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Abstract
The ZX-calculus is a powerful diagrammatic language for quantum mechanics and quantum
information processing. We prove that its π

4 -fragment is not complete, in other words the ZX-
calculus is not complete for the so called "Clifford+T quantum mechanics". The completeness of
this fragment was one of the main open problems in categorical quantum mechanics, a programme
initiated by Abramsky and Coecke. The ZX-calculus was known to be incomplete for quantum
mechanics. On the other hand, its π

2 -fragment is known to be complete, i.e. the ZX-calculus is
complete for the so called "stabilizer quantum mechanics". Deciding whether its π

4 -fragment is
complete is a crucial step in the development of the ZX-calculus since this fragment is approxim-
ately universal for quantum mechanics, contrary to the π

2 -fragment.
To establish our incompleteness result, we consider a fairly simple property of quantum states

called supplementarity. We show that supplementarity can be derived in the ZX-calculus if and
only if the angles involved in this equation are multiples of π/2. In particular, the impossibility
to derive supplementarity for π/4 implies the incompleteness of the ZX-calculus for Clifford+T
quantum mechanics. As a consequence, we propose to add the supplementarity to the set of rules
of the ZX-calculus.

We also show that if a ZX-diagram involves antiphase twins, they can be merged when the
ZX-calculus is augmented with the supplementarity rule. Merging antiphase twins makes dia-
grammatic reasoning much easier and provides a purely graphical meaning to the supplementarity
rule.
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1 Introduction

The ZX-calculus has been introduced by Coecke and Duncan [7] as a graphical language for
pure state qubit quantum mechanics where each diagram can be interpreted as a linear map
or a matrix in a typical way (so-called standard interpretation). Intuitively, a ZX-diagram
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76:2 Supplementarity is Necessary for Quantum Diagram Reasoning

is made of three kinds of vertices:
...

...
α ,

...

...
α , and , where each green or red vertex is

parameterised by an angle.
Unlike the quantum circuit notation which has no transformation rules, the ZX-calculus

combines the advantages of being intuitive with a built-in system of rewrite rules. These
rewrite rules make the ZX-calculus into a formal system with nontrivial equalities between
diagrams. As shown in [7], the ZX-calculus can be used to express any operation in pure
state qubit quantum mechanics, i.e. it is universal. Furthermore, any equality derived in the
ZX-calculus can also be derived in the standard matrix mechanics, i.e. it is sound.

The converse of soundness is completeness. Informally put, the ZX-calculus would be
complete if any equality that can be derived using matrices can also be derived graphically.
It has been shown in [15] that the ZX-calculus is incomplete for the overall pure state qubit
quantum mechanics, and there is no way on how to complete it by now. However, some
fragments of the ZX-calculus are known to be complete. The π

2 -fragment, which corresponds
to diagrams involving angles multiple of π/2, is complete [1]. This fragment corresponds to
the so called stabilizer quantum mechanics [14]. The π-fragment is also complete [12] and
corresponds to real stabilizer quantum mechanics. Meanwhile, the stabilizer completeness
proof in [1] carries over to a ZX-like graphical calculus for Spekkens′ toy theory [4].

While it is an important and active area of research, stabilizer quantum mechanics is
only a small part of all quantum mechanics. In particular stabilizer quantum mechanics is
not universal, even approximately. This fragment is even efficiently simulatable on a classical
computer. On the contrary, the π

4 -fragment, which corresponds to the so-called "Clifford+T
quantum mechanics" is approximately universal [6]: any unitary transformation can be
approximated with an arbitrary precision by a diagram involving angles multiple of π/4 only.
The π

4 -fragment corresponds actually to the post selected Clifford+T quantum mechanics:
any diagram of the π

4 -fragment can be interpreted as a composition of: (i) preparations
of qubits in the computational basis; (ii) "Clifford+T" unitary transformations; (iii) post
selected measurements in the computational basis. Post selected measurements, which are
noting but projections, are useful to compute the probability that a given computation
produces a given output. An actual quantum measurement which, roughly speaking, consists
in applying with some probability a projector among a complete set of projectors, can also
be represented as a ZX-diagram using formal variables as described in [11].

The completeness of the π
4 -fragment is a crucial property and has even been stated as

one of the major open question in the categorical approach to quantum mechanics [1, 2, 17].
A partial result has been proved in [2]: the fragment composed of path diagrams involving
angles multiple of π/4 is complete.

Our main contribution is to prove that the π
4 -fragment of the ZX-calculus is incomplete.

In other words, we prove that the ZX-calculus is not complete for the "Clifford+T quantum
mechanics". To this end, we consider a simple equation called supplementarity. This equation
is inspired by a work by Coecke and Edwards [8] on the structures of quantum entanglement.
We show that supplementarity can be derived in the ZX-calculus if and only if the angles
involved in this equation are multiples of π/2. In particular, the impossibility to derive this
equation for π/4 implies the incompleteness of the ZX-calculus for Clifford+T quantum
mechanics.

We also show that in the ZX-calculus augmented with the supplementarity rule, antiphase
twins can be merged. A pair of antiphase twins is a pair of vertices which have: the same
colour; the same neighbourhood; and antiphase angles (the difference between their angles
is π). Merging antiphase twins makes diagrammatic reasoning much easier and provides a
purely graphical meaning to the supplementarity rule.
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Notice that various slightly different notions of soundness/completeness have been used
so far in the context of the ZX-calculus, depending on whether the rules of the language
should strictly preserve the standard interpretation (as used in this paper), or up to a global
phase, or even up to a (non-zero) scalar. Our result of incompleteness applies to any of these
variants. However, we believe that the recent attempts to treat carefully the scalars and in
particular the zero scalar are valuable, that is why we consider in this paper the strict notion
of soundness and completeness. It should also be noticed that the notion of completeness
used in the context of the ZX-calculus is different from a related one used in [16] to prove
that finite dimensional Hilbert spaces are complete for dagger compact closed categories.
The difference lies in that the concept of completeness used in the present paper is only
concerned with the standard interpretation in finite dimensional Hilbert spaces, whereas,
roughly speaking, in [16] it is considered for every possible interpretation (of object variables
as spaces and morphism variables as linear maps).

This paper is structured as follows: the ZX-calculus (diagrams, standard interpretation,
and rules) is presented in Section 2. Section 3 is dedicated to the supplementarity equation.
In Section 4 we show that supplementarity involving angles which are not multiples of π/2
cannot be derived in the ZX-calculus which implies the incompleteness of the π

4 -fragment.
In Section 5, we identify an infinite family of equations which derivations require the
supplementarity rule, and given a graphical interpretation of supplementarity by means
of antiphase twins. Finally, in Section 6, we discuss the simplification of the ZX-calculus
augmented with the supplementarity rule and its completeness.

2 ZX-calculus

2.1 Diagrams and standard interpretation

A ZX-diagram D : k → l with k inputs and l outputs is generated by:

R
(n,m)
Z (α) : n→ m

m

n

...

...
α R

(n,m)
X (α) : n→ m

m

n

α

...

...

H : 1→ 1 e : 0→ 0 ·
·· ·
·
·

· ··
·
·

· ·
·
·
·

I : 1→ 1 σ : 2→ 2

ε : 2→ 0 η : 0→ 2

where m,n ∈ N and α ∈ [0, 2π).

Spacial composition: for any D1 : a→ b and D2 : c→ d, D1⊗D2 : a+ c→ b+ d consists
in placing D1 and D2 side-by-side, D2 on the right of D1.
Sequential composition: for any D1 : a→ b and D2 : b→ c, D2 ◦D1 : a→ c consists in
placing D1 on the top of D2, connecting the outputs of D1 to the inputs of D2.

MFCS 2016
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When equal to 0 modulo 2π the angles of the green and red dots are omitted:

...

...
:=

...

...
0

...

...
:=

...

...
0

The standard interpretation of the ZX-diagrams associates with any diagram D : n→ m

a linear map JDK : C2n → C2m inductively defined as follows:

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r

·
···
·
·

· ··
·
·

· ·
·
·
· z

:= 1
t |

:=
(10

01
)

r z
:= 1√

2

(1 1
1 -1

) r z
:=
(1000

0010
0100
0001

)
J K := (1001) J K :=

(1
0
0
1

)
JR(0,0)

Z (α)K := 1+eiα, and when a+b > 0, JR(a,b)
Z (α)K is a matrix with 2a columns and 2b

rows such that all entries are 0 except the top left one which is 1 and the bottom right one
which is eiα, e.g.:

J α K = 1 + eiα
r
α

z
=
( 1
eiα
) r

α
z

=
(1 0

0 eiα
) r

α
z

=
(1 0 0 0

0 0 0 eiα
)

For any a, b ≥ 0, JRa,bX (α)K := JHK⊗b × JRa,bZ (α)K × JHK⊗a, where M⊗0 = 1 and for any
k > 0, M⊗k = M ⊗M⊗k−1. E.g.,

J α K = 1 + eiα
r
α

z
=
√

2eiα2
(

cos(α/2)
-i sin(α/2)

) r
α

z
= ei

α
2

(
cos(α/2) -i sin(α/2)

-i sin(α/2) cos(α/2)

)
ZX-diagrams are universal in the sense that for any m,n ≥ 0 and any linear map U : C2n →
C2m , there exists a diagram D : n→ m such that JDK = U [7]. In particular, any unitary
quantum evolution on a finite number of qubits can be represented by a ZX-diagram. Notice
that universality implies working with a uncountable set of angles. As a consequence, the
approximate version of universality, i.e. the ability to approximate with arbitrary accuracy
any linear map, is generally preferred in quantum information processing. The π

4 -fragment of
language, which consists of all diagrams which angles are multiples of π/4, is approximately
universal, whereas the π

2 -fragment is not.

2.2 Calculus
The representation of a matrix in this graphical language is not unique. We present in this
section the rules of the ZX calculus. These rules are sound in the sense that if two diagrams
D1 and D2 are equal according to the rules of the ZX calculus, denoted ZX ` D1 = D2,
then JD1K = JD2K. The rules of the language are given in Figure 1, and detailed bellow. The
colour-swapped version and upside-down version of each rule given in Figure 1 also apply.

Spider. According to the (S1) rule any two directly connected green dots can be merged.
Moreover, a dot with a single input, single output and angle 0 can be removed according to
the (S2) rule. These rules have their origins in the axiomatisation of orthonormal bases by
means of dagger special Frobenius algebras (see [9] for details). According to the standard
interpretation J.K, the green dots are associated with the so-called standard basis {

(1
0
)
,
(0

1
)
},

whereas the red dots (which also satisfies the spider property since colour-swapped rules also
apply) are associated with the so-called diagonal basis { 1√

2

(1
1
)
, 1√

2

( 1
-1
)
}.
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...
β...
...

α
...

...

= α+β

...

...

(S1) = (S2) = (S3)

= (B1) = (B2)

π

· · ·
= π π

· · ·
(K1)

π

α

=
-α

πα

π
(K2)

=
-π
2

π
2
π
2

-π
2

π
2

(EU) α

...

...

=

...

...

α (H)

= ·
·· ·
·
·

· ··
·
·

· ·
·
·
·

(IV) π = π (ZO)

Figure 1 Rules of ZX-calculus. The colour-swapped and/or upside-down versions of each rule

also applies. Horizontal dots (. . .) mean ‘arbitrary number’, whereas diagonal dots (. .
.
) mean ‘at

least one’.

Green-Red Interactions. Monochromatic diagrams are lax: according to the (S1) rule any
(green- or red-) monochromatic connected diagram is equivalent to a single dot with the
appropriate number of legs and which angle is the sum of the angles. Thus the interesting
structures arises when the two colours interact. The bialgebra rule (B1) and the copy rule
(B2), imply that the red and the green bases are complementary, which roughly speaking
capture the notion of uncertainty principle and of unbiasedness a fundamental property in
quantum information (see [7] for details).

Parallel wires and Hopf law. (B1) and (B2) rules imply the following Hopf law [7, 10]:

= where := is the called the antipode. The (S3) rule trivialises the antipode

and simplifies the Hopf law:

= (Hopf Law)

Hopf law has then a simple graphical meaning: two parallel wires between dots of distinct
colours can be removed (up to the scalar ). Notice that any pair of complementary basis

MFCS 2016
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in arbitrary finite dimension satisfies the rules (S1), (S2), (B1) and (B2). However the (S3)
rule implies that the dimension of the corresponding Hilbert space is a power of two. As a
consequence the ZX-calculus is a language dedicated to qubit quantum mechanics.

Classical point. In the context of complementary basis, the rules (K1) and (K2) imply that
π is a classical point. Intuitively, it means that π together with are two elements of the
red basis, so in dimension 2 they form an orthogonal basis.

Colour change. According to the (H) rule, can be used to change the colour of a dot.
The (EU) rule corresponds to the Euler decomposition of the Hadamard matrix into three
elementary rotations.

Scalar and zero. A scalar is a diagram with no input and no output. The standard
interpretation of such a diagram is a complex number. While for simplicity, scalars have
been ignored in several versions of the ZX calculus [7, 1], recently several rules have been
introduced for scalars [3] and then simplified in [5], leading to the two rules (IV) and (ZO)
presented in Figure 1. As the interpretation of the empty diagram is 1, the (IV) rule implies
that is the inverse of . The interpretation of π is 0, as a consequence for any diagrams
D1 and D2, J π ⊗D1K = J π ⊗D2K. This absorbing property is captured by the (ZO) rule.

Context. The axioms of the language presented in Figure 1 can be applied to any subdiagram.
In other word, if ZX ` D1 = D2 then, for any D (with the appropriate number of
inputs/ouputs), ZX ` D⊗D1 = D⊗D2 ; ZX ` D1⊗D = D2⊗D ; ZX ` D ◦D1 = D ◦D2
; and ZX ` D1 ◦D = D2 ◦D.

Only topology matters. A ZX-diagram can be deformed without changing its interpretation.
This property is known as "only topology matters" in [7]. E.g.

= (A) = (B) α =
α

(C) α = α (D)

"Only topology matters" is a consequence of the underlying dagger compact closed
structure (e.g. Eq. A and B), together with the ability to interchange any two legs (Eq.
C) and to turn inputs into outputs (Eq D) and vice-versa. Equations C and D are non
standard in dagger compact closed categories, and are consequences of the other rules of the
ZX-calculus [5].

2.3 Soundness and Completeness
(In-)Completeness. All the rules of the ZX calculus are sound with respect to the standard
interpretation, i.e. if ZX ` D1 = D2 then JD1K = JD2K. The converse of soundness is
completeness: the language would be complete if JD1K = JD2K implies ZX ` D1 = D2.
The completeness would imply that one can forget matrices and do graphical reasoning
only. Completeness would also imply that all the fundamental properties of qubit quantum
mechanics are graphically captured by the rules of the ZX-calculus. This desirable property
is one of the main open questions in categorical quantum mechanics. In the following , we
review the known results about the completeness of the ZX-calculus, which are essentially
depending on the considered fragment (restriction on the angles) of the language.
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The very first result of incompleteness was about the original ZX-calculus in which the
Euler decomposition1 of H, the (EU) rule in Figure 1 was not derivable. This equation is
now part of the language. Backens [1] proved that the π

2 fragment is complete. Schröder and
Zamdzhiev proved that the language is not complete in general. Their argument is also based
on some Euler decomposition, but contrary to the previous case this decomposition involves
non rational multiples of π. The most natural – and actually the only known way – to
bypass this incompleteness result is to consider a fragment of the language. Indeed, irrational
multiple of π are not necessary for approximate universality. As the π

2 -fragment is not
approximately universal, the most interesting candidate for completeness is the π

4 -fragment
which is approximately universal. The completeness for the π

4 -fragment has been conjectured
in [2] and actually proved in the single qubit case, i.e. for path diagrams. The use of path
diagrams (diagrams with all dots of degree two) is rather restrictive, but the completeness
for this class of diagrams is not trivial and is sufficient to show that any argument based
on some Euler decomposition cannot be applied in the π/4 case. However, we disprove the
conjecture: the π

4 -fragment of the ZX-calculus is not complete (Corollary 3), using a novel
approach not based on Euler decompositions.

Scalars and completeness. In several versions of the ZX-calculus scalars are ignored,
leading to a slightly different notion of soundness and completeness involving proportionality.
Roughly speaking, ignoring the scalars consists in an additional rule which allows one to freely
add or remove diagram with no input/output. A particular attention has to be paid to ‘zero’
diagrams, i.e. diagrams whose interpretations are zero, like π . When scalars are ignored, the
notion of soundness is modified as follows: if D1 = D2 then JD1K and JD2K are proportional.
The definition of completeness is modified likewise. Notice that in [15] yet another notion of
soundness is considered where scalars are not ignored in general but global phases are, i.e. if
D1 = D2 then ∃θ, JD1K = eiθJD2K. Our main result of incompleteness (Theorem 2) applies
for any of these variants of soundness/completeness. However, we believe that the recent
attempts to treat carefully the scalars and in particular the zero scalar are valuable that is
why we consider in this paper the strict notion of soundness and completeness.

3 Supplementarity

In [8], Coecke and Edwards introduced the notion of supplementarity by pointing out that
when α 6= 0 mod π the standard interpretation of the following diagram is proportional to
the projector

(10
00
)
if α− β = π and to the projector

(00
01
)
if α+ β = π.

α β

Putting back the scalars, one gets the following equations, which are true for any angle α,
even when α = 0:

u

w
v α α+π

}

�
~ =

u

w
v 2α

+π

}

�
~ and

u

w
v α π-α

}

�
~ =

u

w
v

π

2α
π
π

π-α

}

�
~ .

1 By Euler decomposition we mean the existence, for any 1-qubit unitary U , of 4 angles α, β, γ, δ s.t.
U = eiαRx(β)Rz(γ)Rx(δ) where Rx(.) and Rz(.) are elementary rotations about orthogonal axis.
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Coecke and Edwards showed that the concept of supplementarity is related to the entan-
glement of quantum states. Up to stochastic local operations and classical communications
(SLOCC), there are only two kinds of three-qubit states with genuine tripartite entanglement:
those which are SLOCC-equivalent to a GHZ state, and those which are SLOCC-equivalent
to a W state. A GHZ-state is a particular instance of a graph state which can be easily
represented with a ZX-diagram [13]. On the other hand this is more involved to represent a
W-type entangled states. The concept of supplementarity allowed Coecke and Edwards to
characterise inhabitants of the W-class.

Albeit Coecke and Edwards did not address explicitly the question of proving whether
the above equations can be derived in the ZX-calculus or not, these equations were known to
be candidates for proving the incompleteness of the language2. We prove in Section 4 that
these equations can be derived in the ZX-calculus only when α = 0 mod π

2 .
Inspired by the property pointed out by Coecke and Edwards we introduce the following

equation that we call supplementarity:

α+π

=

α 2α
+π

(1)

Supplementarity is sound in the sense that both diagrams of (Eq. 1) have the same
standard interpretation 1√

2

(1−e2iα

0
)
. It is provable in the ZX-calculus that supplementarity

(Eq. 1) is equivalent to the equations pointed out by Coecke and Edwards:

I Lemma 1. In the ZX calculus, for any α ∈ [0, 2π):

α+π

=

α 2α
+π

⇔ α α+π = 2α
+π ⇔ α π-α =

π

2α
π
π

π-α

4 Supplementarity is necessary

In this section, we prove the main result of the paper: supplementarity involving angles
which are not multiples of π2 cannot be derived using the rules of the ZX-calculus, and as a
corollary the π

4 -fragment of ZX-calculus is incomplete.

I Theorem 2. Supplementarity can be derived in the ZX-calculus only for multiples of π/2:ZX ` α+π

=

α 2α
+π

 ⇔ α = 0 mod π

2

I Corollary 3. The π
4 -fragment of ZX-calculus is not complete. In other words, ZX-calculus

is not complete for the so-called "Clifford+T quantum mechanics".

The rest of the section is dedicated to the proof of Theorem 2. To do so, we introduce an
alternative interpretation J.K] for the diagrams, that we prove to be sound (Lemma 5) but

for which

u

v
α+πα

}

~

]

6=

u

v
2α
+π

}

~

]

when α 6= 0 mod π
2 .

2 Personal communications with Miriam Backens and Aleks Kissinger.
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I Definition 4. For any diagram D : n→ m, let JDK] : 3n→ 3m be a diagram defined as
follows:

JD1 ⊗D2K] := JD1K]⊗JD2K] JD2 ◦D1K] := JD2K
] ◦ JD1K

]
r

·
···
·
·

· ··
·
·

· ·
·
·
· z]

:= ·
···
·
·

· ··
·
·

· ·
·
·
· r z]

:=

r z]
:=

r z]
:= J K] := J K] :=

t ...

...
α

|]
:= α2α α α

· · ·

· · ·

t ...

...
α

|]
:= α2α α α

· · ·

· · ·

Roughly speaking, JDK] consists of three copies of D together with, for each dot of angle
α, a gadget parameterized by the angle 2α connecting the three copies of the dot. E.g.

s
α

{]
= α

2α

α α

Simple calculations show that the gadget disappears when α = 0 mod π, e.g.:
s {]

=
r
π

z]
= π π π

I Lemma 5 (Soundness). J.K] is a sound interpretation: if ZX ` D1 = D2 then ZX `
JD1K

] = JD2K
].

Proof. Soundness is trivial for the π-fragment of the language (i.e. when angles are multiples
of π). Thus, it remains the four rules (S1), (K2), (EU), and (H) to complete the proof. We
give the proof of (K2) and a particular case of (S1) to illustrate the proof, the other cases
are omitted.
[(K2)]

u

www
v

α

π

}

���
~

]

= α

π

α

π

α

2α

π

= ππ

2α

π

α

π

α

π

α

π

-α-α -α
=

3α
π

ππ

2α

-α

π

-α-α

π

= -α -α

-2α

π

-α

π π π
3α
π

2α
= 5α

π

π π

-α -α

π
-2α

-α =

u

www
v

πα

π -α

}

���
~

]

,

The first equality is nothing but the definition of J.K]. The second step is based on the (K2)
rule. The third step consists in (i) grouping the 3 scalars depending on α into a single one,
to do so rules (B1), (K1) and finally (S1) are combined; (ii) applying the (K1) rule on the

MFCS 2016
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non scalar part of the diagram. Fourth step consists in applying the (K2) rule on the gadget.
The fifth step is combining the scalars depending on α. Finally for the last step we uses
α

π

{]
= 5α

π
.

[(S1)] In the following we consider a particular case of the (S1) rule where the two dots are
of degree 2. The following derivation essentially consists in applying the bialgebra rule (B2)
twice:

u

www
v
α

β

}

���
~

]

= α+β

2β

α+β

2α

α+β = α+β α+β α+β

2α

2β

=

2α

2β

α+β α+βα+β

= α+β

2β

α+β

2α

α+β = α+βα+βα+β

2α+
2β

=

u

w
vα+β

}

�
~

]

J

I Remark (1). The interpretation J.K] can be naturally extended to an interpretation J.K]k,`
which associates with every diagram D : n → m a diagram JDK]k,` : k × n → k × m

which consists in k copies of D where the k copies of each dot are connected by a "gadget"
parameterized by an angle ` times larger than the angle of the original dot. Moreover JDK]k,`
has additional scalars, namely k − 1 times per dot in D. Notice that the interpretation
J.K] used in this section is nothing but J.K]3,2. The interpretation J.K]k,` is sound if and only if
k = 1 mod 2 and ` = 0 mod 2, indeed (K1) forces k to be odd while (EU) and (ZO) force
` = 0 mod 2. All the other rules are sound for any k, `. When k = 1, J.K]1,` is nothing but an
interpretation which multiplies the angles by `+ 1, without changing the structure of the
diagrams: J.K]1,0 is the identity, while J.K]1,−1 has been used to prove that the (EU) rule is
necessary [13] and J.K]1,−2 has been used to prove that the ZX-calculus is incomplete [15].

Proof of Theorem 2. In the following we prove that supplementarity can be derived in the
ZX-calculus if and only if the involved angles are multiples of π/2:ZX ` α+π

=

α 2α
+π

 ⇔ α = 0 mod π

2

[⇐] Since both diagrams of the supplementarity equation have the same standard interpreta-
tion 1√

2

(1−e2iα

0
)
, by completeness of the π

2 -fragment of the ZX-calculus, supplementarity can
be derived when α is a multiple of π2 .
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[⇒] Let α ∈ [0, 2π), and assume that supplementarity (1) can be derived in the ZX-calculus.
Since J.K] is sound, the following equation must be derivable in the ZX-calculus:

(
π π

)
◦

u

www
v

α+πα

}

���
~

]

=
(

π π

)
◦

u

www
v

2α+π

}

���
~

]

(2)

The LHS diagram is as follows.

(
π π

)
◦

u

www
v

α+πα

}

���
~

]

=

2α

α α+πα α+π

2α

α α+π

π π

=
2α
π

2α 4α+π

The RHS diagram of Eq. 2 is:

(
π π

)
◦

u

www
v

2α+π

}

���
~

]

=

4α

2α+π

π

2α+π

π

2α+π
=

4α

2α+π

π

2α+π

π

2α+π
= π

which is obtained first by applying the Hopf law and then thanks to the absorbing property

of π . Thus, Eq. 2 is equivalent to
2α
π

2α 4α+π = π which can be simplified, leading to

2α 4α+π = π . Finally, since J.K is sound, it implies
s

2α 4α+π

{
= Jπ K, thus (1 + e2iα)(1−

e4iα) = 0 which is equivalent to α = 0 mod π
2 . J

5 Supplementarity as an axiom

As supplementarity cannot be derive from the other rules of the language, we propose to add
this equation as an axiom, a rule of the ZX-calculus. We identify an infinite class of equations
that cannot be derived without the supplementarity rule. This class of equations also provides
a graphical meaning to the supplementarity equation. Graphically, the supplementarity
equation (Eq. 1) can be interpreted as merging two dots in a particular configuration: they
are antiphase (i.e. same colour and the difference between the two angles is π); of degree
one; and they have the same neighbour. While antiphase is a necessary condition, the other
conditions can be relaxed to any "twins" as follows:

I Definition 6 (Antiphase Twins). Two dots u and v in a ZX-diagram are antiphase twins if:
they have the same colour;
the difference between their angles is π;
they have the same neighbourhood: for any other vertex (

...

...
α ,

...

...
α or ) w, the number

of wires connecting u to w, and v to w are the same.
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Notice that antiphase twins might be directly connected or not. Here two examples of
antiphase twins and how they merge:

α α+π

γ

β

7→

β

2α+π

γ

α+π

β

α

γ

7→
2α+π

γ β

I Theorem 7 (Antiphase Twins and Supplementarity). In ZX-calculus, any pair of antiphase

twins can be merged if and only if ∀α,
α+π

=

α 2α
+π

.

I Corollary 8. In the ZX-calculus augmented with the supplementarity rule, any pair of
antiphase twins can be merged.

6 Discussions

Simplified ZX-calculus. Adding a new rule to the language may lead to a simplification of
the other rules of the language. Indeed the (ZO) rule can be replaced by a simpler rule:

I Lemma 9. In the ZX-calculus augmented with the supplementarity rule, the (ZO) rule can
be replaced by the following (ZO’) rule: π = π .

Proof.
π π= = π

π= π=
π

= π= = π J

However, it seems that the language cannot be simplified much. Actually, the two most
interesting candidates for simplification are the (EU) rule – which is the only one which is
specific to the π/2 angle and thus may lack generality – and the (K2) rule. Even in the
presence of the supplementarity rule, the (EU) rule cannot be derived from the other rules:

I Lemma 10. In the ZX-calculus augmented with the supplementary rule, the (EU) rule
cannot be derived from the other rules.

Proof. Let J.K[ be defined as J.K]2,0 (see Remark 1) for all generators but ; and J K[ = .
So intuitively, J.K[ ‘doubles’ the diagram, and each ‘swaps’ the two copies. This interpretation
is sound for all rules, including the supplementarity rule, but is not sound for the (EU)
rule. J

Regarding the (K2) rule, it has been shown recently that (K2) instantiated with an angle
multiple of π2 can be derived from the other rules [5], without using the supplementarity rule.
We leave its necessity for arbitrary angles and in the presence of the supplementarity rule as
an open question.

Completeness. Even augmented with the supplementarity rule the ZX-calculus is incom-
plete in general since the argument of [15] still applies. Indeed, the cornerstone of the
incompleteness argument is the soundness of the interpretation which consists in multiplying
the angles by -3 (J.K]1,−4 according to the notation of Remark 1). This interpretation is also
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sound with respect to the supplementarity rule, and thus the ZX-calculus is still incomplete,
even augmented with the supplementarity rule. However, the second ingredient of the incom-
pleteness result of [15] is based on the Euler decomposition of some unitary transformation
which diagrammatic representation involves irrational multiples of π. As a consequence, the
completeness of the ZX-calculus augmented with the supplementarity is an open question for
any fragment which does not contain rational multiples of π. In particular, the completeness
of the π

4 -fragment – i.e. for Clifford+T quantum mechanics – is open.

7 Conclusion

We have proved that the ZX-calculus is not complete, even for Clifford+T quantum mechanics,
which corresponds to the π

4 -fragment of the language. We have identified an infinite set of
equations that cannot be derived in the language. Moreover, we have shown that a single
simple rule, called supplementarity, is sufficient to derive these equations. Supplementarity
has been introduced as fundamental structure of multipartite entanglement by Coecke and
Edwards. In addition to this physical interpretation, we provide a graphical meaning to the
supplementarity rule by means of antiphase twins.
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