
HAL Id: hal-01365108
https://hal.archives-ouvertes.fr/hal-01365108v2

Submitted on 22 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QP-based Adaptive-Gains Compliance Control in
Humanoid Falls

Vincent Samy, Karim Bouyarmane, Abderrahmane Kheddar

To cite this version:
Vincent Samy, Karim Bouyarmane, Abderrahmane Kheddar. QP-based Adaptive-Gains Compliance
Control in Humanoid Falls. ICRA: International Conference on Robotics and Automation, May 2017,
Singapour, Singapore. pp.4762-4767, �10.1109/ICRA.2017.7989553�. �hal-01365108v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49340808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01365108v2
https://hal.archives-ouvertes.fr


QP-based Adaptive-Gains Compliance Control in Humanoid Falls

Vincent Samy1, Karim Bouyarmane2, and Abderrahmane Kheddar1

Abstract— We address the problem of humanoid falling with
a decoupled strategy consisting of a pre-impact and a post-
impact stage. In the pre-impact stage, geometrical reasoning
allows the robot to choose appropriate impact points in the
surrounding environment and to adopt a posture to reach them
while avoiding impact-singularities and preparing for the post-
impact. The surrounding environment can be unstructured and
may contain cluttered obstacles. The post-impact stage uses
a quadratic program controller that adapts on-line the joint
proportional-derivative (PD) gains to make the robot compliant
–to absorb impact and post-impact dynamics, which lowers
possible damage risks. This is done by a new approach incor-
porating the stiffness and damping gains directly as decision
variables in the QP along with the usually-considered variables
of joint accelerations and contact forces. Constraints of the QP
prevent the motors from reaching their torque limits during
the fall. Several experiments on the humanoid robot HRP-4 in
a full-dynamics simulator are presented and discussed.

I. INTRODUCTION

In order to effectively make use of humanoid robots in
real-life applications such as daily home services1, large
scale manufacturing2, or disaster response scenarios exem-
plified by the DARPA Robotics Challenge (DRC), it is
mandatory to properly address the robot falling risk and to
attenuate as much as possible the damage inherent to falling.
It is indeed widely accepted that (i) even if the environment is
well structured and even if we devote advanced strategies to
walking, a humanoid robot will fall; and (ii) we are not able
to list all the possible cases and situations where this will
occur. A general common sense approach that accounts for
the humanoid falling event would ideally operate as follows:
(a) devise strategies to avoid falling in the first place;
(b) if falling cannot be avoided in (a), or, for some reasons

the robot must fall on purpose, then, if the robot is
in servo-on, reduce as much as possible the damage
resulting from the fall;

(c) when the two previous solutions are not applicable, i.e.
if the robot is no more under control, it is better to
simply resort to an extra shock absorbing system, such
as an airbag, that can be triggered independently from
the robot embedded control board.

In [1], we proposed a falling strategy for the case/step (b)
above consisting of:

• A taxonomy to choose appropriate falling postures to
adopt when falling is detected;

• Active reshaping, during which PD gains are high, to
meet the impact in the best possible posture;

• Impact absorption by reducing the PD gains.
The above respective high and low PD gains values

were manually ad-hoc tuned in [1]. The contribution of

1V. Samy and A. Kheddar are with CNRS - University of Montpellier
LIRMM, 34000 Montpellier France vincent.samy@lirmm.fr

2 K. Bouyarmane is with University of Lorraine - INRIA - CNRS LORIA,
54600 Villers-lès-Nancy, France

1www.projetromeo.com
2www.comanoid.eu

the present paper is a method to tune them automatically
in an adaptive way. Our novel idea consists in integrating
the gain adaptation problem directly into the multi-objective
QP formulation. This way, we can benefit from the on-
line capabilities of the QP control approach –which has
been widely adopted for controlling humanoid robots, and
at the same time use the remaining “degrees-of-freedom” of
the control for other tasks that can appear to be useful or
necessary during falling, such as posture and CoM tasks as
will be demonstrated later.

The rest of the paper is organized as follows. Section II
reviews the related work in humanoid falling. Section III
introduces the notation and hypotheses used throughout the
paper. The two components of our approach are detailed in
Sections IV and V. Section IV describes the pre-impact stage
with the geometrical search of appropriate landing points and
posture reshaping to prepare the impact. Section V deals
with the post-impact stage detailing the joint motor PD gain
computation inside the QP. Section VI presents simulation
experiments in Gazebo on the humanoid robot HRP-4 to
validate our approach, and Section VII concludes the paper
with future work.

II. RELATED WORK

We chose to focus on two main problems.
The first one is related to the strategy the robot should

apply when falling in a cluttered environment. This kind
of problem has been addressed in [2]. Based on inertia
reshaping principles, they suggested three ways of modifying
the direction of the fall. The concern is to avoid falling
on/into a human.

The second problem we treat in this paper focuses on
implicit damage reduction at the impact. This has been stud-
ied in [3], [4], [5], [6]. They proposed an off-line nonlinear
method and an on-line solution to minimize the impact at
landing for front and back falls. To prevent damaging the
actuators, they are turned off just before the impact and
turned on again right after. They also added an extra soft
skin on the robot in order to absorb part of the shock.

In [7], [8] an on-line solution for front fall from a walking
state is proposed. The idea is to track a CoM trajectory which
aims at minimizing the impact.

Fig. 1: Examples of falling in a cluttered environment.



Another method proposed in [9] consists in making the
robot fall on its backpack that prevents the damage.

Finally, a tripod fall has also been considered in [10]. The
idea comes from the simple observation that the earlier the
impact occurs, the lower the kinetic energy is. So the method
aims at breaking the fall as soon as possible by having the
two hands and a foot touch the ground.

In very recent work [11], Ha and Liu presented an off-line
strategy where an algorithm that finds a sequence of contacts
minimizes the damage of a humanoid robot fall. [12] and [13]
proposed a strategy based on an active cover.

In our previous work [1] we made a taxonomy of singular
falls and proposed a simple fall strategy based on geometrical
properties. We also tuned the PD gains of the motors to
experimental values that allowed compliance at the impact.

Our contribution with respect to that previous work and
to the listed state-of-the-art3 is twofold: First, we extend
the fall strategy to handle any fall direction in a cluttered
environment, with more than just a posture task for falling
on a flat floor as was the case in [1], see Fig 1. Secondly, we
propose a novel method to automatically tune the PD gains
within the whole-body QP controller instead of manually
fixing experimentally drawn values as was the case in [1].

III. TERMINOLOGY AND NOTATION

The mathematical notation we use is mostly the same as
in [14] and [15]. Bold characters are vectors. If A and B are
two spatial frames, then:

• BEA denotes the rotation from A to B.
• BrA denotes the position of the origin of B in A.
• u denotes a 3× 1 column vector in world coordinates.

In the notation r,b,pX0, the left-hand side superscripts and
right-hand side subscript mean that the transformation is
made from 0 to the point p of body (link) b of the robot r (i.e.
p ∈ b ∈ r). 0 is the index denoting the world. r is for robot
and e for environment. Leaving left-hand side superscripts
unspecified such as in the notation u implicitly stands for
0u. Finally, right-hand side superscripts will eventually be
used for complementary information.

IV. GLOBAL FALLING STRATEGY

Fall control can be divided into four main parts: 1) Fall
detection, 2) Environment analysis, 3) Pre-impact strategy
execution, and 4) Post-impact strategy execution.

In step 1) a fall detection system must be constantly
running in parallel to the performed tasks as a background
process. The system should be able to stop the execution
of the current tasks and switch to the pre-impact strategy
execution whenever necessary. Note that this step might also
include a fall recovery mode if possible.

In step 2) the robot performs an analysis of the situation
(we exclude having humans or valuable items in the sur-
roundings) in order to process useful information such as
estimating the current pose of the robot and building a map
of the surrounding’s planar surfaces. Step 2) is out of this
paper’s scope. We shall consider it as a black-box module
and assume that the environment, the robot state, and the
available environment falling surfaces are known. This is a
plausible assumption considering the advances made recently
in SLAM technology [16].

3https://icra2016wsfallingrobots.wordpress.com/
program/

When the fall is detected, the controller goes through
different states at each iteration loop in step 3), as follows:

(i) estimate the fall direction,
(ii) search landing points,

(iii) update falling tasks,
This step is detailed in subsections IV-A, IV-B, and IV-C.

At step 4), the robot has touched down. This step is
considered independently from the previous steps, although
the same whole-body controller is essentially used for both,
as detailed in Section V. Additionally, the one we propose
for this step will ensure an active compliance of the actua-
tors/joints after the impact has occurred.

In this work, since the robot is under multiple tasks and
constraints, we rely on a multi-objective weighted quadratic-
program-based (QP) controller. The highest priority level is
the QP constraints that must be satisfied without compro-
mise:

• Joint limits, joint velocity limits, and torque limits
• Self-collision avoidance,
• The equation of motion and the physics model.

The second priority level (lowest level) are the tasks that are
formulated as set-point tasks and combined in a weighted
sum to form the objective function of the QP. A set-point
task is defined as the minimization of the following quadratic
cost:

Esp =
1

2
‖SM (kpg + kvġ + Jg q̈ + J̇g q̇)‖2 , (1)

where SM is a selection matrix, kp and kv are proportional
and damping task gains (not to be confused with the low-
level joint PD gains that will be computed in Section V), g
is the task error and Jg is its Jacobian. More details on the
controller can be found in [14].

In the following three subsections, we give further details
on the three states described in step 3).

A. Direction of the fall
The fall direction is derived from the center of mass (CoM)

trajectory. Let pcrt0 be the CoM projected on the plane D0

normal to the gravity and passing through a point on the
ground, at time t. At each time step the fall direction is
computed as

df =
pcrt0 − pcrtd0
‖pcrt0 − pcrtd0 ‖

, (2)

where td is the fall detection time and t > td.

B. Search of landing points
In order to choose the landing/impact points, we first

need to know the potential impact surfaces. For a humanoid
robot, the impact points are the hands, feet and knees [1].
We also assume here that a SLAM routine coupled with
appropriate segmentation algorithms can return the available
planar surfaces in the environment, as in [16]. In simulation
however this information is readily available.

To lower damage risks resulting from the fall, we need to
decide where to locate the impact points. These should be
reachable, meaning that the robot can change its configura-
tion in order to meet the desired landing spots during the
falling time.

We approximate the robot as rigid stick that is falling, see
Fig. 2 (green model on the figure). This stick lives in the



Fig. 2: Illustration of the search of possible impact points.
The yellow arrow is the fall direction, the green lines
represent a simplified stick model. The dotted arc is its
trajectory. The transparent red plane is the plane where an
impact surface exists. The transparent green ellipsoid is a
gross representation of the polyhedron representing the arm’s
reachable workspace. Black and white points are the MPIP
and BIP respectively. The red line represents the minimum
distance between MPIP and BIP.

plane defined by a contact point (if any, or a projection of
the nearest point from feet), the fall direction vector and the
gravity vector. The length of the stick is set to the distance
between the latter point and the middle of the two shoulders.
Both the plane of motion of the stick and its length are
adjusted at each time step. The trajectory of this stick in
the defined plane is a 2D circle. The shoulders’ trajectory
are directly computed from it and the desired whole-body
posture of the robot is then generated aiming for the hands
to be on their respective shoulders’ trajectory.

Finally, we compute all the intersections between shoul-
ders’ trajectory and the planes of the surfaces returned by
step 2). We call these points most probable impact points
(MPIP) hereafter. Fig. 2 represents one such MPIP as a black
point. These points may or may not be on the environment
surfaces (in the example of Fig. 2, the MPIP does not belong
to the environment), this is why we also need to compute
for each MPIP its closest point belonging to its respective
environment surface. These closest points on the environment
surfaces are called Best Impact point (BIP) (Fig 2 represents
the BIP corresponding to the MPIP as a white point).

We now need to make a choice between the different
available BIP. First, the arms’ workspace gives two polyhedra
which are split in two by the coronal plane, leading to
one polyhedron for reachable front fall points and one for
reachable back fall points. We also compute the centroid of
each polyhedron. Note that these are calculated off-line only
once and are associated with the geometric model of the
robot. Placing the centroid on the MPIP, the BIP is selected
if the segment of line between the MPIP and the BIP is inside
the given polyhedron.

In case more than one BIP satisfies the condition, then the
highest BIP (highest vertical coordinate) is chosen because
the impact happens sooner and less potential energy is
converted into kinetic energy before the impact. In case none

Fig. 3: The four possibilities for the vector orientation task.
The blue vectors are the two possible body vector r,bu. The
yellow vector is the fall direction and the two orange vectors
are the possible targets utarget.

of the points are inside the polyhedron, the BIP having the
minimum distance to its respective MPIP is chosen.

C. Reshaping tasks
To make the robot directly face the impact environment

(front fall) or directly oppose it (back fall), since those two
falls are the safest falls [1], we propose to use a vector
orientation task which aims to align two vectors, one of
which is linked to the torso and the other to the environment.
A posture task is also included to help avoiding singular
falls as defined in [1] and to bend the knees to lower the
CoM. Finally, end-effector position tasks are used to reach
the desired impact points. All of these task are run and their
targets updated at each control loop. To implement a new
set-point task (1), the task error g, the task Jacobian Jg and
the time-derivative of the task Jacobian J̇g are needed. We
describe these derivations in the next subsections.

1) Vector orientation task: Let utarget be the desired goal
unit vector and r,bu a unit vector in robot body coordinates.
The task error is given by:

gvo = utarget − 0Er,b
r,bu ,

= utarget − 0u , (3)

where 0Er,b is the rotation from the body b to the world. As
the target vector is considered as fixed in the world, only the
time-derivative of the robot vector is considered:

0u̇ = 0Er,b[
r,bω × r,bu] ,

= −0Er,b(
r,bu×)r,bJ ang

r,b q̇ ,

= Jgvo
q̇ . (4)

Here, r,bω is the angular velocity of the body in body
coordinates and r,bJ ang

r,b is the angular part of the body
Jacobian in body coordinates. Differentiating one more time,
the time-derivative of the task Jacobian is then:

J̇gvo
= 0Er,b[

r,bω × (r,bω × r,bu) + r,bavp,ang × r,bu] , (5)

where r,bavp,ang = r,bJ̇ ang
r,b q̇ is the angular part of velocity-

product of the acceleration in body coordinates [15].
The targeted vector is set so that utarget ∈ D0 and

utarget · df = 0 (Fig. 3). r,bu is chosen perpendicular to the
torso sagittal plane in the torso coordinates. There are four



possible solutions so both vectors must be chosen depending
on whether a front fall or a back fall is desired.

2) Relative distance task: Ideally, we would like that
multiple impacts occur all at the same time, but this is
difficult to achieve in practice because it requires estimation
of the exact impact time. A solution is to manipulate the
distance between the desired environment impact surfaces
and the robot impacting bodies so that the relative error
of the distances between two pairs of surface-impacting
bodies is zero. One of the advantages of this task is that
it handles different heights of surfaces. We remind here that
the considered surfaces are planar so the time-derivatives of
their normals are zero. Let r,b1,p1r0 be the closest point of
a body b1 to a surface s1 and r,b2,p2r0 the closest point of a
body b2 to a surface s2. Let e,s1,p1r0 and e,s2,p2r0 be points
on s1 and s2 respectively. The distance of a pair of impact
body and surface is:

di = ‖r,bi,pir0 − e,si,pir0‖, i = 1, 2. (6)

Here, we do not want to consider the minimal distance but
rather a distance along an axis, which is more useful in
our application. The task is designed to modify the distance
between robot bodies and surface planes, so the distance
along the normal of a plane is more relevant. This method
controls only the motion along the normal of the plane, while
the motion along the plane itself is left free and will be
handled by a position task for reaching the desired impact
points.

Let now u1 and u2 be unit vectors linked to s1 and s2
respectively. The task error is:

grd = d1 · u1 − d2 · u2 . (7)

The surfaces s1 and s2 are considered fixed so the time-
derivatives of ui and e,si,pir0 is zero (i = 1, 2). Note that if
this assumption is false, then it means that the robot would
fall on a moving environment. It is possible to adapt the tasks
to handle such cases but we will not consider them here. The
time-derivative of g is given by:

ġrd = v1 · u1 − v2 · u2 ,

= (uT1 J
lin
r,b1,p1 − u

T
2 J

lin
r,b2,p2)q̇ ,

= Jgrd q̇ , (8)

where J lin
bi,pi

is the linear part of the body Jacobian of point pi
associated to body bi (i = 1, 2). The Jacobian time-derivative
is:

J̇grd = uT1 J̇
lin
b1,p1 − u

T
2 J̇

lin
b2,p2 . (9)

3) End-effector position task: The end-effector position
task is a common task [14]. The points on the hands to
control are the closest points to their respective chosen BIP.
We also mention that the task should be written in the surface
frame so that only the x and y coordinates are controlled by
the task. The z-coordinate (normal to the surface) is handled
by the relative-distance task above.

V. POST-IMPACT STRATEGY

The pre-impact process described in section IV shapes the
robot into a relatively “compliable” posture just before the
impact. The impact is produced whenever the feet, knees
or hands are about to touch down. From that instant, the
controller behaves as an active compliance for lowering the
damage, using a single QP whole-body controller.

In position-controlled humanoids, the low-level actuator
controller consists in a proportional-derivative (PD), which
leads to the simplified governing equation:

Hq̈ +C − JTGλ = τ = Ke+Bė , (10)

where H ∈ RNdof×Ndof is the robot inertia matrix, C ∈
RNdof×1 the gravity and Coriolis vector, J ∈ R6Nc×Ndof the
contact Jacobian, G ∈ R6Nc×NcNg the matrix of friction
cone generators, and τ the generalized forces (comprising
the actuation torques for the actuated joints and zero entries
for the non-actuated ones). The parameters K ∈ RNdof×Ndof

and B ∈ RNdof×Ndof are the diagonal matrices of PD gains,
e = qref − q and ė = q̇ref − q̇ are respectively the errors
in joint position and velocity. qref is set to the current
configuration just before the impact and q̇ref is set to zero.
Note that in the case of joints without motors (e.g. the
free-floating base) the corresponding entries in the diagonals
of K and B are zeros. We denote K and B the vectors
containing the diagonal entries of K and B respectively,
i.e. K = diag(K) and B = diag(B). Ndof, Nc and Ng
are respectively the number of degrees of freedom (dof) of
the system, the number of contact points and the number
of generators of the linearized friction cones. We also define
Nm as the number of motors. K and B have constant values
that encode the default high stiffness behavior of the motors.
These values are generally very high to make the motors
track the reference values as fast as possible accounting
for perturbations, inertia –and more general dynamics, while
avoiding overshooting. In order to comply, we need to relax
and adapt these values.

Our novel idea is to use a multi-objective QP formulation
in the X = (q̈,λ,K,B) decision vector.

First, to handle the impact/contact, a constraint is added so
that at the contact points, the velocity is zero. This condition
is realized with the following constraints [17]:

SM

(
v − v
∆T

≤ J q̈ + J̇ q̇ ≤ v − v
∆T

)
, (11)

where SM is a n× 6 (n ≤ 6) selection matrix, v and v are
the minimal and maximal body velocity.

The primary objective of a compliant behavior is the mo-
tor’s constraints. They are modeled as box torque constraints
and added to the QP as follows

τ ≤ Ke−Bė ≤ τ . (12)

The other box constraints are the bounds over the param-
eters in X: 

q̈ ≤ q̈ ≤ q̈
λ ≥ 0
K ≥ 0
B ≥ 0

. (13)

Important note: in post-impact, constraints on joint limits
and velocity limits are purposely not inserted as constraints
in the QP. The reason for this is that we have no control
over the impact behavior. Indeed, the impact is imposed
to the robot in a very limited time. If it is large enough,
the generated velocity would make the QP fail to find a
feasible solution so the robot would remain stiff. Thus, the
main advantage of not taking limits as constraints is that
the robot will always comply until it has fully absorbed the
post-impact dynamics or until it reaches a mechanical stop



(joint limit). On the opposite, in case the impact is not large
enough, nothing guarantees that the robot will not reach a
joint limit. In order to ensure that the joints are kept inside
their limits, a basic strategy would be to give high weight and
stiffness to a posture task instead. This amounts to changing
the ‘priority’ level, i.e. shifting the joint limit constraints
from the constraint set to the cost function in the QP.

Finally, the QP writes as follow:{
min

q̈,λ,K,B

∑
k ω

sp
k E

sp
k + ωλ‖λ‖2 + ωG(‖K‖2 + ‖B‖2) ,

s.t. (10), (11), (12), (13)
(14)

where k is an index over the tasks (posture, CoM). The
number of parameters is equal to dim(X) = NX = Ndof +
NcNg + 2Nm, which is almost three times the number
of variables of the more usual form of the QP used for
general-purpose control (i.e. without K and B). In order
to improve the performance we chose to restrain the gain
adaptation only to a selected set of joints directly involved
in impact absorption. We propose to select all the motors in
the kinematic chain between the end-effector contact points
and the root of the kinematic chain of the robot. For example,
if a contact is on the hand (actually the wrist on the HRP-4
robot), then the motors of the elbow and the shoulder are
retained.

Once the joints are selected, we just need to extract their
corresponding lines in the matrices H and JTG and in the
vectors C and τ . The other joints need also to be consistent
with the dynamics and the torque limits so a new constraint
is added to the QP. The constraints (10) and (12) are removed
and the following constraints are added to the QP (14): HS q̈ +CS − (JTG)Sλ = KeS −BėS

τS ≤ KeS −BėS ≤ τS
τNS ≤ HNS q̈ +CNS − (JTG)NSλ ≤ τNS

(15)

with the subscript S (resp. NS) designating the matrix/vector
of selected (resp. non-selected) rows.

Note that both the pre-impact and post-impact stages can
be performed. As all bodies are not impacting at the same
time (in a front fall the knees generally impact way before
the hands), this QP form allows to perform both pre-impact
and post-impact in parallel. (At knees’ impact, the legs are
set to the complying behavior whereas the upper part of the
robot continues its pre-impact stage).

VI. SIMULATIONS

To demonstrate the capabilities of the adaptive-gain QP,
we performed several falling simulations of the HRP-4 robot
in the Gazebo simulator (see companion video).

We focus in this section on the very first experiment
consisting in dropping the robot from a given height (1m)
and letting it land on its feet (at impact time t ' 0.45s
with a velocity of 4.43m/s). Four methods are compared 1)
keeping the robot’s stiff initial gains, 2) using predefined
static gains (as in [1]), 3) using zero gains (shutting down
the robot, in servo-off mode) and finally 4) adaptive gains
(our proposed method). This experiment illustrates the post-
impact gain adaptation strategy part of the paper. The pre-
impact geometric reshaping part is illustrated along with the
gain adaptation in all the other experiments of the video.

In order to back up our claim that the adaptive QP
complies with the post-impact dynamics and lowers the risk

of damaging the robot, we chose to look at two qualifiers: (i)
the IMU acceleration (in the waist) (Fig. 6a), and (ii) the joint
positions (Fig. 6b). As the floating-base (waist) acceleration
is proportional to the applied external forces, and as there
are many contacts, we found the IMU acceleration to be a
good indicator of how much total impact/contact force is
applied on the structure. We use the IMU acceleration as
damage quantification comparison quantity: the less acceler-
ation there is, the better and the safer for the robot.

Let us first analyse the data from our proposed approach
alone (Figs. 5). We can see that the damping coefficient
increase very fast untill 0.6s. This is mostly due to the fact
that right after the impact, the error is almost null whereas
the velocity is high, hence the solver is mostly using the
damping gains B (Fig. 5). To understand the high variation
of the damping gain around 0.6s (from 60 to 0Nms/rad), we
note in Fig. 4 that around 0.6s the torque’s sign (minus) is
unchanged. At this stage, the joint velocity is switching sign
(from plus to minus). Considering the eq. τ = Ke + Bė
we can see that in order to have a negative torque with a
positive velocity error (ė = 0− q̇) we need B < 0. But the
constraint B ≥ 0 enforces the non-negativity of the damping
coefficient resulting in a zero value for it.

Fig. 6b shows that using the predefined static fixed PD
gains or turning off the motors could be extremely risky
since joint limits are reached fast. On the other hand, keeping
the initial (stiff) gains does not make the robot reach the
mechanical stops but leads to very high jerk and IMU
acceleration (6a) at the impact, which is a prediction of a high
impact force. The proposed adaptive QP approach avoids all
these issues. It has a low jerk and a low acceleration profile
while still staying under the joint limit and not reaching any
mechanical stop at the joints. Fig. 4 shows that the adaptive
QP keeps the torques under their limits.

VII. CONCLUSION AND FUTURE WORK

We proposed an original way of addressing falls in a
cluttered environment. First, an active reshaping fall strategy
prepares the robot to the impact from the moment the fall
is detected and up to just before the impact occurs. Then,
during the post-impact stage, a QP controller allows the robot
to become compliant in order to absorb the impact energy
while satisfying its structural constraints.

In order to implement this strategy on a real robot, two
modules are necessary and were assumed as available black-

-250

-200

-150

-100

-50

0

ta
u 

(i
n 

N
.m

)

time (in s)

100
150
200

Fig. 4: Evolution of the torque for the three right leg pitch
joints (hip, knee, ankle) resulting from our adaptive QP
method. The dashed vertical line is the impact time. Dashed
horizontal lines are torque limits.



0

50

100

150

200

250

300
K

 (
in

 N
.m

/r
ad

)

(a)

0

20

40

60

0,4 0,6 0,8 1,0 1,2

B
 (i

n 
N

.m
.s

/r
ad

)

time (in s)

Hip
Knee
Ankle
Impact time

(b)

Fig. 5: Evolution of: (5a) the stiffness, and (5b) damping
gains for the right leg pitch joints resulting from our QP
adaptive method. The dashed line is the impact time.

-100

0

100

200

300

400

500

IM
U

 z
-a

xi
s 

(i
n 

m
/ŝ

2)

Stiff
Oneshot
Zero
Adaptive_qp
Impact time
Mechanical stop
Mechanical stop

(a)

0,5

1

1,5

2

2,5

0,4 0,5 0,6 0,7

K
ne

e 
an

gl
e 

(i
n 

ra
d)

Time (in s)

Knee_limit

(b)

Fig. 6: (6a) z-axis of the IMU; (6b) right knee position. Four
methods are represented. Stiff: default gains, Oneshot: fixed
gains as in [1], Zero: zero gains, Adaptive qp: adaptive gains.
The black dotted line is the joint limit of the knee and the
colored dotted lines represent mechanical stops (joint limits).

boxes: robot state estimation and landing surfaces candidates
computation, both can be provided by SLAM in future work.

For now, sliding contacts are not perfectly handled in the
QP. This is a challenging problem that we are currently
working on for general multi-contact planning and control
purposes. A temporary solution we implemented was to
release the tangent space dof of the contacts to allow sliding.

Finally, fall detection itself needs to be improved. Many
methods have been suggested, but all of them fail in several
cases. In real situation, falling extends beyond what the
current state-of-the-art can detect. For example, falling does
not necessarily restrict to the notion of loss of balance
because the latter may be dictated by a task to achieve. In all
generality, it should be thought of as the loss of task-based
controllability, but this novel concept is out of this paper’s
scope and needs to be researched as a new direction.

REFERENCES

[1] V. Samy and A. Kheddar, “Falls control using posture reshaping and
active compliance,” in IEEE-RAS Int. Conf. on Humanoids, 2015, pp.
908–913.

[2] A. Goswami, S.-k. Yun, U. Nagarajan, S.-H. Lee, K. Yin, and
S. Kalyanakrishnan, “Direction-changing fall control of humanoid
robots: theory and experiments,” Autonomous Robots, vol. 36, no. 3,
pp. 199–223, 2014.

[3] K. Fujiwara, F. Kanehiro, S. Kajita, K. Kaneko, K. Yokoi, and
H. Hirukawa, “UKEMI: falling motion control to minimize damage to
biped humanoid robot,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2002, pp. 2521–2526.

[4] K. Fujiwara, F. Kanehiro, S. Kajita, and H. Hirukawa, “Safe knee
landing of a human-size humanoid robot while falling forward,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2004, pp. 503–
508.

[5] K. Fujiwara, S. Kajita, K. Harada, K. Kaneko, M. Morisawa, F. Kane-
hiro, S. Nakaoka, and H. Hirukawa, “Towards an optimal falling
motion for a humanoid robot,” in IEEE-RAS Int. Conf. on Humanoid
Robots, 2006, pp. 524–529.

[6] ——, “An optimal planning of falling motions of a humanoid robot,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007, pp.
456–462.

[7] K. Ogata, K. Terada, and Y. Kuniyoshi, “Falling motion control for
humanoid robots while walking,” in IEEE-RAS Int. Conf. on Humanoid
Robots, 2007, pp. 306–311.

[8] ——, “Real-time selection and generation of fall damage reduction
actions for humanoid robots,” in IEEE-RAS Int. Conf. on Humanoids,
2008, pp. 233–238.

[9] S.-H. Lee and A. Goswami, “Fall on backpack: Damage minimization
of humanoid robots by falling on targeted body segments,” ASME J.
of Computational and Nonlinear Dynamics, vol. 8, no. 2, pp. 1–10,
2013.

[10] S.-k. Yun and A. Goswami, “Tripod fall: Concept and experiments of
a novel approach to humanoid robot fall damage reduction,” in IEEE
Int. Conf. on Robotics and Automation, 2014, pp. 2799–2805.

[11] S. Ha and C. K. Liu, “Multiple contact planning for minimizing
damage of humanoid falls,” in IEEE/RSJ Int. Conf. on Intelligent
Robotics and Systems. IEEE, 2015, pp. 2761–2767.

[12] J. Lee, W. Choi, D. Kanoulas, R. Subburaman, D. G. Caldwell, and
N. G. Tsagarakis, “An active compliant impact protection system for
humanoids: Application to walk-man hands,” in IEEE-RAS Int. Conf.
on Humanoids, 2016.

[13] S. Kajita, R. Cisneros Limon, M. Benallegue, T. Sakaguchi,
S. Nakaoka, M. Morisawa, and K. F. Kaneko, Kenji, “Impact accel-
eration of falling humanoid robot with an airbag,” in IEEE-RAS Int.
Conf. on Humanoids, 2016.

[14] J. Vaillant, A. Kheddar, H. Audren, F. Keith, S. Brossette, A. Escande,
K. Bouyarmane, K. Kaneko, M. Morisawa, P. Gergondet, E. Yoshida,
S. Kajita, and F. Kanehiro, “Multi-contact vertical ladder climbing
with an HRP-2 humanoid,” Autonomous Robots, vol. 40, no. 3, pp.
561–580, 2016.

[15] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[16] R. F. Salas-Moreno, B. Glocken, P. H. J. Kelly, and A. J. Davison,

“Dense planar slam,” in 2014 IEEE Int. Symposium on Mixed and
Augmented Reality (ISMAR), Sept 2014, pp. 157–164.

[17] J. Vaillant, K. Bouyarmane, and A. Kheddar, “Multi-character physical
and behavioral interactions controller,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. PP, no. 99, pp. 1–1, 2016.


