
HAL Id: hal-01317213
https://hal.inria.fr/hal-01317213v2

Submitted on 9 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Realizability Interpretation for Intersection and
Union Types

Daniel J. Dougherty, Ugo de ’Liguoro, Luigi Liquori, Claude Stolze

To cite this version:
Daniel J. Dougherty, Ugo de ’Liguoro, Luigi Liquori, Claude Stolze. A Realizability Interpretation
for Intersection and Union Types. 14th Asian Symposium on Programming Languages and Systems,
Nov 2016, Hanoi, Vietnam. �hal-01317213v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49342891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01317213v2
https://hal.archives-ouvertes.fr

A Realizability Interpretation
for Intersection and Union Types?

Daniel J. Dougherty1, Ugo de’Liguoro2, Luigi Liquori3, and Claude Stolze4

1 Worcester Polytechnic Institute, USA
dd@cs.wpi.edu

2 Università di Torino, Italy
ugo.deliguoro@unito.it

3 INRIA Sophia Antipolis-Méditerranée, France
Luigi.Liquori@inria.fr

4 ENS Rennes and UPMC, France
Claude.Stolze@ens-rennes.fr

Abstract. Proof-functional logical connectives allow reasoning about
the structure of logical proofs, in this way giving to the latter the status
of first-class objects. This is in contrast to classical truth-functional con-
nectives where the meaning of a compound formula is dependent only
on the truth value of its subformulas.
In this paper we present a typed lambda calculus, enriched with strong
products, strong sums, and a related proof-functional logic. This cal-
culus, directly derived from a typed calculus previously defined by two
of the current authors, has been proved isomorphic to the well-known
Barbanera-Dezani-Ciancaglini-de’Liguoro type assignment system. We
present a logic L∩∪ featuring two proof-functional connectives, namely
strong conjunction and strong disjunction. We prove the typed calculus
to be isomorphic to the logic L∩∪ and we give a realizability semantics
using Mints’ realizers [Min89] and a completeness theorem. A prototype
implementation is also described.

1 Introduction

This paper is a contribution to the study of intersection and union type systems
and their role in logical investigations.

There are two well-known points of view on type systems: (i) types as spec-
ifications and terms as programs, and (ii) types as propositions and terms as
evidence. Let us call the former the “computational” perspective, and the latter
the “logical” one.

In the logical view a type judgment t : σ is taken to mean that t is a construc-
tion providing evidence of the proposition σ, reducing to a canonical element of
σ. Typed λ-calculi defined in this way are at the core of proof assistants and
logical frameworks. On the other hand, in the computational view a judgment

? Work supported by the COST Action CA15123 EUTYPES “The European research
network on types for programming and verification”.

2 Dougherty, de’Liguoro, Liquori, and Stolze

t : σ is taken to mean that t denotes an element of the datatype σ, which may
in fact be defined in a way external to the system for making type-judgments.

Within the computational tradition itself there are two approaches: explicitly-
typed calculi (“Church-style”) and type assignment systems (“Curry-style”).
These represent more than a difference in presentation: in type assignment sys-
tems types provide a means for making assertions about the semantics of raw
terms, while in explicitly typed calculi types are a method of insuring that only
well-behaved terms are considered at all.

The logical view resides naturally in a system of Church-style explicit typ-
ing. Existing logical frameworks and proof assistants take such explicitly-typed
calculi for their foundation.

Intersection types originated within the computational perspective as a tool
for analyzing the functional behavior of λ-terms: intersection type systems give
characterizations of each of the sets of strongly normalizing, weakly normal-
izing, and head-normalizing terms [Pot80,CDC80,BCDC83]. From a program-
ming languages perspective, intersection types support (finitary) overloading.
Subtyping arises naturally in the study of intersection types.

Later, union types were introduced, as a foundational study [BDCd95] and
also from programming languages motivation [MPS86,CF93,Dun12]. Union types
are somewhat similar to sum types, but as Pierce [Pie02] notes: “The main formal
difference between disjoint and non-disjoint union types is that the latter lack any
kind of case construct: if we know only that a value v has type T1 ∪ T2 then the
only operations we can safely perform on v are ones that make sense for both
T1 and T2”.

Naturally, the question arose whether intersection, union, and subtyping can
be given a logical explanation. Pottinger [Pot80] already identified this question:
“Since the meaning of ∩ is reasonably clear (to claim that A∩B is to claim that
one has a reason for asserting A which is also a reason for asserting B), it would
obviously be of interest to figure out how to add ∩ to intuitionist logic and then
consider the analysis of intuitionist mathematical reasoning in the light of the
resulting system”. A natural logical analogue of computational interpretation of
union types is “if we want to reason from an assumption v that T1∪T2 holds, then
we may reason separately assuming v is evidence of T1 and that v is evidence of
T2 as long as we use that evidence in the same way.”

There has subsequently been a lot of work on this question of understanding
“proof-functional”connectives [MR72,LE85,Min89,AB91,BM94,DCGV97] where
the logical analogue of intersection has come to be called “strong conjunction”,
with “strong disjunction” corresponding to union of course, and, in [DCGV97]
with subtyping associated with “relevant implication”, long of interest to philoso-
phers. It became clear that a focus on realizability was most fruitful, typically
taking untyped terms (from λ-calculus or combinatory logic) as realizers.

Independent of this thread of research, the question arose whether intersec-
tion and union type systems could be presented naturally in Church-style, i.e. ex-
plicitly typed. There are technical obstacles to an explicitly-typed treatment that
would inherit the core properties of the type-assignment approach: subject reduc-

A Realizability Interpretation for Intersection and Union Types 3

tion, subject expansion, strong normalization, unicity of typing, decidability of
type reconstruction and type checking. Several proposals [PT94,Rey96,CLV01]
[Ron02,WDMT02,WH02,Dun12] were explored, none of which met all the crite-
ria above. The system presented here derives from the system of Λ∩t [LR07] sub-
sequently generalized in the system Λ∩∪t [DL10] to include union types. These
systems do satisfy the core properties listed above. They do not include sub-
typing, and left open the question of a logical interpretation of the λ-calculus
presented.

All of the work on understanding the logical aspects of intersection, union,
and subtyping took place in the Curry-style framework. This was natural given
the fact that type assignment was the most natural framework for intersection
and union types, because the typing rules are not syntax directed. But the fact
that most uses of λ-calculi in logical systems use explicitly-typed terms poses a
compelling question, the main topic of the current paper:

Can a logical investigation of intersection and union types, with/without
subtyping, take place in the context of an explicitly-typed λ-calculus?

The motivation is that success here should point the way towards applications
of intersection and union types in proof assistants and logical frameworks. The
hope is that they can provide as much insight into logical systems as they have
in the computational arena.

1.1 Contributions.

Our results can be thought of as exploring the relationships between the following
four formal systems:

– the original system Λ∩∪u for type assignment with intersection and union
types from [BDCd95],

– the typed calculus Λ∩∪t for type assignment with intersection and union types
defined in [DL10],

– the proof-functional logic L∩∪, defined in this paper, and
– a natural deduction system NJ(β) for derivations in first-order intuitionistic

logic with untyped λ-terms.

Judgements in these systems take the following four forms below. On the right-
hand sides of the turnstiles, M is an untyped λ-term, ∆ is a simply-typed λ-
term with strong products and strong sums, and σ is a simple type formed using
→,∩, and ∪. The rσ[M] are typing predicates to be realized.

Λ∩∪u B, xι : τ ` M : σ

Λ∩∪t Γ
@

, xι @ ι : τ ` M @ ∆ : σ

L∩∪ Γ, ι : τ ` ∆ : σ

NJ(β) G, rτ [xι] ` rσ[M]

4 Dougherty, de’Liguoro, Liquori, and Stolze

The relationship between Λ∩∪t and Λ∩∪u was explored in [DL10], and is recalled
in Section 2. The first contribution of this paper is the definition of a new notion,
the essence o∆ o of a typed term ∆, used to connect Λ∩∪t and L∩∪. Specifically,
we prove, as Theorem 6,

Γ
@

`M@∆ : σ if and only if Γ ` ∆ : σ and o∆ o vM. (1)

Here Γ is obtained from Γ
@

by erasing all the “x@”, and v is a suitable syntactic
preorder on untyped λ-terms. This justifies thinking of L∩∪ as a proof-functional
logic. We think of the Λ∩∪t as a bridge between the intersection and union type
assignment system and the logic L∩∪.

Our second contribution is to show how Λ∩∪t supports a realizability analysis
of L∩∪. In particular, Section 3 shows that

Γ
@

`M@∆ : σ and only if ∆ realizes GΓ ` rσ[M]. (2)

Together with the equivalence in (1) this represents a complete analysis of the
relationship between Curry-style and Church-style typing and the associated
logic for intersection and union.

Section 4 presents further theoretical and pragmatic developments. Subsec-
tion 4.1 extends the typed system and the logic by adding a natural notion of
subtyping. This is represented in the type assignment system as a non-syntax-
directed substitution rule, in the typed calculus as an explicit coercion, and
in the logic calculus as another well-known proof-functional connective called
relevant implication. In Subsection 4.2 we briefly describe our prototype im-
plementation of the type checking and proof inhabitation for the system with
intersection/strong conjunction and union/strong disjunction and coercions as
relevant implication.

1.2 Related Work

There are far too many studies of type systems featuring intersection, union,
and subtyping to identify individually here. We have tried to outline the main
currents of research in the introduction; here we will mention some work that is
directly related to the contributions of this paper.

The formal investigation of soundness and completeness for a notion of re-
alizability was initiated by Lopez-Escobar [LE85] and subsequently refined by
Mints [Min89]. It is Mints’ approach that we build on here.

The connection between intersection types and relevant implication was no-
ticed by Alessi and Barbanera in [AB91]. Barbanera and Martini [BM94] studied
three proof-functional operators, namely the strong conjunction, the relevant im-
plication (see Meyer-Routley’s [MR72] system B+), and the strong equivalence
connective for double implication, relating those connectives with suitable type
assignments system, a realizability semantics and a completeness theorem.

Dezani-Ciancaglini, Ghilezan, and Venneri [DCGV97], investigated a Curry-
Howard interpretation of intersection and union types (for Combinatory Logic).

A Realizability Interpretation for Intersection and Union Types 5

Let B
4
= {x1:σ1, . . . , xn:σn} (i 6= j implies xi 6≡ xj), and B, x:σ

4
=B ∪ {x:σ}

B `M : ω
(ω)

x:σ ∈ B
B ` x : σ

(Var)

B, x:σ1 `M : σ2

B ` λx.M : σ1 → σ2
(→I)

B `M : σ1 → σ2 B ` N : σ1

B `M N : σ2
(→E)

B `M : σ1 B `M : σ2

B `M : σ1 ∩ σ2
(∩I)

B `M : σ1 ∩ σ2 i = 1, 2

B `M : σi
(∩Ei)

B `M : σi i = 1, 2

B `M : σ1 ∪ σ2
(∪Ii)

B, x:σ1 `M : σ3

B, x:σ2 `M : σ3 B ` N : σ1 ∪ σ2

B `M [N/x] : σ3
(∪E)

Fig. 1. The Intersection and Union Type Assignment System Λ∩∪
u [BDCd95].

Using the well understood relation between combinatory logic and λ-calculus,
they encode type-free λ-terms in suitable combinatoric logic formulas and then
type them using intersection and union types. As they put it, their goal is “. . . to
set out a logical system ... such that the intersection and union type construc-
tors are interpreted as propositional connectives and then their derivability is
completely represented by derivability in a logical Hilbert-style, axiomatization.”
This is a complementary approach to the realizability-based one here.

Barbanera, Dezani-Ciancaglini, and de’Liguoro [BDCd95] presented an un-
typed λ-calculus with related type assignment system featuring intersection and
union types. The previous work [DL10] presented a typed calculus that explored
the relationship between the proof-functional intersections and unions and the
truth-functional (strong) products and (strong) sums; the intersection and union
aspect of the system was isomorphic, after erasure, to the Barbanera-Dezani-
Ciancaglini-de’Liguoro [BDCd95] type assignment system. The type system we
consider is built out of an infinitely enumerable set of type variables φ0, φ1, . . .
and the constant type ω, by means of the arrow (“→”), union (“∪”), and inter-
section (“∩”) constructors. Therefore, types have the following syntax:

σ ::= φ | ω | σ → σ | σ ∪ σ | σ ∩ σ.

2 Type Assignment Λ∩∪
u and the Typed Calculus Λ∩∪

t

The type assignment system Λ∩∪u is the set of inference rules for assigning inter-
section and union types to terms of the pure λ-calculus. The presentation here,
in Figure 1, is taken from [BDCd95]: the terms are standard raw λ-terms, and
the types are generated from a set of base types by the constructors →,∩, and
∪.

6 Dougherty, de’Liguoro, Liquori, and Stolze

Γ
@4
= {xι1@ι1:σ1, . . . , xιn@ιn:σn}, where ιi 6= ιj implies xιi 6= xιj , and

Γ
@

, xι@ι:σ
4
=Γ

@

∪ {xι@ι:σ}

Γ
@

`M@∗ : ω
(ω)

xι@ι:σ ∈ Γ
@

Γ
@

` xι@ι : σ
(Var)

Γ
@

, xι@ι:σ1 `M@∆ : σ2

Γ
@

` λxι.M@λι:σ1.∆ : σ1 → σ2

(→I)

Γ
@

`M@∆1 : σ1 → σ2

Γ
@

` N@∆2 : σ1

Γ
@

`M N@∆1∆2 : σ2

(→E)

Γ
@

`M@∆1 : σ1 Γ
@

`M@∆2 : σ2

Γ
@

`M@〈∆1 , ∆2〉 : σ1 ∩ σ2

(∩I)
Γ

@

`M@∆ : σ1 ∩ σ2 i ∈ {1, 2}

Γ
@

`M@pri∆ : σi
(∩Ei)

Γ
@

`M@∆ : σi i ∈ {1, 2}

Γ
@

`M@ini∆ : σ1 ∪ σ2

(∪Ii)

Γ
@

, xι@ι:σ1 `M@∆1 : σ3 Γ
@

, xι@ι:σ2 `M@∆2 : σ3 Γ
@

` N@∆3 : σ1 ∪ σ2

Γ
@

`M{N/xι}@[λι:σ1.∆1 , λι:σ2.∆2] ·∆3 : σ3

(∪E)

Fig. 2. The Typed Calculus Λ∩∪
t [DL10].

Theorem 1 (Main properties of Λ∩∪u [BDCd95]).

Characterization. The terms typable without use of the ω rule are precisely
the strongly normalizing terms. ut

Parallel reduction. If B ` M : σ and M →gk N then B ` N : σ. Here
→gk is the “Gross-Knuth” reduction, where all residuals of redexes in M are
contracted (Def. 13.2.7 in [Bar84]). ut

In [DL10] a typed λ-calculus Λ∩∪t was defined, whose goal was to capture a
decidable and Church-style version of the Curry-style Λ∩∪u . The pseudo-terms
of the Λ∩∪t calculus have the form M@∆, where M and ∆ have the following
syntax:

M ::= xι | λxι.M |MM

∆ ::= ι | ∗ | λι:σ.∆ | ∆∆ | 〈∆ , ∆〉 | [λι:σ.∆ , λι:σ.∆] ·∆ | pri∆ | ini∆ i = 1, 2

Note that the metasymbols λ and · are per se nothing but parts of the strong

sum construction. The typed judgments are of the shape Γ
@` M@∆ : σ, where

in a nutshell M is a type-free λ-term, ∆ is a typed λ-term enriched with strong
product, strong sum, projections, and injections to faithfully “memorize” every

step of a type assignment derivation, and Γ
@

contains declarations of the shape

A Realizability Interpretation for Intersection and Union Types 7

xι@ι:σ, where xι and ι are free-variables of M and ∆, respectively. The inference
rules are presented in Figure 2. The main feature of the system was to keep M
to be “synchronized” with ∆. As an example, we can derive the judgement
` λxι.xι@〈λι:σ1.ι , λι:σ2.ι〉 : (σ1 → σ1) ∩ (σ2 → σ2). As another example, the
term [λι1:σ1.∆1 , λι2:σ2.∆1] ·∆3 corresponds to the familiar case statement. The
type ω plays the role of a terminal object, that is to say it is an object with a
single element. The connection with type-assignment is this: every term can be
assigned type ω so all proofs of that judgment have no content: all these proofs
are considered identical ([Rey98], page 372). As is typical we name the unique
element of the terminal object as ∗.

The relation between untyped and typed reductions is subtle because of the
presence of the “Gross-Knuth” parallel reduction in the untyped calculus and a
fairly complex notion of synchronization of M and ∆, via synchronized β- and
∆-reductions in the typed calculus. In a nutshell, for a given term M@∆, the
computational part (M) and the logical part (∆) grow up together while they
are built through application of rules (Var), (→ I), and (→ E), but they get
disconnected when we apply the (∩I), (∪I) or (∩E) rules, which change the
∆ but not the M . This disconnection is “logged” in the ∆ via occurrences of
〈− , −〉, [− , −], pri, and ini. In order to correctly identify the reductions that
need to be performed in parallel in order to preserve the correct syntax of the
term, an ad hoc notion of “overlapping” that helps to define a redex taking into
account the surrounding context was defined in [DL10]. Therefore, we define ⇒
as the union of two reductions: ⇒β dealing with β-reduction occurring in both
M and ∆, and ⇒∆ dealing with reductions arising from reduction only in ∆.
We refer to the complete reduction definition in [DL10]. Here are some main
properties of the system Λ∩∪t . Since the system is explicitly typed, properties
such as type checking and type reconstruction are immediate.

Theorem 2 (Main properties of Λ∩∪t [DL10]).

Subject reduction. If Γ
@`M@∆ : σ and M@∆⇒M ′@∆′, then

Γ
@`M ′@∆′ : σ. ut

Church-Rosser. The reduction relation ⇒ is confluent. ut
Strong normalization. If M@∆ is typable without using rule (ω) then M is

strongly normalizing. ut
Type reconstruction algorithm. There is an algorithm Type satisfying

Soundness. If Type(Γ
@

,M@∆) = σ, then Γ
@`M@∆ : σ. ut

Completeness. If Γ
@`M@∆ : σ, then Type(Γ

@

,M@∆) = σ. ut
Type checking algorithm. There is an algorithm Typecheck satisfying

Γ
@`M@∆ : σ if and only if Typecheck(Γ

@

,M@∆,σ) = true.

Judgment decidability. It is decidable whether Γ
@`M@∆ : σ is derivable. ut

Isomorphism of typed-untyped derivations. Let DerΛ∩∪u and DerΛ∩∪t be
the sets of all (un)typed derivations. There are functions F : DerΛ∩∪t ⇒
DerΛ∩∪u and G : DerΛ∩∪u ⇒ DerΛ∩∪t showing the systems Λ∩∪t and Λ∩∪u to
be isomorphic in the following sense: F ◦ G is the identity in DerΛ∩∪u and
G ◦ F is the identity in DerΛ∩∪t modulo uniform naming of variable-marks,

8 Dougherty, de’Liguoro, Liquori, and Stolze

i.e., G(F(Γ
@` M@∆ : σ)) = ren(Γ

@

) ` ren(M@∆) : σ, where ren is a simple
function renaming the free occurrences of variable-marks. ut

The algorithms Type and Typecheck in Figure 3 are exactly the ones from [DL10].

Type(Γ
@

,M@∆)
4
= match M@∆ with

@∗ ⇒ ω

@pri∆1 ⇒ σi i = 1, 2 if Type(Γ
@

,M@∆1) = σ1 ∩ σ2

@〈∆1 , ∆2〉 ⇒ σ1 ∩ σ2 if Type(Γ
@

,M@∆1) = σ1

and Type(Γ
@

,M@∆2) = σ2

@ini∆1 ⇒ σ1 ∪ σ2 if Type(Γ
@

,M@∆1) = σi i = 1, 2

@

[
λι:σ1.∆1,

λι:σ2.∆2

]
·∆3 ⇒ σ3 if Type((Γ

@

, xι@ι:σ1),M ′@∆1) = σ3

and Type((Γ
@

, xι@ι:σ2),M ′@∆2) = σ3

and Type(Γ
@

, N@∆3) = σ1 ∪ σ3 and
and M ≡M ′[N/x]

xι ⇒ σ if xι@ι:σ ∈ Γ
@

λxι.M1@λι:σ1.∆1 ⇒ σ1 → σ2 if Type((Γ
@

, xι@ι:σ1),M1@∆1) = σ2

M1M2@∆1∆2 ⇒ σ2 if Type(Γ
@

,M1@∆1) = σ1 → σ2

and Type(Γ
@

,M2@∆2) = σ1

@ ⇒ false otherwise

Typecheck(Γ
@

,M@∆,σ)
4
= Type(Γ

@

,M@∆)
?
= σ

Fig. 3. The Type Reconstruction and Type Checking Algorithms for Λ∩∪
t .

2.1 The proof essence partial function

We start with a simple question: assuming M@∆ is derivable, can we extract
the computational part M from a proof-term ∆? Luckily the answer is positive.
To do that, let us extend the pure λ-calculus syntax by a constant Ω, typable
by ω only, and consider the following pre-order join (partial) operation:

Definition 3. Let v be the least pre-congruence over untyped λ-terms extended
with the constant Ω such that:

1. Ω vM for any M
2. if M =α M

′ and M ′ v N then M v N
3. if M =η M

′ and M ′ v N then M v N

A Realizability Interpretation for Intersection and Union Types 9

By identifying η-convertible terms, the relation v is a partial order; next we show
that the set of extended λ-terms is closed under join of compatible terms: M and
N are compatible, written M ↑ N , if M v P w N , for some P . Although the
next lemma is intuitively clear its proof rather technical. We include the proof
because existence of join of compatible terms is necessary for the subsequent
definition of “essence” to make sense; it also provides a decision method for
compatibility and a method to compute the join.

Ω ∨M = M ∨Ω = M

λx.M ∨ λy.N = λz.M [z/x] ∨N [z/y] z fresh

MM ′ ∨N N ′ = (M ∨N) (M ′ ∨N ′)

M ∨N = fail, else

Fig. 4. Syntactical join

Lemma 4. For any pair M , N of extended λ-terms it is decidable whether they
are compatible. Moreover, if M ↑ N then there exists a term M tN which is the
join of M and N w.r.t. v that is unique up to η-equality.

Proof. First observe that if M v P =η Q then P v Q, as v includes =η and
M v Q, by transitivity of v.

Let ≤ be the last pre-congruence such that Ω ≤ M , for any M . Then the
relation v coincides with the transitive closure of (=η ≤)∪ (≤=η), where M(=η

≤)N if M =η P ≤ N for some P , and similarly M(≤=η)N . Now suppose that

M =η M
′ ≤ P ≥ N =η N

′

Since η-reduction is Church-Rosser and strongly normalizing, there exist the
unique η-normal forms M ′′ of M,M ′, and P ′′ of P and N ′′ of N,N ′, respectively.
By definition and the above remark we have M ′′ v P ′′ w N ′′; we claim that
M ′′ ≤ P ′′ ≥ N ′′.

If M ′ ≤ P , then for some context with n holes C[·]1 · · · [·]n we have M ′ ≡
C[Ω]1 · · · [Ω]n and P ≡ C[P1]1 · · · [Pn]n for some Pi’s. Assuming for simplicity
n = 1 and that M ′ →η M

′′ in one step by contracting the η-redex λx.Rx, we
either have that the hole filled by Ω does not occur in R or that R contains
it. In the first case λx.Rx is (the only) η-redex of P and we trivially obtain
P →η P ′′ ≥ M ′′ by contracting the same redex. In the second case Ω is a
subterm of R which is such that R ≤ R′ and P ≡ C[λx.R′ x] for some R′: then
we have M ′′ ≡ C[R] ≤ C[R′] ≡ P ′′ with P →η P ′′. The case of n > 1 or
M ′ →+

η M ′′ in several steps is a straightforward generalization thereof. By a
similar reasoning we conclude that P ′′ ≥ N ′′ as well. Also the proof that if

M ≤ Q =η Q
′ ≥ N

10 Dougherty, de’Liguoro, Liquori, and Stolze

Let Γ
4
= {ι1:σ1, . . . , ιn:σn}, where i 6= j implies ιi 6= ιj , and Γ, ι:σ

4
=Γ ∪ {ι:σ}

Γ ` ∗ : ω
(ω)

ι:σ ∈ Γ
Γ ` ι : σ

(Var)

Γ, ι:σ1 ` ∆ : σ2

Γ ` λι:σ1.∆ : σ1 → σ2
(→I)

Γ ` ∆1 : σ1 → σ2 Γ ` ∆2 : σ1

Γ ` ∆1∆2 : σ2
(→E)

Γ ` ∆1 : σ1

Γ ` ∆2 : σ2 o∆1 o ↑ o∆2 o
Γ ` 〈∆1 , ∆2〉 : σ1 ∩ σ2

(∩I)
Γ ` ∆ : σ1 ∩ σ2 i ∈ {1, 2}

Γ ` pri∆ : σi
(∩Ei)

Γ ` ∆ : σi i ∈ {1, 2}
Γ ` ini∆ : σ1 ∪ σ2

(∪Ii)

Γ, ι:σ1 ` ∆1 : σ3 o∆1 o ↑ o∆2 o
Γ, ι:σ2 ` ∆2 : σ3 Γ ` ∆3 : σ1 ∪ σ2

Γ ` [λι:σ1.∆1 , λι:σ2.∆2] ·∆3 : σ3

(∪E)

Fig. 5. The proof-functional logic L∩∪.

then M ′′ ≤ Q′′ ≥ N ′′, where M ′′, Q′′ and N ′′ are the respective η-normal forms
of M , Q and Q′, N is analogous.

From this it follows that if M v P w N , then M ′′ ≤ P ′′ ≥ N ′′ for their
respective η-normal forms; as the inverse implication holds by definition, we can
decide whether M ↑ N by reducing both M and N to their η-normal forms
M ′′ and N ′′, and then deciding whether they are compatible w.r.t. the simpler
relation ≤. In such a case we have that M tN = M ′′ ∨N ′′, where ∨ is defined
in Figure 4, namely the lub w.r.t. ≤. ut

Let us define the essence of a ∆, written o∆ o, as a partial mapping as follows:

Definition 5 (Proof essence). The type-free essence M of a typed proof ∆ is:

o ∗ o 4
= Ω o ι o 4

= xι

oλι:σ1.∆ o 4
= λxι.o∆ o o∆1∆2 o 4

= o∆1 o o∆2 o
o [λι:σ1.∆1 , λι:σ2.∆2] ·∆3 o 4

= (o∆1 o t o∆2 o){o∆3 o/xι} o ini∆ o 4
= o∆ o

o 〈∆1 , ∆2〉 o 4
= o∆1 o t o∆2 o o pri∆ o 4

= o∆ o

The “essence” map is partial because join is such; it is however always defined
when applied to a typed proof-term ∆ in the typed calculus Λ∩∪t of [DL10] (see
Theorem 6 below) and it produces a type-free λ-term M . Note that M and ∆ are
both typable with σ using the type assignment and the type system, respectively.
Summarizing, the signature of the essence is as follows:

o − o : proof-terms (∆’s) → untyped λ-terms (M ’s).

A Realizability Interpretation for Intersection and Union Types 11

2.2 The Proof-functional Logic L∩∪

Indeed, for a given typable ∆, the left-hand side of the @, namely M , can be
omitted since it represents just the essence of ∆, i.e. o∆ o v M . Thus we can
introduce the proof-functional logic, called L∩∪ and presented in Figure 5. The
following theorem holds:

Theorem 6 (Equivalence). Let Γ be obtained by Γ
@

, simply by erasing all the

“x@”. Then Γ
@`M@∆ : σ if and only if Γ ` ∆ : σ and o∆ o vM . ut

Proof. The left-to-right is by induction over the the derivation of Γ
@`M@∆ : σ.

First observe that if the derivation consists of axiom (ω) then ∆ ≡ ∗ and σ = ω
and o ∗ o = Ω vM . If the derivation ends by

Γ
@`M@∆1 : σ1 Γ

@`M@∆2 : σ2

Γ
@`M@〈∆1 , ∆2〉 : σ1 ∩ σ2

(∩I)

then by induction we have that both o∆1 o and o∆2 o are defined and that o∆1 o v
M w o∆2 o, therefore o 〈∆1 , ∆2〉 o = o∆1 oto∆2 o is defined and o∆1 oto∆2 o vM
as desired.

If the derivation ends by (∪E) we reason in the same way as in case (∩I),
while all other cases are immediate by induction and the fact that v is a pre-
congruence.

The converse direction is is a straightforward induction over the derivation
of Γ ` ∆ : σ. ut

Since L∩∪ is a proof-functional logic it is natural to consider the pair “∆ : σ”
as a logical formula. Pictorially speaking, we could say that the type assignment
system of [BDCd95] and the logic L∩∪ are “bridged” by the typed system Λ∩∪t ,
and the above. We prove this fact by means of the concept of essence. This is,
to the best of our knowledge, the first attempt to interpret union as a proof-
functional connective.

3 Realizability interpretation of union types

In contrast to the system of intersection types, the type assignment system
Λ∩∪u has no simple set-theoretic interpretation (see [BDCd95]). On the other
hand system Λ∩∪t is grounded on the proof-functional logic L∩∪, though this is
hardly standard. In this section we provide both a natural semantics for union
types and a foundation for the logic L∩∪. We do this by interpreting the union
type assignment system into the intuitionistic first order theory NJ(β), Mint’s
provable realizability of intersection types extended with union. Then we prove
that the ∆’s terms of system Λ∩∪t are just proof-terms in NJ(β).

From Theorem 6 we know that if Γ
@ ` M@∆ : σ, then there is a tight

relation among ∆ and M , which is captured by the essence mapping. Comparing
system Λ∩∪t to the original Λ∩∪u it is easily seen that ∆ is a proof-term of the

12 Dougherty, de’Liguoro, Liquori, and Stolze

statement M : σ in system Λ∩∪u . But ∆ is a simply typed term: in fact if we
drop the restriction concerning the “essence” in rules (∩I) and (∪E) in system
L∩∪ replacing σ ∩ τ by σ × τ and σ ∪ τ by σ + τ then we get a simply typed
λ-calculus with product and sums, namely the intuitionistic propositional logic
with implication, conjunction, and disjunction in disguise.

We will provide a foundation for the proof-functional logic L∩∪ by interpret-
ing the L∩∪ into an extension of Mints’ provable realizability. However when
proving a formula rσ[M] we have two kinds of realizers: the former is the un-
typed λ-term M, that we propose to call just a “method” borrowing terminology
from Barbanera-Martini, the latter kind are ∆’s that turn out to be realizers in
the ordinary sense of intuitionistic logic.

Therefore, we prove a completeness proof that this is the case, namely that
Γ ` ∆ : σ is derivable in L∩∪ if and only if ∆ realizes GΓ ` rσ[M] for some M
related to ∆ by the essence mapping.

For this aim we use and extend Mints’ approach of Provable Realizability
[Min89,AB91,BM94]. We interpret the statement ` M@∆ : σ as “∆ is a con-
struction of M : σ”; on the other hand M : σ is the meaning of the formula
rσ[M], provided that we extend the notion to cope with union types; the latter
formula reads as “M is a method to assess σ” in terms of [LE85,BM94]; now the
meaning of ∆ is that of a constructive proof of rσ[M], and hence it is a “realizer”
of this formula. In short we have “two kinds” of realizers on two levels: the M ,
which is a Mints’ realizer of σ, and the ∆ which is an ordinary realizer, in the
sense of standard Brouwer–Heyting–Kolmogorov interpretation of intuitionistic
logic, of the statement rσ[M].

To avoid confusion, in the following we shall reserve the word “realizer” for
the ∆-terms, and we will use the word “method” referring to the untyped λ-term
M .

Definition 7. Let Pφ(x) be a unary predicate for each atomic type φ. Then we
define the predicates rσ[M] for types σ and terms M by induction over σ, as the
first order logical formulae:

rφ[x] ≡ Pφ(x)

rσ1→σ2
[x] ≡ ∀y.rσ1

[y] ⊃ rσ2
[x y]

rσ1∩σ2 [x] ≡ rσ1 [x] ∧ rσ2 [x]

rσ1∪σ2
[x] ≡ rσ1

[x] ∨ rσ2
[x]

In the above ⊃, ∧ and ∨ are the logical connectives for implication, conjunction
and disjunction respectively, that must be kept distinct from ∩ and ∪. In the
first order language whose terms are type-free λ-terms, we have formulas of
the shape rσ[M], whose intended meaning is that M is a method for σ in the
intersection-union type discipline. Note that in rσ[x] the term-variable x is the
only free-variable; in particular in rσ1→σ2

[M] ≡ ∀y.rσ1
[y] ⊃ rσ2

[M y] we assume
that y 6∈ Fv(M).

By NJ we mean the natural-deduction presentation of the intuitionistic first-
order predicate calculus. Derivations in NJ are trees of judgments G ` A, where

A Realizability Interpretation for Intersection and Union Types 13

G is the set of undischarged assumptions, rather than trees of formulas as in
Gentzen’s original formulation.

Definition 8 (The system NJ(β)). The system NJ(β) is the natural deduction
system for first order intuitionistic logic with untyped λ-terms and predicates
Pφ(x), the latter being axiomatized via the Post rules:

GΓ `NJ(β) Pφ(M) M =βη N

GΓ `NJ(β) Pφ(N)
(Axβη)

GΓ `NJ(β) Pω(M)
(Axω)

If A is a formula of NJ(β) and G
4
= {A1, . . . , An} is a set of formulæ (a con-

text), then we write G `NJ(β) A to mean that A is derivable in G. To the

context Γ
4
= {ι1:σ1, . . . , ιn:σn} of the logic L∩∪ we associate the NJ(β) context

GΓ
4
= rσ1

[xι1], . . . , rσn
[xιn]. Note that GΓ,ι:σ

4
=GΓ , rσ[xι] and xι 6∈ Fv(GΓ), since

ι 6∈ Dom(Γ), by context definition.
The following lemmas are useful to eliminate some of the intricacies of using

derivations in the full system NJ(β), involving the universal quantifier in the
definition of rσ→τ [M].

Lemma 9. The following rule is admissible in NJ(β):

GΓ `NJ(β) A{M/x} M =βη N

GΓ `NJ(β) A{N/x}
(Eqβη)

Proof. By induction over the proof of GΓ `NJ(β) A{M/x}. ut

Lemma 10. The following rules are admissible in NJ(β):

GΓ , rσ1
[x] `NJ(β) rσ2

[M]

GΓ `NJ(β) rσ1→σ2
[λx.M]

GΓ `NJ(β) rσ1→σ2
[M] GΓ `NJ(β) rσ1

[N]

GΓ `NJ(β) rσ2
[M N]

GΓ `NJ(β) rσ1
[M] GΓ `NJ(β) rσ2

[M]

GΓ `NJ(β) rσ1∩σ2
[M]

GΓ `NJ(β) rσ1∩σ2
[M] i ∈ {1, 2}

GΓ `NJ(β) rσi
[M]

GΓ `NJ(β) rσi [M] i ∈ {1, 2}
GΓ `NJ(β) rσ1∪σ2 [M]

GΓ , rσ1 [x] `NJ(β) rσ3 [M]

GΓ , rσ2
[x] `NJ(β) rσ3

[M] GΓ `NJ(β) rσ1∪σ2
[N]

GΓ `NJ(β) rσ3 [M{N/x}]

Proof. In each case, use induction over the proof of the indicated premisses. ut

In spite of the similarity of the rules in Lemma 9 with those of system L∩∪ there
are no restrictions on the shape of the derivations of the rσ[M]. This is due to
the fact the last lemma is about derivations of the predicate rσ[M] and not just
of the proof-functional “formula” σ. Nonetheless we have:

Lemma 11. If Γ
@`M@∆ : σ in system Λ∩∪t then GΓ `NJ(β) rσ[M].

14 Dougherty, de’Liguoro, Liquori, and Stolze

Proof. By induction over the derivation of Γ
@`M@∆ : σ using Lemmas 9, and

10 ut

Theorem 12 (Soundness). If Γ ` ∆ : σ is derivable in L∩∪ then there exists
M such that GΓ `NJ(β) rσ[M].

Proof. By Theorem 6 if Γ ` ∆ : σ is derivable then Γ
@` M@∆ : σ for some

M w o∆ o. The thesis follows by Lemma 11. ut

We say that the derivation of GΓ ` rσ[M] is standard if it uses only the rules
of the Post system, rule (Eqβη) and the rules from Lemmas 9 and 10; then we
write GΓ `S rσ[M].

Recall that NJ(β) is a particular case of systems called I(S) in [Pra71], which
enjoys the property of being strongly normalizable. The normal form of a deriva-
tion, called “fully normal derivation” by Prawitz, is split into a topmost “an-
alytical part” consisting of elimination rules, an intermediate “minimum part”
consisting of rules of the Post system, and a final “synthetical part” (ending with
the very conclusion of the derivation) only consisting of introduction rules. This
implies the subformula property.

Lemma 13. If GΓ `NJ(β) rσ[M] then GΓ `S rσ[M].

Proof. By induction over the fully-normal derivation of GΓ ` rσ[M], and then
by cases of σ. If σ is φ or ω then both the analytic and the synthetic parts are
empty, and the thesis is immediate. Otherwise:

Case σ ≡ σ1 ∩ σ2. Since rσ1∩σ2
[M] ≡ rσ1

[M]∧ rσ2
[M], the fully-normal deriva-

tion of GΓ ` rσ1
[M] ∧ rσ2

[M] must end with (∧I), whose premises are
GΓ ` rσi

[M], i ∈ {1, 2} and the thesis follows by induction.
Case σ = σ1 → σ2. We have rσ1→σ2 [M] ≡ ∀y.rσ1 [y] ⊃ rσ2 [M y], so that the

synthetic part ends by:

GΓ , rσ1
[y] ` rσ2

[M y]

GΓ ` rσ1
[y] ⊃ rσ2

[M y]
(⊃ I)

GΓ ` ∀y.rσ1 [y] ⊃ rσ2 [M y]
(∀I)

where y 6∈ Fv(GΓ)∪Fv(M) because of the side condition of rule (∀I) and the
definition of rσ1→σ2

[M]. By induction GΓ , rσ1
[y] `S rσ2

[M y], from which we
obtain the standard derivation:

GΓ , rσ1
[y] `S rσ2

[M y]

GΓ `S rσ1→σ2 [λy.M y] λy.M y =η M

GΓ `S rσ1→σ2 [M]

Case σ = σ1 ∪ σ2. Then rσ1∪σ2
[M] ≡ rσ1

[M] ∨ rσ2
[M] and the fully-normal

derivation of GΓ ` rσ1
[M] ∨ rσ2

[M] ends by (∨I), therefore by induction
GΓ `S rσi

[M] with i ∈ {1, 2} and the thesis follows. ut

A Realizability Interpretation for Intersection and Union Types 15

Definition 14 (∆-realizability). We say that a closed ∆ realizes the formula
rσ[M], written ∆ rσ[M], if o∆ o vM and:

∆ rφ[M] always
∆ rω[M] ⇔ ∆ ≡ ∗

∆ rσ→τ [M] ⇔ ∃M ′ =βη M. ∀∆′, N. ∆′ rσ[N]⇒ (∆∆′) rτ [M ′N]
∆ rσ∩τ [M] ⇔ ∆ ≡ 〈∆1 , ∆2〉 ∧∆1 rσ[M] ∧∆2 rτ [M]

∆ rσ∪τ [M] ⇔ (∆
∗−→ in1∆1 ∧∆1 rσ[M]) ∨ (∆

∗−→ in2∆2 ∧∆2 rτ [M])

We then define ∆ GΓ ` rσ[M] where ∆ is a possibly open term such that
Fv(∆) = {ι1, . . . , ιk} ⊆ Fv(Γ), if and only if for all closed ∆1, . . . ,∆k and terms
N1, . . . , Nk such that ∆i rΓ (ιi)[Ni] for all i = 1, . . . , k it is the case that
(writing xi ≡ xιi):

∆{∆1/ι1} · · · {∆k/ιk} rσ[M{N1/x1} · · · {Nk/xk}].

Lemma 15. If GΓ `NJ(β) rσ[M] then there exists ∆ such that ∆ GΓ ` rσ[M].

Proof. By Lemma 13 we can argue by induction over the standard derivation of
GΓ ` rσ[M]. If it ends by a Post rule, then the thesis is trivial. Suppose that it
ends by the inference

GΓ ` rσ1
[M] GΓ ` rσ2

[M]

GΓ ` rσ1∩σ2
[M]

Then by induction there are ∆1, ∆2 such that o∆i o vM and ∆i GΓ ` rσi
[M].

Taking∆ ≡ 〈∆1 , ∆2〉 we have that o∆1 o vM w o∆2 o and o∆ o = o∆1 oto∆2 o v
M hence ∆ GΓ ` rσ1∩σ2 [M]. All other cases are similar. ut

Lemma 16. If ∆ GΓ ` rσ[M] then there exists N and ∆′ such that M =βη N

and Γ
@` N@∆′ : σ.

Proof. By induction over σ. ut

Theorem 17 (Completeness). If GΓ `NJ(β) rσ[M] then there exists N =βη

M and ∆ such that Γ
@` N@∆ : σ and therefore Γ ` ∆ : σ.

Proof. By the hypothesis and Lemma 15 we know that there is a ∆′ such that

∆′ GΓ ` rσ[M]. By Lemma 16 this implies that Γ
@` N@∆ : σ for some ∆

and N =βη M , and we conclude by Theorem 6. ut

4 Further logical developments and implementation

There is active ongoing work on both the theoretical and practical directions of
this project.

16 Dougherty, de’Liguoro, Liquori, and Stolze

4.1 Implicit subtyping as explicit coercions

The logic L∩∪ does not encompass the subtyping relation treated in [BDCd95],
which extends the subtyping relation among intersection types introduced in
[BCDC83]. Given such a relation ≤, the subsumption rule takes the form:

B `M : σ σ ≤ τ
B `M : τ

(Sub)

This rule has a character similar to the intersection and union introduction
rules because the subject M of the conclusion is the same as in the premise.
This calls for a consistent treatment on the side of the ∆’s that are typed terms.
In [DL10] it was hinted that the subtyping as coercion should be the proper
approach, in the sense that whenever σ ≤ τ there should exist a coercion λ-term
coeσ≤τ : σ → τ such that the following rule is sound:

Γ ` ∆ : σ σ ≤ τ
Γ ` (coeσ≤τ ∆) : τ

(coe)

According to the logic L∩∪ this rule is sound if o coeσ≤τ (∆) o vM , while accord-
ing to the realizability interpretation this is the case if realizers of rσ[M] are sent
to realizers of rτ [M]. We argue that this is the case by showing that, at least for
the type theory Ξ from [BDCd95], we could establish the following:

Conjecture 18. If σ ≤ τ ∈ Ξ then there exists a combinator coeσ≤τ such that
` coeσ≤τ : σ → τ is a theorem of L∩∪ and o coeσ≤τ o v λx.x.

We end this subsection by observing that Conjecture 18 is in accordance with the
logical interpretation of intersection types proposed in [BM94]. In fact from the
logical point of view, subtyping of intersection (and union) types corresponds
to inject concepts and rules proper to the Minimal Relevant Logical system
B+ introduced by Meyer-Routley in ’72. As nicely explained in the Barbanera-
Martini paper, the relevant implication, denoted by ⊃r from the logic side and
→r from the type side, captures the behavior of the coercion function coeσ≤τ as
follows:

“To assert σ →r τ (read also σ ≤ τ) is to assert that any proof-inhabitant
of σ is also a proof-inhabitant of τ”.

Our system then meets the latter requirement because any coercion is “essen-
tially” the identity.

4.2 Logical Frameworks

The results presented here are part of a larger project to build a small logical
framework, à la the Edinburgh Logical Framework [HHP93], featuring proof-
functional logical connectives like strong conjunction (intersection) and strong
sum (union), and allowing reasoning about the structure of logical proofs, in this

A Realizability Interpretation for Intersection and Union Types 17

way giving to the latter the status of first-class objects. We could also mention
the high expressivity of ad hoc (intersection) polymorphism, since it allows to
typecheck the untyped λ-term abstraction λx.x x (self-application), essence of a
suitable ∆ term, with the intersection type (σ ∩ (σ → σ)) → σ. Other insights
could come in studying case constructs typechecked with union types.

Another positive outcome of this research line would be the introduction
of proof-functional types into existing interactive theorem provers such as Coq
[Coq16] or Isabelle [Isa16], and dependently typed programming languages such
as Agda [Agd16], Epigram [Epi16], or Idris [Idr16].

Finally, other advances in research line could come in studying other proof-
functional logical connectives, like relevant implication (where the implication is
established by an identity map) and strong equivalence (where the two directions
of the equivalence are established by mutually inverse maps), the two being
proof-functional interpretations of subtyping and provable type isomorphism,
respectively.

4.3 Prototype Implementation

Our current implementation experiments with a small kernel for a logical frame-
work featuring union and intersection types satisfying the De Brujin Principle
saying “Keep the framework as weak as possible (A plea for weaker frameworks”).

The prototype is written in the functional language ML. Its Read-Eval-Print-
Loop (REPL) can read a file containing some signatures, and process it using a
lexer, then a parser. Then it can do the following actions:

– type-check the proof
– normalize the proof using strong reduction
– add some definitions in the global context
– perform a (human interactive) type inhabitation algorithm

We are putting our current efforts into make the REPL to consider proofs (∆
terms) as a genuine first-class objects.

We implemented the Λ∩∪t calculus and the proof-functional logic L∩∪ as
presented here. We have added a wildcard type called “?” to deal with union
introduction, and we added an unification algorithm to apply eliminations rule
for implication and union types. The actual type system also features a first
implementation of dependent-types à la LF: explicit coercions and strong equiv-
alence are on the top of our implementation’ todo list. The aim of the prototype
is to check the expressiveness of the proof-functional nature of the logical engine
in the sense that when the user must prove e.g. a strong conjunction formula
σ1 ∩ σ2 obtaining (mostly interactively) a witness ∆1 for σ1, the prototype can
“squeeze” the essence M of ∆1 to accelerate, and in some case automatize, the
construction of a witness ∆2 proof for the formula σ2 having the same essence
M of ∆1. Existing proof assistants could get some benefit if extended with a
proof-functional logic. We are also started an encoding of the proof-functional
operators of intersection and union in Coq. The actual state of the prototype
can be retrieved at https://github.com/cstolze/Bull.

18 Dougherty, de’Liguoro, Liquori, and Stolze

Acknowledgment. We are grateful to the anonymous reviewers for their useful
remarks.

References

[AB91] Fabio Alessi and Franco Barbanera. Strong conjunction and intersection
types. In MFCS, pages 64–73, 1991.

[Agd16] The Agda Programming Language. http://wiki.portal.chalmers.se/

agda/pmwiki.php, 2016. [Online; accessed 2-september-2016].

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, Amsterdam, revised edition, 1984.

[BCDC83] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A
Filter Lambda Model and the Completeness of Type Assignment. Journal
of Symbolic Logic, 48(4):931–940, 1983.

[BDCd95] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro.
Intersection and union types: syntax and semantics. Inf. Comput.,
119(2):202–230, 1995.

[BM94] Franco Barbanera and Simone Martini. Proof-functional connectives and
realizability. Archive for Mathematical Logic, 33:189–211, 1994.

[CDC80] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the ba-
sic functionality theory for the λ-calculus. Notre Dame Journal of Formal
Logic, 21(4):685–693, 1980.

[CF93] Mario Coppo and Alberto Ferrari. Type inference, abstract interpreta-
tion and strictness analysis. Theoretical Computer Science, 121(1):113–143,
1993.

[CLV01] Beatrice Capitani, Michele Loreti, and Betti Venneri. Hyperformulae, Par-
allel Deductions and Intersection Types. BOTH, Electr. Notes Theor.
Comput. Sci., 50(2):180–198, 2001.

[Coq16] The Coq Proof Assistant. https://coq.inria.fr/, 2016. [Online; accessed
2-september-2016].

[DCGV97] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, and Betti Venneri. The
“relevance” of intersection and union types. Notre Dame Journal of Formal
Logic, 38(2):246–269, 1997.

[DL10] Daniel J. Dougherty and Luigi Liquori. Logic and computation in a lambda
calculus with intersection and union types. In Logic for Programming, Ar-
tificial Intelligence, and Reasoning - 16th International Conference, LPAR-
16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers, pages
173–191, 2010.

[Dun12] Joshua Dunfield. Elaborating intersection and union types. In Proceed-
ings of the 17th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’12, pages 17–28. ACM, 2012.

[Epi16] The Epigram Programming Language. https://code.google.com/

archive/p/epigram/, 2016. [Online; accessed 2-september-2016].

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defin-
ing logics. J. ACM, 40(1):143–184, 1993.

[Idr16] The Idris Programming Language. http://www.idris-lang.org/, 2016.
[Online; accessed 2-september-2016].

A Realizability Interpretation for Intersection and Union Types 19

[Isa16] The Isabelle Proof Assistant. https://isabelle.in.tum.de/, 2016. [On-
line; accessed 2-september-2016].

[LE85] Edgar G. K. Lopez-Escobar. Proof functional connectives. In Methods in
Mathematical Logic, volume 1130 of Lecture Notes in Mathematics, pages
208–221. Springer-Verlag, 1985.

[LR07] Luigi Liquori and Simona Ronchi Della Rocca. Intersection typed system
à la Church. Information and Computation, 9(205):1371–1386, 2007.

[Min89] Grigori Mints. The completeness of provable realizability. Notre Dame
Journal of Formal Logic, 30(3):420–441, 1989.

[MPS86] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for
recursive polymorphic types. Information and Control, 71:95–130, 1986.

[MR72] Robert K Meyer and Richard Routley. Algebraic analysis of entailment I.
Logique et Analyse, 15:407–428, 1972.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
[Pot80] Garrel Pottinger. A type assignment for the strongly normalizable λ-terms.

In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 561–577. Academic Press, 1980.

[Pra71] Dag Prawitz. Ideas and results in proof theory. In Proceedings of the
Second Scandinavian Logic Symposium. North-Holland, 1971.

[PT94] Benjamin C. Pierce and David N. Turner. Simple type-theoretic founda-
tions for object-oriented programming. Journal of Functional Program-
ming, 4(2):207–247, 1994.

[Rey96] John C. Reynolds. Design of the programming language Forsythe. In
O’Hearn and Tennent, editors, Algol-like Languages. Birkhauser, 1996.

[Rey98] John C. Reynolds. Theories of Programming Languages. Cambridge Uni-
versity Press, 1998.

[Ron02] Simona Ronchi Della Rocca. Intersection typed lambda-calculus. Electr.
Notes Theor. Comput. Sci., 70(1), 2002.

[WDMT02] Joe B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak. A
calculus with polymorphic and polyvariant flow types. J. Funct. Program.,
12(3):183–227, 2002.

[WH02] Joe B. Wells and Christian Haack. Branching types. In ESOP, volume 2305
of Lecture Notes in Computer Science, pages 115–132. Springer-Verlag,
2002.

