7. Temporal effect graph applied to a sound.

6. CONCLUSION

We presented a computer system for creating interactive
music, which extends the audio sequencer metaphor. New
kind of streams enabling hierarchy and audiograph-like be-
havior are introduced to the LIBAUDIOSTREAM, which is
then binded to the I-SCORE primitives for specifying and
scoring time and interaction. Three examples present the
various musical possibilities that are offered through this
system.

However, there are currently some differences with more
traditional musical environments: for one, musical nota-
tion and concepts are absent from the system. All the du-
rations are expressed in seconds or milliseconds, instead
of beats or any subdivision as they would in other envi-
ronments. A possible extension to the I-SCORE execution
engine would be to take into account beats for triggering,
which would allow to synchronize multiple hierarchical
loops to a beat and may be useful for some genres of music,
such as electronica or rock.

Likewise, the system mostly handles audio and OSC data;
MIDI is implemented at a primitive level. Another unhan-
dled question is effect delay compensation: sometimes, au-
dio algorithms must introduce multiple frames of latency
in their processing chain, for instance because they have to
accumulate a certain amount of data. This is not taken into
account here, hence seemingly synchronized sounds may
desynchronize themselves if this latency is not accounted
for.

Finally, in many cases optimizations could be achieved
to reduce the amount of data structures being created. For

instance, when a single sound file is in a TC, a simpler
stream expression could be created.

The next steps for this research includes these points,
work on sound spatialization, and interactive edition: mod-
ifying the score while it is already playing.

Acknowledgments
This research was supported by the SCRIME (Studio de Création
et de Recherche en Informatique et Musiques Expérimentales,
scrime.labri.fr) which is funded by the French Culture
Ministry. SCRIME is a GIS (Group of Interest in Science and
Art) with University of Bordeaux, Bordeaux INP, Bordeaux City,
CNRS (National Scientific Research Center), Région Nouvelle
Aquitaine (Aquitaine Regional Council) and the DRAC (Regional
Direction of Culture). This work was also supported by an ANRT
CIFRE convention with the company Blue Yeti under funding
1181-2014. The authors wishes to thanks Stéphane Letz for his
help with the LibAudioStream.

7. REFERENCES

[1] A. Bell, E. Hein, and J. Ratcliffe, “Beyond Skeuo-
morphism: The Evolution of Music Production Soft-
ware User Interface Metaphors,” Journal on the Art of
Record Production, 2015.

[2] A. Möllenkamp, “Paradigms of Music Software De-
velopment,” in Proceedings of the 9th Conference on
Interdisciplinary Musicology, 2014.

[3] F. Berthaut, M. Desainte-Catherine, and M. Hachet,
“Drile: an immersive environment for hierarchical live-
looping,” in New Interfaces for Musical Expression,
2010, p. 192.

[4] C. Scaletti, “The kyma/platypus computer music work-
station,” Computer Music Journal, vol. 13, no. 2, pp.
23–38, 1989.

[5] R. Bencina, “The metasurface: applying natural neigh-
bour interpolation to two-to-many mapping,” in New
Interfaces for Musical Expression, 2005, pp. 101–104.

[6] U. Rosselet and A. Renaud, “Jam On: a new interface
for web-based collective music performance,” in New
Interfaces for Musical Expression, 2013, pp. 394–399.

[7] R. Fencott and N. Bryan-Kinns, “Computer musick-
ing: HCI, CSCW and collaborative digital musical in-
teraction,” in Music and Human-Computer Interaction.
Springer, 2013, pp. 189–205.

[8] T. Place, T. Lossius, and N. Peters, “The jamoma audio
graph layer,” in Proceedings of the 13th International
Conference on Digital Audio Effects, 2010, pp. 69–76.

[9] J. Bullock and H. Frisk, “The integra framework for
rapid modular audio application development,” in Pro-
ceedings of the International Computer Music Confer-
ence, 2011.

[10] J.-M. Celerier, P. Baltazar, C. Bossut, N. Vuaille, J.-M.
Couturier, and M. Desainte-Catherine, “OSSIA : To-
wards a Unified Interface for Scoring time and Interac-
tion,” in Proceedings of the TENOR 2015 Conference.

scrime.labri.fr


[11] S. Letz, “Spécification de l’extension LibAu-
dioStream,” Tech. Rep., Mar. 2014. [Online]. Avail-
able: https://hal.archives-ouvertes.fr/hal-00965269

[12] J. Arias, M. Desainte-Catherine, and S. Dubnov, “Au-
tomatic Construction of Interactive Machine Improvi-
sation Scenarios from Audio Recordings,” in 4th Inter-
national Workshop on Musical Metacreation (MUME
2016), Paris, France, 2016.

[13] D. Bouche, J. Bresson, and S. Letz, “Programmation
and Control of Faust Sound Processing in OpenMu-
sic,” in Joint International Computer Music/Sound and
Music Computing Conferences, 2014.

[14] Y. Orlarey, D. Fober, and S. Letz, “Faust: an efficient
functional approach to DSP programming,” New Com-
putational Paradigms for Computer Music, vol. 290,
2009.

[15] P. Seebach, “The cranky user: The Principle of Least
Astonishment,” in IBM DeveloperWorks, 2001.

[16] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost
Graph Library: User Guide and Reference Manual,
Portable Documents. Pearson Education, 2001.

https://hal.archives-ouvertes.fr/hal-00965269

	 1. Introduction
	 2. Existing works
	 3. Context
	3.1 Presentation of i-score
	3.2 Presentation of the LibAudioStream

	 4. Proposed audio system
	4.1 Group audio stream
	4.2 Send and return audio streams
	4.3 Audio processes
	4.4 Stream graph
	4.5 Stream creation
	4.5.1 Scenario
	4.5.2 Loop
	4.5.3 Time Constraint
	4.5.4 A note on real-time performance


	 5. Examples
	5.1 Recreation of a multi-track sequencer
	5.2 Interactive scenario
	5.3 Temporal effect graph

	 6. Conclusion
	 7. References

