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Error-Bounded Air Quality Mapping Using Wireless
Sensor Networks

Ahmed Boubrima∗, Walid Bechkit∗ and Hervé Rivano∗
∗Univ Lyon, Inria, INSA Lyon, CITI, F-69621 Villeurbanne, France

Abstract—Monitoring air quality has become a major chal-
lenge of modern cities where the majority of population lives.
In this paper, we focus on using wireless sensor networks for
air pollution mapping. We tackle the optimization problem of
sensor deployment and propose two placement models allowing
to minimize the deployment cost and ensure an error-bounded
air pollution mapping. Our models take into account the sensing
drift of sensor nodes and the impact of weather conditions. Unlike
most of existing deployment models, which assume that sensors
have a given detection range, we base on interpolation methods
to place sensors in such a way that pollution concentration is
estimated with a bounded error at locations where no sensor
is deployed. We evaluate our model on a dataset of the Lyon
City and give insights on how to establish a good compromise
between the deployment budget and the precision of air quality
monitoring. We also compare our model to generic approaches
and show that our formulation is at least 3 times better than
random and uniform deployment.

Keywords— Air quality monitoring, Wireless sensor net-
works deployment, error bounded mapping.

I. INTRODUCTION

Air pollution affects human health dramatically. According
to the World Health Organization (WHO), exposure to air
pollution is accountable to seven million casualties in 2012.
In 2013, the International Agency for Research on Cancer
(IARC) classified particulate matter, the main component of
outdoor pollution, as carcinogenic for humans. Air pollution
has become a major issue of modern megalopolis, where the
majority of world population lives, adding industrial emissions
to the consequences of an ever denser urbanization with traffic
jams and heating/cooling of buildings. As a consequence,
the reduction of pollutant emissions is at the heart of many
sustainable development efforts, in particular those of smart
cities.

Current air quality measuring stations are equipped with
multiple lab quality sensors [1]. These systems are however
massive, inflexible and expensive. An alternative – or comple-
mentary – solution would be to use wireless sensor networks
(WSN) [2]. [3]. The progress of electrochemical sensors, that
are smaller and cheaper while keeping a reasonable measure-
ment quality, makes the use of WSN for air quality monitoring
viable [4]. Although some WSN-based air quality monitoring
systems are already operating [5][6][7], the deployment issue
of these tiny nodes while taking into account the precision of
the resulting network has not yet been investigated.

Minimizing the deployment cost is a major challenge in
WSN design. The problem consists in determining the optimal

positions of sensors and sinks so as to cover the environ-
ment and ensure network connectivity while minimizing the
deployment cost [8]. The network is said connected if each
sensor can communicate information to at least one sink.
The coverage issue has often been modeled as a k-coverage
problem where at least k sensors should monitor each point
of interest. Most research work on coverage uses a simple
detection model which assumes that a sensor is able to cover
a point in the environment if the distance between them is less
than a radius called the detection range [9]. This can be true
for some applications like presence sensors but is not suitable
for pollution monitoring. Indeed, a pollution sensor detects
pollutants that are brought in contact by the wind. The notion
of detection range is thus irrelevant in this context. Therefore, a
deployment model is still needed for the air quality monitoring
application.

In this paper, we propose an integer programming model
(ILP) of WSN deployment for error-bounded air quality map-
ping. We formulate the constraint of air pollution coverage
based on interpolation methods in order to determine the
optimal positions of sensors allowing to better estimate pollu-
tion concentrations at positions where no sensor is deployed.
Our coverage formulation takes into account the sensing drift
of sensor nodes and the impact of weather conditions on
air pollution dispersion. We base on the flow problem to
formulate the connectivity constraint that ensures that the
deployed sensors are able to send pollution data to at least
one sink. The deployment formulation that we propose is
linear and has two variants. In the first one, coverage and
connectivity are formulated together in the same ILP model.
The second variant is multilevel and allows to reduce the
computational burden of the deployment model and get near-
optimal solutions. We evaluate our model on a dataset of the
Lyon City and investigate the performance of the two variants
of our ILP formulation.

Our main contributions can be summarized as follows: i)
we propose a deployment model of WSN for air quality
monitoring while taking into account the precision of the
resulting pollution mapping; ii) we analyze the performance of
the model and propose a near-optimal multilevel variant that is
well-adapted to large-scale instances; iii) we give insights on
how to establish a good compromise between the deployment
cost and the monitoring precision; and iv) we compare our
model to generic deployment approaches mainly random and
uniform deployment.

The remaining of this paper is organized as follows. We



first review the related works on the deployment issue of
WSN in section II and the most common methods of air
quality estimation in section III. Then, we present in details our
mathematical model and the linearization process in section
IV. After that, we present the simulation data set and analyze
the obtained results in section V. Finally, we conclude and
propose some perspectives in section VI.

II. RELATED WORK

The deployment optimization is one of the most challenging
issues in wireless sensor networks design. The problem con-
sists of determining the optimal node positions while ensuring
the coverage of the deployment field and the connectivity
of the network [10]. The objective may be to minimize the
deployment financial cost or to maximize the lifetime of the
network.

Several works have addressed the deployment problem
while proposing different mathematical models and algo-
rithms. However, the majority of the existing optimization
strategies formulate the coverage of points of interest based on
the distance between sensor locations and the coordinates of
points [8]. This cannot be applied to the air quality monitoring
where electrochemical sensors are usually used. In this kind
of sensors, the pollutant must touch the sensor in order
to be detected. Therefore, works that consider a detection
range around sensors cannot be used in our application. A
deployment model is still needed for the air quality monitoring
application.

Chakrabarty et al. [9] were the first to give an ILP formula-
tion to the deployment problem of WSN. They represent the
deployment field as a two or three dimensional grid of points.
They first propose a nonlinear formulation for minimizing the
cost of sensor deployment while ensuring complete coverage
of the sensor field. Then, they apply some transformations
to linearize the first model and obtain an ILP formulation.
The authors formulate coverage based on the distance between
the different points of the deployment field. Each sensor has
a circular detection area, which defines the points that the
sensor can cover. Unfortunately, this measure of coverage
is inadequate to the air quality monitoring since a sensor
positioned at a point A cannot cover a neighboring point B if
there is a difference between pollution concentrations at the
two points.

Altinel et al. [11] proposed another formulation based on
the Set Cover Problem, which is equivalent to the aforesaid
model but less complex. They also extend their formulation
to take into account the probabilistic sensing of sensor nodes
while assuming that a node is able to cover a given point
with a certain predefined probability. Despite that, this new
formulation is still generic since the dependency between the
errors of the deployed sensors is not considered. However,
this has to be taken into account when doing air pollution
estimation.

Works that are more recent have targeted the connectivity
and multi-objective deployment issues. The authors of [12]

formulate connectivity based on the flow problem while as-
suming that sensors generate flow units in the network and
verify if sinks are able to recover them. Another connectivity
formulation has been introduced in [13] where authors base
on an assignment approach. They introduce in their ILP
formulation new variables to define the communication paths
between sensors and sinks. However, this model involves
more variables than the one based on the flow problem and
is therefore more complex. In another work [14], authors
study the trade-off between coverage, connectivity and energy
consumption. They formulate the problem as an ILP model
and then propose a multi-objective approach to optimize
coverage, the network lifetime and the deployment cost while
maintaining the network connectivity.

Even if these recent works are tackling new constraints, all
coverage formulations assume that sensors have a detection
range, which cannot be applied to air quality monitoring. In
order to cope with this issue, we need to introduce methods
to estimate the pollution concentration with a bounded error
between sensors. Integrating such estimation into coverage
constraints allows to compute optimal deployments for a
targeted estimation precision.

III. AIR QUALITY ESTIMATION

As claimed in the introduction, our goal is to select sensor
locations in such a way that the data gathered by sensors allow
a better estimation of pollution concentrations in each loca-
tion of the deployment region. Air quality estimation allows
to determine pollution concentrations of locations where no
sensor is deployed, and this based on pollution concentrations
gathered by the deployed sensors [15]. Three major methods
are used to do so: atmospheric dispersion, interpolation and
land-use regression [16].

Atmospheric dispersion models take as input locations of
pollution sources, the pollutant emission rate of each pollu-
tion source and meteorological data in order to measure the
pollutant concentration at a given location [16]. The obtained
concentrations can then be calibrated using the measurements
of sensors. Interpolation methods formulate the estimated
concentration Ẑp at a given location p ∈ P as a weighted
combination of the measured concentrations Zq, q ∈ P − {p}
[17]. The weights of the measured concentrations Wpq can
be evaluated in a deterministic way based on the distance
between the location of the measured concentration and the
location of the estimated concentration. In this case, which
is called the Inverse Distance Weighting interpolation, Ẑp is
evaluated using formula 1. The concentration weights can also
be evaluated in a stochastic way, the most used method doing
so is called kriging. The last method is land-use regression
models, which are a kind of stochastic regression models [18].
The idea behind these models is to evaluate the pollution
concentration at a given location based on the concentrations
of locations that are similar in terms of land-use parameters
such as the elevation and the distance to the closest busy road.



Ẑp =

∑
q∈P−{p}Wpq ∗ Zq∑

q∈P−{p}Wpq
(1)

IV. MODEL

In this paper, we propose an integer programming model of
WSN deployment for high-precision air quality monitoring.
The objective of the model is to minimize the deployment
cost of sensor and sink nodes while ensuring air quality
coverage and network connectivity. We formulate the cov-
erage constraint based on interpolation methods in order to
determine the optimal positions of sensors allowing to better
estimate pollution concentrations at positions where no sensor
is deployed. We base on the flow problem to formulate the
connectivity constraint that ensures that the deployed sensors
are able to send pollution data to at least one sink. The
deployment formulation that we propose is linear and has
two variants. In the first one, coverage and connectivity are
formulated together in the same ILP model. The second variant
is multilevel and starts by determining a coverage solution
and then adds relay nodes and sinks to get a connected
network, which allows to reduce the computational burden of
the deployment model.

Parameters
P Set of points approximating the deployment region
N Number of points approximating the deployment region
Zp Reference pollution concentration at point p
Wpq Correlation coefficient between points p and q
D The correlation distance function
d Maximum correlation distance
α Attenuation coefficient of the correlation distance
Γ(p) Communication neighborhood of a node deployed at point p
R Communication range of sensor nodes
Ep The tolerated estimation error at point p
M The maximum number of sinks
csensorp The cost of deploying a sensor at point p
csinkp The cost of deploying a sink at point p

Variables
xp Define whether a sensor is deployed at point p or not

xp ∈ {0, 1}, p ∈ P
yp Define whether a sink is deployed at point p or not

yp ∈ {0, 1}, p ∈ P
gpq Flow quantity transmitted from node p to node q

gpq ∈ {0, 1, ...}, p ∈ P, q ∈ Γ(p)

TABLE I: Summary of the model notations.

A. Objective function

We consider as input of our model the map of a given
urban area that we call the deployment region. We start
by discretizing the deployment region in order to get a set
of points P approximating the urban area at a high-scale
(|P| = N ). Our goal is to be able to determine with a
high precision the concentration value at each point p ∈ P .
We ensure that for each point p ∈ P , either a sensor is
deployed or the pollution concentration can be estimated with
a high precision based on the data gathered by the neighboring
deployed sensors.

In general case, the set P is thus considered as the set of
potential positions of WSN nodes. However, in smart cities
applications, some restrictions on node positions may apply
because of authorization or practical issues. For instance, in
order to alleviate the energy constraints, we may place sensors
on only lampposts and traffic lights as experimented in [19].
When this is the case, we do not consider as potential positions
the points p ∈ P where sensors cannot be deployed.

We use decision variables xp (respectively yp) to specify if
a sensor (respectively a sink) is deployed at point p or not.
Sensors and sinks may have different costs, thus we denote
by csensorp (respectively csinkp ) the sensor (respectively the
sink) deployment cost at position p. We summarize in Table
I the notations used in the formulations. The deployment cost
function to minimize is thus given as follows:

F =
∑
p∈P

csensorp ∗ xp +
∑
p∈P

csinkp ∗ yp (2)

B. Air quality coverage

1) Basic formulation: As claimed before, our idea is to
base on interpolation methods in order to ensure that the
deployed sensors allow to estimate with a high precision
the pollution concentrations at locations where no sensor
is deployed. This means that we need to have an idea on
the dispersion of pollution concentrations in the deployment
region in order to be able to formulate the coverage con-
straint. More exactly, we need to know the variability of
pollution concentrations among the set of points P in order
to use the formulation of interpolation methods. Fortunately,
using numerical atmospheric dispersion models, we can obtain
simulated pollution concentrations that may be considered as
reference pollution concentrations [20]. This does not mean
that these reference concentrations are real but they reflect the
best today’s pollution knowledge.

Let Zp denote the reference concentration value at point
p. Given the set of selected points where sensors will be
deployed {p where xp = 1}, we evaluate the estimated
pollution concentrations Ẑp at points {p where xp = 0} based
on reference values corresponding to the selected points, i.e.
based on Zp where p ∈ {p where xp = 1}, as follows:


Ẑp =

∑
q∈P−{p}Wpq ∗ Zq ∗ xq∑
q∈P−{p}Wpq ∗ xq

, p ∈ P & xp = 0

∑
q∈P−{p}

Wpq ∗ xq > 0, p ∈ P & xp = 0
(3)

The Ẑp expression is formulated based on formula 1 given
in section III. We have chosen this formula because the
weights Wpq are given in a deterministic way, which allows
to integrate them to the ILP deployment model. We ensure
that the denominator of Ẑp is never equal to zero using the
second part of formula 3. TheWpq parameter is the correlation
coefficient between points p and q and is calculated using
formula 4 based on the distance between the two points.



D(p, q) is the distance function. α is the attenuation coefficient
of the correlation distance, this means that for greater values of
α, very low correlation coefficients are assigned to far points.
The last parameter of formula 4 is the maximum correlation
distance, which defines the range of correlated neighboring
points of a given point.

In order to take into account the impact of the urban
topography on the dispersion of pollutants, let D be the
shortest distance along the roads network. This allows to
assign small correlation values to points that are separated
by buildings, even if they are close [21].

Wpq =


1

D(p, q)α if q ∈ Disc(p, d)− {p}

0 if q /∈ Disc(p, d)
(4)

In order to ensure that the concentration is estimated with
high precision at points where no sensor is deployed, we define
constraint 5. The Ep parameter corresponds to the estimation
error that is tolerated at point p. The choice of different values
of Ep in function of p allows to assign low tolerated estimation
errors to locations that are sensitive to air quality such as
hospitals, primary schools, etc.

∣∣∣Ẑp −Zp∣∣∣ ≤ Ep, p ∈ P & xp = 0 (5)

By replacing Ẑp by its expression given in formula 3, we
obtain the coverage constraints 6 and 7. These two constraints
should be linearized in order to get an ILP formulation.

∣∣∣∣∣
∑
q∈P−{p}Wpq ∗ Zq ∗ xq∑
q∈P−{p}Wpq ∗ xq

−Zp

∣∣∣∣∣ ≤ Ep, p ∈ P & xp = 0 (6)

∑
q∈P−{p}

Wpq ∗ xq > 0, p ∈ P & xp = 0 (7)

a) Linearization of constraint 6: The first step is to
linearize the fraction part; this allows to get constraint 8.
Then, we have to ensure that the constraint is relaxed when
xp = 1. To do so, notice that the left member of constraint
8 can be bounded as presented in formula 9. Based on this,
we add xp ∗

∑
q∈P−{p}Wpq ∗ |Zq −Zp| to the right member

of constraint 8 to relax it when xp = 1. Hence, we obtain
constraint 10. Finally, we have to linearize the absolute-value
function. Hence, we get the linear form of constraint 6 in
constraints 11 and 12.

∣∣∣∣∣∣
∑

q∈P−{p}

Wpq ∗ xq ∗ (Zq −Zp)

∣∣∣∣∣∣ ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq,

p ∈ P, xp = 0 (8)∣∣∣∣∣∣
∑

q∈P−{p}

Wpq ∗ xq ∗ (Zq −Zp)

∣∣∣∣∣∣ ≤∑
q∈P−{p}

Wpq ∗ |Zq −Zp| (9)∣∣∣∣∣∣
∑

q∈P−{p}

Wpq ∗ xq ∗ (Zq −Zp)

∣∣∣∣∣∣ ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq

+xp ∗
∑

q∈P−{p}

Wpq ∗ |Zq −Zp|, p ∈ P (10)

∑
q∈P−{p}

Wpq ∗ xq ∗ (Zq −Zp) ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq

+xp ∗
∑

q∈P−{p}

Wpq ∗ |Zq −Zp|, p ∈ P (11)

∑
q∈P−{p}

−Wpq ∗ xq ∗ (Zq −Zp) ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq

+xp ∗
∑

q∈P−{p}

Wpq ∗ |Zq −Zp|, p ∈ P (12)

b) Linearization of constraint 7: The only thing to do to
linearize constraint 7 is to relax the constraint when xp = 1.
This can be obtained by replacing the right member of the
constraint by −xp, which allows to get the constraint 13.

∑
q∈P−{p}

Wpq ∗ xq > −xp, p ∈ P (13)

2) Taking into account sensing drift: Usually, the pollu-
tion concentration measured at point q is not equal to the
ground truth value Zq and depends on the sensing technology
and the quality of sensors. This involves a certain drift in
pollution measurements. The sensing drift is usually given
by two parameters aq and bq , which define the measured
concentration that is equal to aq ∗ Zq + bq . By introducing
parameters aq and bq in formula 3, we get in formula 14 the
new definition of the estimated pollution concentration at a
given point p depending on the deployed sensors. Using this
new definition, we transform the coverage constraints 11 and
12 into constraints 15 and 16, which allows us to include
the sensing drift in our coverage model. In this formulation,
parameters aq and bq are assumed to be constants. When it is
not the case, stochastic programming should be used instead
of integer programming.



Ẑp =

∑
q∈P−{p}Wpq ∗ (aq ∗ Zq + bq) ∗ xq∑

q∈P−{p}Wpq ∗ xq
(14)∑

q∈P−{p}

Wpq ∗ xq ∗ (aqZq + bq −Zp) ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq

+xp ∗
∑

q∈P−{p}

Wpq ∗ |aqZq + bq −Zp|, p ∈ P

(15)∑
q∈P−{p}

−Wpq ∗ xq ∗ (aqZq + bq −Zp) ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq

+xp ∗
∑

q∈P−{p}

Wpq ∗ |aqZq + bq −Zp|, p ∈ P

(16)

3) Taking into account weather conditions: Air pollution
dispersion highly depends on weather conditions such as
wind and temperature. For instance, reference pollution con-
centrations Zp can be totally different if there is a change
in wind direction. In order to cope with that, we consider
multiple snapshots of reference concentrations. The resolution
of snapshots may be yearly, monthly or daily depending on
the needed deployment accuracy and the data availability. Let
T be the set of snapshots and Zt

p be the reference pollution
concentration at point p in snapshot t. We propose to ensure
that constraints 15 and 16 are verified for each snapshot t ∈ T ,
hence we get constraints 17 and 18. This allows us to place
sensor nodes while taking into account the different weather
scenarios corresponding to each pollution snapshot.

∑
q∈P−{p}

Wpq ∗ xq ∗ (aqZtq + bq −Ztp) ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq

+xp ∗
∑

q∈P−{p}

Wpq ∗ |aqZtq + bq −Ztp|, p ∈ P, t ∈ T

(17)

∑
q∈P−{p}

−Wpq ∗ xq ∗ (aqZtq + bq −Ztp) ≤ Ep ∗
∑

q∈P−{p}

Wpq ∗ xq

+xp ∗
∑

q∈P−{p}

Wpq ∗ |aqZtq + bq −Ztp|, p ∈ P, t ∈ T

(18)

C. Network connectivity

We formulate the connectivity constraint as a network flow
problem. We consider the same potential positions set P for
sensors and sinks. We first denote by Γ(p), p ∈ P , the set of
neighbors of a node deployed at the potential position p. This
set can be determined using sophisticated path loss models.
It can also be determined using the binary disc model, in
which case Γ(p) = {q ∈ P where q ∈ Disc(p,R)} where
R is the communication range of sensors. Then, we define
the decision variables gpq as the flow quantity transmitted
from a node located at potential position p to another node

located at potential position q. We suppose that each sensor
of the resulting WSN generates a flow unit in the network, and
verify if these units can be recovered by sinks. The following
constraints ensure that the deployed sensors and sinks form
a connected wireless sensor network; i.e. each sensor can
communicate with at least one sink.

∑
q∈Γ(p)

gpq −
∑
q∈Γ(p)

gqp ≥ xp − (N + 1) ∗ yp, p ∈ P (19)

∑
q∈Γ(p)

gpq −
∑
q∈Γ(p)

gqp ≤ xp, p ∈ P (20)

∑
q∈Γ(p)

gpq ≤ N ∗ xp, p ∈ P (21)

∑
p∈P

∑
q∈Γ(p)

gpq =
∑
p∈P

∑
q∈Γ(p)

gqp (22)

∑
p∈P

yp ≤ M (23)

Constraints 19 and 20 are designed to ensure that each
deployed sensor, i.e. such that xp = 1, generates a flow unit in
the network. These constraints are equivalent to the following.

∑
q∈Γ(p)

gpq −
∑
q∈Γ(p)

gqp


= 1 if xp = 1, yp = 0

= 0 if xp = yp = 0

≤ 0, ≥ −N if xp = 1, yp = 1

The first case corresponds to deployed sensors that should
generate, each one of them, a flow unit. The second case,
combined with constraint 21, ensures that absent nodes, i.e.
xp = yp = 0, do not participate in the communication. The
third case concerns deployed sinks, and ensures that each sink
cannot receive more thanN units. Constraint 22 means that the
overall flow is conservative. The flow sent by deployed sensors
has to be received by deployed sinks. Finally, constraint 23
allows to fix the maximum number of sinksM of the resulting
network.

D. ILP models

1) Single-level Model: In the first variant of our formula-
tion, coverage and connectivity constraints are executed within
the same ILP model allowing to get the optimal solution of
the deployment problem.

[SLM ]

Minimize (2)

Subject to. (17), (18), (13), (19), (20), (21), (22)

and (23)

2) Multilevel Model: In order to allow the execution of the
model on large instances, we propose a near-optimal multilevel
variant of the ILP model. We first execute MLM-1 to get
an optimal coverage solution. Then, we execute MLM-2 that
contains the connectivity constraints while fixing to 1 the xp
variables corresponding to sensors selected by MLM-1.



[MLM − 1]

Minimize (2)

Subject to. (17), (18), (13)

[MLM − 2]

Minimize (2)

Subject to. (19), (20), (21), (22)and (23)

V. SIMULATION RESULTS

In this section, we present the simulations that we have
performed in order to validate our model and analyze its
performances. We first present the data set that we have used
and the common simulation parameters. Then, we give a proof-
of-concept in order to show how error-bounded deployment is
done. Next, we investigate the performance of the two variants
of our ILP formulation in terms of execution time and optimal
cost. After that, we analyze the network connectivity and
pollution coverage results while studying the compromise be-
tween the estimation precision and the deployment cost under
different configurations of the correlation distance. Finally, we
compare the deployment results of our formulation to generic
approaches and show the enhancement obtained by our model.

A. Dataset

In order to consider the real dispersion of air pollutants
in the reference pollution concentrations Zt

p, we perform our
simulations on 2 pollution snapshots generated by an enhanced
atmospheric dispersion simulator called SIRANE [20]. This
simulator is designed for urban areas and takes into account
the impact of street canyons on pollution concentrations. The
dataset has been provided by Air-Rhone-Alpes, which is an
observatory for air pollution monitoring within the Lyon region
of France [1].

We depict the 2 reference pollution maps in Figure 1.
We focus on nitrogen dioxide (NO2) monitoring since this
pollutant is mainly due to road traffic. We evaluate our ILP
model on the La-Part-Dieu district, which is the heart of the
Lyon City. Pollution map granularity is around 5 meters and
concentrations correspond to the years 2012 and 2013.

We have implemented the ILP formulations using IBM
ILOG CPLEX Optimization Studio and executed them on a
PC with Intel Xeon E5649 processor under Linux. Simulation
parameters are summarized in Table II. We discretize the de-
ployment region which is of around 700m2 using a resolution
of 50 meters, thus we get 306 discrete points. We consider all
these points as potential positions of nodes. We use the same
tolerated estimation error Ep = E for all the points p ∈ P .
By default, we use the distance along roads for the evaluation
of the correlation coefficients and we suppose that sensing is
perfect. In addition, we fix the maximum number of sinks to
1 in order to get mono-sink networks.

Parameter Notation Value
Number of discrete points N 306
Maximum correlation distance d 100m
Attenuation coefficient of correlation distance α 2
Communication range of sensor nodes R 150m
The tolerated estimation error at point p Ep 10µg/m3

The maximum number of sinks M 1
The cost of deploying a sensor at point p csensorp 1 unity
The cost of deploying a sink at point p csensorp 10 unities

TABLE II: Default values of simulation parameters.

B. Validation by experiments

In order to validate our formulation of error-bounded WSN
deployment, we run the single-level model using the 2 ref-
erence pollution maps while considering 3 values for the
tolerated estimation error: 2, 5 and 8 µg/m3. We depict
in table III the resulting optimal cost corresponding to the
snapshot of 2012 alone, the snapshot of 2013 alone and the
two snapshots together (using formulations given in section
IV-B3). We notice that snapshot 2012 needs more sensors
than snapshot 2013. This is because the range of pollution
concentrations is larger in snapshot 2012 as shown in figure
1, which involves higher pollution variability and thus more
interpolation errors. In addition, when trying to satisfy both
of the two snapshots, we place at least the sensors that
are required by snapshot 2012 since this snapshot is more
complicated than the other one.

Tolerated estimation error 2µg/m3 5µg/m3 8µg/m3

Snapshot 2012 alone 221 146 105
Snapshot 2013 alone 171 67 48

Snapshots 2012 and 2013 together 237 148 105

TABLE III: Deployment cost (monetary units) depending on
snapshots and the tolerated estimation error.

We now depict in Figure 2 the obtained positions of sensors
and sinks when using only snapshot 2012. We evaluate at each
point of the map the estimated concentration and then we cal-
culate the resulting estimation error, i.e. the difference between
the reference concentrations and the estimated concentrations.
The obtained errors are also depicted in Figure 2.

We notice that more sensors are used when the tolerated
estimation error decreases. This is expected since better de-
ployment precision needs more sensor nodes. In addition,
Figure 2 shows that the maximum error value is bounded by
the tolerated estimation error, which fits with our coverage
formulation. Moreover, the obtained nodes form a connected
network as formulated in our connectivity constraint. In the
next simulation cases, we execute the model only on the
snapshot of year 2012.

C. Performance evaluation

In this section, we compare the two variants of our ILP
model in terms of execution time and objective function.
We depict in Figure 3 the deployment cost depending on
the tolerated estimation error while executing the single-level



(a) NO2 concentrations (µg/m3) of 2012 (b) NO2 concentrations (µg/m3) of 2013

Fig. 1: Reference NO2 concentrations in Lyon La-Part-Dieu district, average over years 2012 and 2013 (Ref:Air-Rhone-Alpes).

(a) Ep = 2µg/m3 (b) Ep = 5µg/m3 (c) Ep = 8µg/m3

Fig. 2: Deployments with increasing estimation errors (µg/m3) for snapshot 2012. Sensors (respectively sinks) are depicted
using "plus signs" (respectively stars).

model, the multilevel model and the coverage formulation
alone.

Fig. 3: Deployment cost vs. tolerated estimation error.

We notice that the deployment cost given by the two
variants is greater than the coverage cost. This is mainly due
to the cost of the sink that ensures the connectivity of the
network. We also notice that the near-optimal multilevel model
gives the same values as the optimal single-level model when
the tolerated estimation error is less than 7µg/m3. This is
explained by the fact that for small values of the tolerated
estimation error, the network that results from the first stage
of the multilevel model, i.e. the coverage formulation, is
usually dense and needs no more relay nodes to be connected.
However, we notice in Table IV that the execution time
is significantly enhanced when using the multilevel model.
Indeed, the enhancement factor exceeds 100 in some cases.

The difference in execution time between the two models
should be larger when applied on large-scale areas. As a
conclusion, the multilevel model allows to get good solutions,
and even optimal solutions for high-precision deployments, in
a reasonable time.

Tolerated estimation error Single-level Model Multilevel Model
3 µg/m3 1.59 s 0.16 s
6 µg/m3 25.23 s 0.19 s
9 µg/m3 32.45 s 0.27 s

12 µg/m3 6.74 102 s 1.65 s

TABLE IV: Execution time vs. tolerated estimation error.

D. Evaluation of the network connectivity

In this simulation case, we analyze the deployment cost
that is due to the connectivity constraint, which involves the
deployment of sink and relay nodes. We consider 3 possible
values of the communication range of sensor nodes: 80m for
short range communications like ZigBee, 150m for medium
range communications like WiFi and 1000m for long-range
communications. We evaluate the number of nodes depending
on the tolerated estimation error and depict the results in Fig.
4. Obviously, the longer the communication range, the less the
number of sensors is. However, the tolerated estimation error
has a considerable impact on the connectivity of the network.
On the one hand, the medium and long range communications



involve nearly the same number of nodes. For instance, when
estimation errors are less than 10µg/m3, the medium range
communications need at most only two more nodes than the
high range communications. This is explained by the fact that
small tolerated errors imply a very high density of the network
so that sensors are placed almost in all positions. On the other
hand, short range communications are very costly and need
almost 70% more nodes than the long range communications
when the estimation errors reach 15µg/m3. This is because
the distance between sensor nodes that are responsible for
coverage is very important when high estimation errors are
tolerated, which causes the need of too much relay nodes if
the communication range is very short.

Fig. 4: Optimal number of sensors depending on the commu-
nication range.

E. Evaluation of the coverage results

In this simulation scenario, we study the dependency be-
tween the deployment precision and the needed number of sen-
sors under different configurations of the correlation distance.
Since we are studying the cost of the monitoring precision,
we execute only the coverage constraint. We depict in Figure
5 the optimal deployment cost depending on the tolerated es-
timation error while considering two different functions of the
correlation distance: the Euclidean distance and the distance
along roads. We notice in the two curves that less sensors are
needed when the tolerated estimation error decreases. This is
because less tolerated estimation error involves high-precision
deployment and thus more nodes. In addition, the Euclidean
distance gives less number of sensors, which is explained
by the fact that the distance along roads is more realistic
and hence involves more nodes to better estimate pollution
concentrations.

Fig. 5: Optimal coverage cost vs. tolerated estimation error.

We now investigate the impact of the correlation distance on
the number of sensors that are needed to cover a point where
no sensor in deployed. We consider different configurations
of the maximum correlation distance d and the attenuation
coefficient of the correlation distance α. We depict in Figure
6 the average number of sensors that are deployed within
the maximum correlation distance d of each point where no
sensor is deployed. We notice that less sensors are used when
considering greater values of the attenuation coefficient α and
less values of the maximum correlation distance d. To explain
this, we recall that smaller values of the d parameter allow to
consider less points in the interpolation formula, and higher
values of the α parameter allow to assign smaller values of
correlation coefficients to the far sensors. This means that with
smaller values of d and higher values of α, the interpolation
is done with less sensors, which fits with the results depicted
in Figure 6.

(a) Impact of the maximum correlation distance

(b) Impact of the attenuation coefficient of
correlation distance

Fig. 6: Impact of correlation distance parameters on the mean
number of neighbors per point.

F. A comparison with generic deployment approaches

To the best of our knowledge, existing deployment models
assume that a sensor has a given detection range, which is not
the case of pollution sensors. Instead of that, we constraint the
deployment by the error of estimated maps. We believe that
the comparison with detection range based solutions would not
be convincing since the two approaches are based on different
coverage definitions. However, our model can be compared to
generic deployment methods based on our coverage definition.
Hence, we propose a comparison with random and uniform
approaches.

In order to show the enhancement factor of our formulation,
we evaluate the maximum estimation error of the estimated
pollution concentrations while varying the number of sensors



and the deployment approach. Results are depicted in Fig. 7.
We consider random and uniform deployment in addition to
our coverage formulation. For random deployment, we depict
the average of 100 simulations for each value of the X-axis.
The obtained results show that our model is at least 3 times
better than the other approaches, which gave nearly the same
results. Moreover, the enhancement factor increases with the
number of sensors. For instance, when using 258 nodes, the
maximum error given by our model is equal to 1µg/m3

whereas uniform and random approaches gave, respectively,
26µg/m3 and 23µg/m3.

Fig. 7: Comparison results

VI. CONCLUSION AND FUTURE WORK

In this paper, we tackled the optimization problem of
sensor deployment and proposed integer programming models
computing a cost-optimal network topology while ensuring
the mapping of air quality with bounded error. Our main
contribution is to constraint the deployment of sensors by the
quality of the pollution estimation that can be interpolated
between the sensors. We applied our model on a dataset of the
Lyon City, and have shown how error-bounded deployment
is done. We also investigated the performance of our ILP
formulation and studied the trade-off between the deployment
precision and the deployment cost.

As a future work, we plan to consider the impact of the
different urban parameters such as the structure of streets on
the deployment results. Moreover, we are also working on the
design of specific heuristics to solve the addressed problem
faster.
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