
HAL Id: hal-00340122
https://hal.archives-ouvertes.fr/hal-00340122

Submitted on 4 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based Adaptation of Behavioural Mismatching
Components

Carlos Canal, Pascal Poizat, Gwen Salaün

To cite this version:
Carlos Canal, Pascal Poizat, Gwen Salaün. Model-based Adaptation of Behavioural Mismatching
Components. IEEE Transactions on Software Engineering, Institute of Electrical and Electronics
Engineers, 2008, 34 (4), pp.546–563. �10.1109/TSE.2008.31�. �hal-00340122�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49338813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00340122
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Model-Based Adaptation of Behavioural

Mismatching Components

Carlos Canal, Pascal Poizat, and Gwen Salaün

C. Canal is with LCC, Universidad de Málaga, Spain.

P. Poizat is with IBISC FRE 2873 CNRS, Université d’Évry Val d’Essonne and ARLES project, INRIA, France.

G. Salaün is with LCC, Universidad de Málaga, Spain.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

Abstract

Component-Based Software Engineering focuses on the reuseof existing software components. In practice, most

components cannot be integrated directly into an application-to-be, because they are incompatible. Software Adaptation

aims at generating, as automatically as possible, adaptorsto compensate mismatch between component interfaces, and

is therefore a promising solution for the development of a real market of components promoting software reuse. In this

article, we present our approach for software adaptation which relies on an abstract notation based on synchronous

vectors and transition systems for governing adaptation rules. Our proposal is supported by dedicated algorithms that

generate automatically adaptor protocols. These algorithms have been implemented in a tool, calledAdaptor, that

can be used through a user-friendly graphical interface.

Index Terms

Software components, interfaces, mismatch, composition,software adaptation, adaptation contracts, vectors, tran-

sition systems, synchronous products, Petri nets, tools.

I. I NTRODUCTION

Component-Based Software Engineering (CBSE) aims at building new systems by assembling existing software

components, which would jointly realize the system desiredfunctionality. However, one of the main issues raised

by this paradigm is that in practice we cannot expect that anygiven software component perfectly matches the

needs of a system where it is trying to be reused, nor that the components being assembled fit perfectly one another.

Reusing software often requires a certain degree of adaptation [1], [2], especially in presence of legacy code. To

deal with these problems,Software Adaptation[3], [4] is emerging as a new discipline, concerned with providing

techniques to arrange already developed pieces of softwarein order to reuse them in new systems, accommodating

the potential mismatches arising from their composition.

Software Adaptation promotes the use ofadaptors, specific computational entities developed for guaranteeing that

a set of mismatching components will interact correctly. Software adaptation is different from software evolution,

component customization, or adaptive middleware.Software evolutionaims at modifying the code of the components,

for instance to take a new functionality into account, whereas adaptation works in a non-intrusive way, that is without

modifying the code of the components, which is important dueto their black-box nature. In the case ofcustomization,

the end-user may adjust the component behaviour by tuning a fixed set of component parameters, which have been

considered and defined at design time by the developer. Finally, dedicatedadaptive middleware[5] can be used to

put the adaptation process into action, once an adaptor model has been obtained. In this sense, adaptive middleware

complements software adaptation, which deals with adaptormodeling and synthesis, providing the means for the

actual implementation of the proposal.

CBSE postulates that a component must be reusable from its interface [6], which in fact constitutes its full technical

specification. The characteristics and expressiveness of the language used for interface description determines the

degree of interoperability we can achieve using it, and the kind of problems that can be solved. We distinguish several

levels of interoperability, and accordingly of interface description [2], [4], [7]: technical level (data encoding and

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

framework-related issues),signaturelevel (operation names and types),behaviourallevel (interactionprotocols),

quality of servicelevel (non-functional properties such as security or efficiency), andsemanticlevel sometimes

referred as conceptual level (functional specification of what the component actually does). At each one, mismatch

may occur and have to be corrected. Currently, industrial component models, by using Interface Description

Languages (IDLs), are able to solve most of the technical interaction problems, but they fail to address mismatch

at the higher levels. Numerous approaches have been presented for extending component interfaces with protocols

(see, for instance, [8]–[13]) thus resulting in what we callBehavioural IDLs (BIDLs). This interoperability level is

essential because, even if components match from a signature point of view, their combination can lead to erroneous

behaviours or deadlock situations if the designer is not aware of their execution flows, and does not take them into

account while building the full system.

In this article, we propose a model-based adaptation approach focusing on mismatch appearing at the behavioural

level. Yet, since the component protocols are based on message exchange relative to the component operations, we

also address name mismatch at the signature level. The approach (see Fig. 1 for a graphical overview of it) takes

as input the behavioural interfaces of components to be adapted, and an adaptationcontract [4], that is an abstract

description of the constraints which must be respected to make the involved components work together. Given these

two elements, an adaptor protocol is generated in an automatic way.

Fig. 1. Overview of our model-based adaptation approach

The adaptation process begins with two (or more) componentsthat are not able —as they are— to interact suc-

cessfully (i.e., ending in correct termination states). To compensate suchmismatch, we propose to use synchronous

vectors as adaptation contract language to make explicit the interactions between components, possibly on different

message names. Our notation also allows the specification ofordering constraints on interactions, which enables

one to describe in an abstract way more complex adaptation scenarios. In order to generate adaptor protocols for

such contracts, we present in this article two algorithms that automate the adaptation process. The first one is

based on synchronous products, and the second one is based onPetri net encodings. Compared to the former,

the latter induces a higher computational complexity, but is able to reorder messages when necessary, and then

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

ensures a correct interaction when several components havethe messages exchanged in their protocols which are

not ordered correspondingly. Reordering is worked out desynchronising the message emission by one component

and the message reception in another one. When required, emitted messages are temporarily memorised until they

are used for effective interaction. This is why a formalism capable of representing memory, such as Petri nets, is

required. The adaptation techniques we present in this article have been implemented in a tool, calledAdaptor,

which has been applied to many non-trivial examples,i.e., examples where adaptor protocols could not have been

obtained by hand.

A preliminary version of this work has been presented in [14], and is extended here in several aspects: (i) in-

troduction to the Petri nets concepts used in our proposal, (ii) detailed descriptions and proofs of the adaptation

algorithms, (iii) presentation of theAdaptor tool, (iv) illustration on a more realistic and bigger case study from

the pervasive computing domain, and (v) an updated review and comparison with related work.

The remainder of the article is organised as follows. Section II formally introduces our component interface

model, and defines interface mismatch. Section III focuses on the adaptation contract notation. Section IV presents

a first approach to component adaptation based on synchronous products. Section V presents a second solution

which goes further, considering reordering through the encoding of contracts and behavioural interfaces into Petri

nets. Section VI gives an overview of theAdaptor tool. In Section VII, we survey the more advanced proposals for

behavioural software adaptation, and compare to them. Finally, Section VIII ends the article with some concluding

remarks.

II. I NTERFACES ANDM ISMATCH

In this section, we present first the model of interfaces through which components are accessed and used. Then,

we define the notion of interface mismatch that our approach addresses.

A. Component Interfaces

We assume that component interfaces are given using both a signature and a behavioural interface. Signature

interfaces usually correspond in component-based frameworks (e.g., CCM, .NET or J2EE) to operation profiles

described using an IDL,i.e., operation names associated with argument and return typesrelative to the data being

exchanged when the operation is called. Since we focus on thebehavioural level in this article, we omit in the

signature interfaces the elements relative to data exchange. This means that a signature is taken as a disjoint

set of provided and required operation names. Such abstractions from data exchange are often used in software

engineering,e.g., to check interface compatibility [11] or to perform component verification [10], [12]. Additionally,

we propose that behavioural interfaces are represented by means of Labelled Transition Systems (LTSs). Message-

based communication between components is therefore represented usingeventsrelative to the emission (denoted

using !) and reception (denoted using?) of messagescorresponding to operation calls.

However, taking data exchange into account is important to ensure full compatibility. So far, this can be supported

in our approach using additional messages as follows. The emission by a component of a messagelogin with two data

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

information,username andpassword, would be encoded by the sequence of eventslogin!.username!.password!

in the component LTS. Accordingly, the reception in a component of a messagelogin with two data information,

username and password, would be encoded by the sequence of eventslogin?.username?.password? in the

component LTS. Provided this encoding is performed as a pre-processing, and the adaptation contract takes the

additional messages into account, the protocols can be adapted, as demonstrated in [15] where we have applied

our adaptation techniques to Windows Workflow Foundation (WF) [16] which belongs to the .NET Framework 3.0

developed by MicrosoftR©. Related perspectives are further discussed in Section VIII.

Definition 1 (LTS):A Labelled Transition Systemis a tuple(A, S, I, F, T) where:A is an alphabet (set of events),

S is a set of states,I ∈ S is the initial state,F ⊆ S are final states, andT ⊆ S ×A× S is the transition function.

Final statescorrespond to correct service terminations in components.To support the correctness of the adaptation

process, we further assume that the initial state is also final (I ∈ F). The alphabet of the LTS is built on the

component signature. This means that for each provided operation p in the signature, there is a messagep and an

eventp? in the alphabet, and, for each required operationr, there is a messager and an eventr! in the alphabet.

Complementary events are denoted with the same name of message and opposite directions. Consequently, the

complementing function on events is defined as:e? = e!, ande! = e?.

LTSs are adequate models as far as user-friendliness and development of formal algorithms are concerned.

However, higher-level languages such as process algebras [17] can be used to define behavioural interfaces in a

more concise way. In a former version of this work [14], the sequential subset ofCCS [18] was used as BIDL.

Moreover,CCS descriptions of component behavioural interfaces can be easily translated into LTS models using

the operational rules defining the semantics of the formalism. In this article, since we focus on the adaptor model

generation, we only present and work using LTS models. In [15], the reader will find more details of how LTSs

can be extracted from component languages (namely, in this work, the Windows Workflow Foundation language),

and how an adaptor model can be transformed into a component language program.

Fig. 2. TheeMuseum application

Example 1:eMuseum (Fig. 2) is an added-value application whose objective is toaugment the visitors’ ex-

perience in museums by displaying, on their portable devices, information about seen pieces of art. We will use

this example throughout the article. Let us first begin with asimplified version of it.eMuseum is built using two

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

separately designed components: a room server (ROOM) and a Personal Digital Assistant application (PDA). On

the one hand,ROOM can be asked (query message) to send a list of artifacts present in the room (list message)

and is then informed about one being selected (choice message).ROOM may afterwards be requested to send

information about this artifact either in textual (pdf) or video (mpeg) format using respectively thetextrequest and

videorequest messages. The files themselves are sent with thetext or thevideo message. On the other hand,PDA

first issues a resource discovery query, then may be used to select a given item from a list of available resources,

and the resource is eventually displayed (mpeg or pdf). PDA can be also turned off using theshutdown message.

The LTSs for these two components are given in Figure 3, with initial and final states respectively marked using

bullet arrows (e.g., state0 in PDA) and hollow states (e.g., states0 and4 in PDA). Transitions sharing the same

source and target states are represented using a single transition and the list of the possible labels.

query?

video!

choice?list!

videorequest?

text! textrequest?

0 1

5

4

32

(a) ROOM LTS

query!

mpeg?, pdf? choice!

list?

shutdown!

0

4

3

21

(b) PDA LTS

Fig. 3. eMuseum, version 1

B. Behavioural Mismatch

Mismatch situations between component interfaces may be caused by message names that do not correspond,

by an ordering of messages which is not compatible in two or more components, or by some messages in one

component that have no counterpart or match with several messages in another component (one-to-zero, one-to-

many or many-to-one correspondences). All these cases of behavioural mismatch can be worked out using the

contract notation (Section III) and the adaptation algorithms (Section IV and V) that we propose in this article. We

will give examples of such mismatch in the case study we present in the sequel.

There exists numerous definitions of compatibility and, as aconsequence, of mismatch between protocols [4],

[19], but deadlock is the most commonly accepted notion. To automate deadlock mismatch detection, the first step

is to define the semantics of a system composed of several components. This semantics can be given by means

of the synchronous product [20] of LTSs. The synchronous product of several component LTSs results in a new

LTS which contains all the possible interactions between the involved components, assuming they synchronise on

complementary events (a,a).

Definition 2 (Synchronous Product):Thesynchronous productof n LTSsCi = (Ai, Si, Ii, Fi, Ti), i ∈ {1, . . . , n},

is the LTSC1|| . . . ||Cn = (A, S, I, F, T) such that:

• A = A1 ∪ { } × . . . × An ∪ { }, S = S1 × . . . × Sn, I = (I1, . . . , In), F = F1 × . . . × Fn,

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

• T is defined using the following rule:

∀(s1, . . . , sn) ∈ S, ∀i, j ∈ {1, . . . , n}, i < j such that∃(si, a, s′i) ∈ Ti, ∃(sj , a, s′j) ∈ Tj:

(x1, . . . , xn) ∈ S and ((s1, . . . , sn), (l1, . . . , ln), (x1, . . . , xn)) ∈ T ,

where∀k ∈ {1, . . . , n}:

lk = a, xk = s′i if k = i

lk = a, xk = s′j if k = j

lk = , xk = sk otherwise
where the× operator stands for the cartesian product.

The states in the product correspond to sets of states of the components (called substates in the context of a product

state) . For example, a state(s1, . . . , sn) denotes that each componentCi is its statesi. Initially, all components

are in their initial state (i.e., Ii for eachCi), which means that the initial state of the product is(I1, . . . , In). The

computation of the transitions expresses that, given some composite state(s1, . . . , sn) in the product, there is some

transition outgoing from this state iff there are two components,i andj, that may perform at the same time - from

statessi andsj in their LTS - complementary events (i.e., one sending a message and the other one receiving it),

while other components do not perform any action (denoted). The resulting target state of the product transition

corresponds to the source state of it, but for the substates corresponding to componentsi and j. Transitions in

the product are labelled with a set of labels, one from each component (including). An example of synchronous

product is given in Example 2, below.

We are now able to characterise mismatch by means of an adequate definition of deadlock that differentiates

deadlock states and correct final states. A system is blockedwhen it cannot evolve and when at least one of the

components is not in one of its final states.

Definition 3 (Deadlock State):Let C = (A, S, I, F, T) be an LTS. A states is a deadlock state forC, noted

dead(s), iff it is in S, not in F and has no outgoing transitions:s ∈ S ∧ s 6∈ F∧ 6 ∃l ∈ A, s′ ∈ S . (s, l, s′) ∈ T .

Definition 4 (Deadlock Mismatch):An LTS C = (A, S, I, F, T) presents a deadlock mismatch if there is a state

s in S such thatdead(s).

To check if a system composed of several components presentsmismatch, its synchronous product is computed

and then Definition 4 is used. Synchronous products and deadlock detection are common in the Formal Methods

community and hence are supported by tools such asCADP [21], a toolbox dedicated to the validation and

verification of concurrent systems. However, our deadlock definition is slightly different from the one used in these

tools, since it has to distinguish between success (deadlock in a final state), and failure (deadlock in a non-final

state). Yet, behavioural mismatch detection can be automatically checked,e.g., by CADP, up to the adding within

component interfaces of loop transitions over final states labelled with a specific label (we useaccept).

Example 2: In the synchronous product of theROOM and thePDA components (Fig. 4), a deadlock state,(3,3),

is reached after three successful interactions as this state (i) has no output transitions and (ii) is not final. The latter,

(ii), is caused by the fact that the corresponding states in the ROOM (state3) andPDA (state3) components are

not final, while both should be for(3,3) to be final. The former, (i), is caused by the name mismatch between,

respectively, thePDA messagesmpeg and pdf, and theROOM messagestextrequest and videorequest. One

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

would also note that theshutdown message inPDA has no counterpart inROOM. Hence there is no possible

sequence of transitions leading to the other potential finalstate in the product,i.e., state(0,4), corresponding to

state0 of ROOM and state4 of PDA.

(query?,query!) (choice?,choice!)(list!,list?)

deadlock statefinal state

(0,0)

(2,2)(1,1) (3,3)

Fig. 4. Synchronous product for Example 1 LTSs

III. A DAPTATION CONTRACTS

In this section, we present the adaptation contract notation that enables one to specify how to work out mismatch

situations. We rely onsynchronous vectors[20], which denote communication between several components, where

each event appearing in one vector is executed by one component and the overall result corresponds to a synchroni-

sation between all the involved components. A vector may involve any number of components and does not require

interactions to occur on the same names of events. Vectors can describe expressive communication patterns, which

is especially useful to express n-ary interactions.

Definition 5 (Vector):A synchronous vector(or vectorfor short) for a set of componentsCi = (Ai, Si, Ii, Fi, Ti),

i ∈ {1, . . . , n}, is a tuple〈e1, . . . , en〉 with ei ∈ Ai ∪ { }, meaning that a component does not participate in a

synchronisation.

In order to identify unambiguously every communication in the adaptor, prior to the adaptation process, component

event names are prefixed by the component name,e.g., PDA:query!, or ROOM:query?. Yet, to favour readability,

prefixes are not given in component LTS when they are clear from the context.

Example 3:Let us get back to theeMuseum example. We first define vectors for messages that match:vquery =

〈ROOM:query?,PDA:query!〉, vlist = 〈ROOM:list!,PDA:list?〉, and vchoice = 〈ROOM:choice?,PDA:choice!〉.

Further, we have seen that mismatch came first from the unanticipatedshutdown reception. This would be solved by

a specific vector,vend = 〈ROOM: ,PDA:shutdown!〉, to specify that the adaptor should not transmit theshutdown

message to theROOM server. Moreover, mismatch also came from the text/video choice (usingtextrequest or

videorequest) which is not done byPDA, that waits for one resource to be sent, either with thepdf or thempeg

message. A possible solution would require to express that the video (resp. text) choice is performed by the adap-

tation itself using vectorsvvmode = 〈ROOM:videorequest?,PDA: 〉 andvtmode = 〈ROOM:textrequest?,PDA: 〉.

Moreover we would like to specify a correspondence between the video sending (video in ROOM) and the mpeg

file reception (mpeg in PDA), and a correspondence between the text sending (text in ROOM) and the pdf file

reception (pdf in PDA). The corresponding vectors would bevvget = 〈ROOM:video!,PDA:mpeg?〉 and vtget =

〈ROOM:text!,PDA:pdf?〉.

Vectors express correspondences between messages, like bindings between ports, or connectors, in architectural

descriptions [22]. Yet, vectors alone are not sufficient to perform adaptation as one must take into account also the

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

context in which messages are exchanged,i.e., the component protocols. Suppose we have a vector〈c1 : a!, c2 : b?〉.

Directly sending in an adaptor the messageb to c2 when messagea is received fromc1 may lead the system to

a deadlock state if this interaction is incorrect. This is why more complex adaptation algorithms, such as the ones

we define in this article are required. Moreover, vectors arenot sufficient to support more advanced adaptation

scenarios such as contextual rules, choice between vectorsor, more generally, ordering (e.g., when one message

in some component corresponds to several in another component, which requires to apply several vectors). The

ordering in which vectors have to be applied can be specified using different notations such as regular expressions,

LTSs, or (Hierarchical) Message Sequence Charts. Due to their readability and user-friendliness, we chose to specify

adaptation contracts usingvector LTSs, that is, LTSs whose labels are vectors. In addition, vectorLTSs facilitate

the development of adaptation algorithms since they provide an explicit description of the contract behaviours set

of states, which makes their traversal easier. Other notations, such as the ones mentioned above, can be used to

specify the adaptation contract, provided that they can be translated into vector LTSs. To this purpose, one can

rely on existing behavioural model synthesis techniques such as those presented in [23] for regular expressions, or

in [24] for Message Sequence Charts.

Definition 6 (Vector LTS):A vector LTSfor a set of vectorsV is an LTS(V, S, I, F, T) where labels are vectors.

Definition 7 (Adaptation Contract):An adaptation contractfor a set of componentsCi = (Ai, Si, Ii, Fi, Ti),

i ∈ {1, .., n}, is a couple(V, L) whereV is a set of vectors for componentsCi, andL is a vector LTS forV .

If only message name correspondences are necessary to solvemismatch between components, the vector LTS

may leave the vector application order unconstrained usinga single state and all vector transitions looping on it.

In particular, this pattern may be used on specific parts of the contract for which the designer does not want to

impose any ordering.

The design of the adaptation contracts is the only step of adaptation which is not handled automatically by

our approach. Yet, this step is essential because an inadequate contract could induce the generation of an adaptor

that would ensure deadlock freedom at the cost of too many interaction removals, including ones expected by the

designer. Solutions and on-going work relative to contractdesign are discussed in Section VIII.

Example 4:Using the vectors given in Example 3, one could express different adaptation contracts (Fig. 5).

A simple example is contract 1. This contract is limited to video exchange as it does not use vectors for text

exchange (vtmode and vtget). But for this, the contract is very permissive. It enables any application ordering of

name mismatch resolution using the vectors, including whenno video is ever exchanged (i.e., vectorsvvmode and

vvget may never be applied). One could have either text or video be exchanged with contract 2. Here, at eachPDA

request the adaptor will non-deterministically be able to choose between text and video. One could also enforce

a very strict adaptation contract, with contract 3, where textual and video information are alternatively used. Note

that the use of such highly constrained contracts, applied to adaptation without reordering, is not very interesting as

giving such a contract is often close to giving the solution,while using more permissive contracts and adaptation

with reordering demonstrates the full power of our automated adaptation process. Other contracts will be presented

in the sequel, together with the different algorithms that operate on them to produce the corresponding adaptor

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

protocols.

vend, vquery, vlist,
vchoice,vvmode, vvget

(a) contract 1 vector LTS

vquery

vvget

vchoicevlist

vtmode

vtget vtmode

vend

(b) contract 2 vector LTS

vend

vchoice

vchoice

vlist

vlist

vquery

vquery

vtget

vvget

vtmode

vvmode

(c) contract 3 vector LTS

Fig. 5. Adaptation contracts foreMuseum, version 1

An adaptor is given by an LTS which, put into a non-deadlock-free system yields a deadlock-free one. All the

exchanged messages will pass through the adaptor, which canbe seen as a coordinator for the components to be

adapted. This can be formalised as follows.

Definition 8 (Adaptation algorithm correctness):Given n componentsCi, i ∈ {1, . . . , n} and a contract, the

adaptation algorithm builds an adaptorAd such that there is no deadlock state in the systemAd||(C1|| . . . ||Cn).

In the sequel, we present two different correct algorithms for the generation of adaptor protocols.

IV. A DAPTATION WITHOUT REORDERING

In this section, we present a first adaptation algorithm, based on synchronous products. More precisely, we rely

on an extension of the synchronous product, Def. 2, that takes into account the correspondences of events described

in the vectors, but also their ordering in the vector LTS. Consequently, the vector LTS is used as a guide to build

the resulting product.

Definition 9 (Synchronous Vector Product (with vector LTS)): Thesynchronous vector product (with vector LTS)

of n LTS Ci = (Ai, Si, Ii, Fi, Ti), i ∈ {1, .., n} with a vector LTSL = (AL, SL, IL, FL, TL), is the LTS

ΠL((C1, . . . , Cn), L) = (A, S, I, F, T) such that:

• A = AL ×A1 ∪{ }× . . .×An ∪{ }, S = SL ×S1 × . . .×Sn, I = (IL, I1, . . . , In), F = FL ×F1 × . . .×Fn,

and

• T contains a transition((sL, s1, . . . , sn), 〈aL, a1, . . . , an〉 , (s′L, s′1, . . . , s
′
n)) iff there is a state(sL, s1, . . . , sn)

in S, there is a transition(sL, 〈l1, . . . , ln〉 , s′L) in TL and for everyi in {1, . . . , n}:

– if li = thens′i = si andai = ,

– otherwise there is a transition(si, ai, s
′
i) with ai = li in Ti.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

Algorithm 1 build adaptornoreordo
constructs an adaptor without reordering for a set of components given an adaptation contract

inputs componentsC1, . . . , Cn with eachCi = 〈Ai, Si, Ii, Fi, Ti〉, and an adaptation contract(V, L)

output adaptorAd = 〈A, S, I, F, T 〉

1: PL := ΠL((C1, . . . , Cn), L) // product with vector LTSL

2: P =proj(PL) // discarding vector LTS elements in the result

3: Prestr := removedeadlocks(P) // removing paths leading to deadlocks

4: Sadd := ∅

5: TAd := ∅

6: for all t = (s = (s1, . . . , sn), (l1, . . . , ln), s′ = (s′1, . . . , s
′
n)) in TPrestr

do

7: Lrec = {l? | l! ∈ (l1, . . . , ln)} // mirroring: emissions to receptions

8: Lem = {l! | l? ∈ (l1, . . . , ln)} // mirroring: receptions to emissions

9: Seqrec = compute permutations(Lrec) // permutations between receptions

10: Seqem = compute permutations(Lem) // permutations between emissions

11: for all (R = (r1, . . . , ri), E = (e1, . . . , ep)) ∈ Seqrec × Seqem do

12: TAd := TAd ∪ {s
r1→ q1, . . . , qi−1

ri→ qi, . . . , qi+1
e1→ qi+2, . . . , qn−1

ep

→ s′}

13: Sadd := Sadd ∪ {q1, . . . , qn−1}

14: end for

15: end for

16: return Ad = (APrestr
, SPrestr

∪ Sadd, IPrestr
, FPrestr

, TAd)

As with Def. 2, states in the product correspond to sets of states of the components, but take also into account

the vector LTS. For example, a state(s0, s1, . . . , sn) denotes that each componentCi is in its statesi and that the

vector LTS is ins0. Initially all components and the vector LTS are in their initial state (i.e., Ii for eachCi and

IL for the vector LTS), which means that the initial state of theproduct is(IL, I1, . . . , In). The computation of

the transitions is also slightly different from Def. 2. There is an outgoing transition from a state(sL, s1, . . . , sn) iff

there is a transition labelled by a vector〈l1, . . . , ln〉 outgoing from statesL in the vector LTS and, as a consequence,

if for every componentCi there is a transition outgoing fromsi and labelled withli in the Ci LTS. A commented

example of synchronous vector product computation is givenin Example 5, Figure 8.

To generate an adaptor protocol from a synchronous vector product we have to discard the first element of the prod-

uct components to keep only the elements corresponding to the component exchanges. More formally, it means that

from an LTSPL = ΠL((C1, . . . , Cn), L) = (A, S, I, F, T) we compute the LTSP = proj(PL) = (A′, S′, I ′, F ′, T ′)

such that∀X ∈ {A, S, I, F} X ′ = {cdr(x) | x ∈ X} and T ′ = {(cdr(s),cdr(l),cdr(s′)) | (s, l, s′) ∈ T } with

cdr((x0, x1, . . . , xn)) = (x1, . . . , xn).

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Our algorithm (Alg. 1) takes as input a set of component LTSsCi and an adaptation contract(V, L). This

algorithm is based on three main steps: (i) computation of the synchronous vector product taking the vector LTS

L into account, and discarding in the result the vector LTS elements (Alg. 1:1–2), (ii) removal of interaction

sequences (paths) leading to deadlock (functionremovedeadlocks, Alg. 1:3), and (iii) for each transition (Alg. 1:6–

15), reversal of the directions for all events appearing in the vector on the transition, called mirroring (Alg. 1:7–8),

and computation of all possible interleavings (functioncomputepermutations) starting with receptions (Alg. 1:9–14).

Removing deadlock paths is required to suppress spurious interactions that would not leave the system in a stable

(final) state, as shown in Example 5 below. This is achieved recursively removing transitions and states yielding

deadlocks: find a states such thatdead(s), removes and any transitiont with targets, and do this until there is no

more suchs in the LTS. Mirroring ensures that the adaptor and the components can perfectly communicate using

the same event message names with opposite directions (!/? or ?/!). Moreover, event interleaving is essential when

vectors involve more than two events in a communication (e.g.,in case of broadcast or multicast communication).

Interleavings make the adaptor support non-determinismwrt. the orderings in which events will occur, hence accept

any possible one.

Note that Algorithm 1 builds an adaptor protocol by applyingone vector after the other, that is, all interactions

involved in one vector occur before starting the interactions of another vector. Consequently, events belonging to

two vectors appearing as labels in the synchronous product are never interleaved. Such an interleaving is mandatory

when events need to be reordered. This additional feature will be supported by the algorithm presented in Section V.

The complexity of Algorithm 1 lies on the synchronous vectorproduct computation, and isO(|S|n+1) whereS is

the largest set of states for all component (and vector) LTS,andn + 1 stands for then components plus the vector

LTS. The proof of correctness of Algorithm 1 can be found in Appendix II.

Example 5:Let us now present a second version ofeMuseum. A new version of theROOM component supports

an additional feature: once a video has been sent, it can be re-sent (upon reception of theagain message) to be

played again. Thequit message is then used to tellROOM one is done with the selected video. TheROOM

designer has also refactored this component. The names of some operations (namely,query and choice) and, as

a consequence, of the corresponding messages, have been changed. A new version of thePDA component is also

used. It now supports to be integrated in contexts where rights can be different depending on two modes: a guest

mode (with less rights) and a user mode (with more rights).PDA can sendlogin (respectivelylogout) messages

to go from guest to user mode (respectively from user to guestmode). The new interfaces of the two components

are given in Figure 6 (changes are in bold).

As far as the adaptation contract is concerned, one does not start from scratch. The vectors we had before

are reused, replacing old messages by new ones where we have now name mismatch (in bold font):vend =

〈ROOM: ,PDA:shutdown!〉, vvmode = 〈ROOM:videorequest?,PDA: 〉, vvget = 〈ROOM:video!,PDA:mpeg?〉,

vtmode = 〈ROOM:textrequest?,PDA: 〉, vtget = 〈ROOM:text!,PDA:pdf?〉, vquery = 〈ROOM:access?,PDA:que-

ry!〉, vlist = 〈ROOM:list!, PDA:list?〉, andvchoice = 〈ROOM:selection?,PDA:choice!〉.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

access?

video!

selection?list!

videorequest?

text! textrequest?

again?video!

quit?

7

6

5

4

3210

(a) ROOM LTS

query!

mpeg?, pdf? choice!

list?

shutdown!

login!,
logout!

0 1 2

3

4

(b) PDA LTS

Fig. 6. eMuseum, version 2

We also add vectors for unspecified receptions of messages sent by thePDA for changing mode, asROOM has

not been builtwrt. such modes:vuser = 〈ROOM: ,PDA:login!〉 and vguest = 〈ROOM: ,PDA:logout!〉. The

support for changing mode, and more generally contexts willbe achieved using the vector LTS, below. Finally, we

add vectors corresponding to the new feature ofROOM (re-sending videos):vagain = 〈ROOM:again?,PDA: 〉

and vquit = 〈ROOM:quit?,PDA: 〉. The adaptor will be in charge of sending them when required,as for the

video and text requests. Note that if we had used a single vector 〈ROOM:quit?,PDA:shutdown!〉 in place of vend

and vagain, we would have enforced thatROOM andPDA exchange information exactly once (forbidding thePDA

to shut down directly and to ask several times information).

SELECT

vguest

vuser

vend

SELECT: vquery, vlist, vchoice
TEXT: vtmode, vtget

TEXT

VIDEO: vvmode, vvget, vagain, vquit

VIDEO

USERGUEST

SELECT

0

Fig. 7. Adaptation contract foreMuseum, version 2

By using a vector LTS (Fig. 7), we will enforce the following constraints:

• there are two modes,GUEST andUSER. In theeMuseum application, we take benefit of these two modes

as follows. InGUEST mode the sent information is text. InUSER mode, the sent information is video. This

demonstrates how an adaptation contract can be used to enforce constraints which are defined system-wide,

not at the level of individual components;

• the two modes alternate (starting inGUEST mode), with going from one to another using thelogin andlogout

messages;

• we know that communication is based on two phases, selectionand getting information, yet we keep an abstract

description level for these. Non-determinism may be kept inthe contract,e.g., in USER mode, between different

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

possible application orderings of vquery, vlist, vchoice, vvmode, vvget, vagain, and vvquit to let the adaptation

process decide which one – if any – is correct (see the corresponding adaptor, Fig. 9). For this, the adaptation

process uses the orderings which are defined in the componentinterfaces.

In order to generate the adaptor protocol, we first compute the synchronous vector product (Fig. 8) of the

ROOM LTS (Fig. 6(a)) and thePDA LTS (Fig. 6(b)) with the vector LTS (Fig. 7). To understand how this works,

let us take for example the computation of the transitions outgoing from the product initial state. This initial state,

(0,0,GUEST), corresponds to the composition of the components’ and vector’s LTS initial states. Different sets of

transitions are possible in the three LTSs used in the product:

• access? in ROOM;

• shutdown!, login!, logout!, andquery! in PDA;

• vectorsvend (〈ROOM: , PDA:shutdown!〉), vuser (〈ROOM: , PDA:login!〉), vquery (〈ROOM:access?, PDA:

query!〉), vlist (〈ROOM:list!, PDA:list?〉), vchoice (〈ROOM:selection?, PDA:choice!〉), vtmode (〈ROOM:text-

request?, PDA: 〉), andvtget (〈ROOM:text!, PDA:pdf?〉) in the vector LTS.

Therefore, there are only three possible transitions outgoing from the product initial state (corresponding to the first

three vectors above):

• 〈 〈ROOM: ,PDA:shutdown!〉, ROOM: , PDA:shutdown! 〉, going to state(0,4,0);

• 〈 〈ROOM: ,PDA:login!〉, ROOM: , PDA:login! 〉, going to state(0,0,USER);

• 〈 〈ROOM:access?,PDA:query!〉, ROOM:access?, PDA:query! 〉, going to state(1,1,GUEST).

The other possibilities are forbidden, either because one component corresponding to a message in a possible vector

is not ready for it (e.g., ROOM cannot receivetextrequest in its initial state,0) or because components may be

ready for some message but the contract forbids it (e.g., PDA may sendlogout but vectorvguest is not enabled in

the initial state of the vector LTS,(0,0,GUEST)). We may proceed similarily, step by step, computing for example

now the transitions outgoing from the(0,4,0), (0,0,USER), and(1,1,GUEST) states. The result is given in Figure 8

where the part of the labels corresponding to the vectors arediscarded due to place matters (i.e., wrt. Alg. 1, we

give P in place ofPL).

(ROOM:_,PDA:shutdown!)

(ROOM:_,PDA:login!)

(ROOM:textrequest?,PDA:_)

(ROOM:selection?,PDA:choice!)

(ROOM:list!,PDA:list?)

(ROOM:access?,PDA:query!)

(ROOM:access?,PDA:query!)

(ROOM:list!,PDA:list?)

(ROOM:selection?,PDA:choice!)

(ROOM:_,PDA:logout!)

(ROOM:videorequest?,PDA:_)

(ROOM:text!,PDA:pdf?)

(ROOM:video!,PDA:mpeg?)

(ROOM:quit?,PDA:_)

(ROOM:again?,PDA:_)

deadlock state

(0,0,GUEST)

(0,4,0)

(0,0,USER)

(1,1,GUEST)

Fig. 8. Product LTS foreMuseum, version 2

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

One may note a path leading to a deadlock state on this example. After ROOM and PDA have successfully

exchanged a first video, the adaptor may haveROOM send it again using theagain message. However,ROOM

would then send thevideo message which would block the system asPDA is not ready to receive the corresponding

mpeg message. Indeed this could have been prevented by removing vector vagain from the adaptation contract.

Yet, as one cannot ensure the perfect contract is always given, it shows the need for the suppression of spurious

interactions after the product is computed.

PDA:shutdown?

PDA:login?

ROOM:textrequest!

ROOM:selection!

ROOM:list?

ROOM:access!

PDA:choice?

PDA:logout?

ROOM:videorequest!

ROOM:text?

ROOM:video?

ROOM:quit!

PDA:pdf!

PDA:choice?

ROOM:selection!

PDA:list!

PDA:list! ROOM:list? PDA:query?

ROOM:access! PDA:query?

PDA:mpeg!

Fig. 9. Adaptor protocol foreMuseum, version 2

We finally compute the adaptor by mirroring the labels and computing permutations of inputs and then outputs

for it, see Figure 9. In this adaptor protocol, we see that behavioural mismatch (one-to-zero,i.e., unanticipated

reception, such asshutdown, one-to-one such asquery vs access, many-to-one such asvideorequest andvideo

vs mpeg) have been worked out. The adaptor follows a coordination protocol which is restricted to the contract

and modes we specified (e.g., text is sent to guests and video to users). Finally, the adaptor has also removed all

possible interaction sequences leading to deadlocks (as demonstrated above with video re-sending).

V. A DAPTATION WITH REORDERING

Let us now extend the domain of mismatch problems we deal with. Our goal is now also to address behavioural

mismatch which requires reordering. This occurs when exchanged messages present non-compatible orderings in the

components’ protocols. To support this kind of mismatch, the adaptation process may try to accommodate protocols

by reordering events in-between the components. The behavioural adaptation proposal presented in Section IV may

yield an empty adaptor in presence of such mismatch because it induces application of one vector after the other,

and therefore prevents the application of several vectors at the same time that is necessary to make reordering

effective.

To this purpose, we present a second approach which complements the one presented in Section IV. Messages

received by the adaptor are seen asresourceswhich are memorised until they need to be sent (i.e., until they

may be received by some component to make it evolve). This canbe achieved first thanks to anencodingof the

component protocols and of the adaptation contract into a formalism that supports amemoryand aresource-based

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

vision of adaptation, as follows: (i) reception of messages (by the adaptor) corresponds to a resource creation,

(ii) emission of messages (by the adaptor) is possible provided some resource is available and corresponds to

resource consumption, and finally, (iii) vectors correspond to resource transfer. Petri nets [25] are such a formalism,

which further benefits from good tool support. Moreover, themarking graph of such a Petri net encoding represents

all possible resource-based evolutions of the adaptor (message reception, emission and transfer).

Before presenting our algorithm for adaptation with reordering in more details, let us introduce first the basics of

Petri nets. A Petri net consists of places, transitions and directed arcs between places and transitions. A transition

is connected by input arcs to a set of input places, and by output arcs to a set of output places. Places may contain

any number of tokens that model resources. Transitions act on tokens by a process known asfiring. A transition can

be fired if there are enough tokens in each of its input places.When a transition fires, it consumes one token from

each of its input places, and adds a token into each of its output places. The presentation of Petri nets is simplified

here for conciseness purposes as,e.g., generalised Petri nets support arcs labelled with naturalnumbers to denote

the need of more than one token in an input place and the production of more than one token in an output place.

A distribution of tokens over the places of a net is called amarking. A marking graphdescribes all the markings

that can be reached from an initial marking by firing transitions.

Algorithm 2 takes as input a set of component LTSsCi and an adaptation contract, and generates the corresponding

Petri net encoding. As regards component interface encoding (Fig. 10, Alg. 2:2–12), every event emission or

reception in a component is translated into a Petri net transition holding the same name as the event but the reversed

direction. This transition is connected to specific places that are used to store, using tokens, messages corresponding

to the events. For each event emissionc :a! in a componentc interface (Fig. 10(a)), there is a transition for reception

in the Petri net (c :a?) and this transition has an output arc to the place where the corresponding message is stored

(??c : a). Conversely, for each event receptionc : a? in a componentc interface (Fig. 10(b)), there is a transition

for emission in the Petri net (c : a!) and this transition has an input arc from the place where thecorresponding

message has been stored (!!c :a). The control flow between events in component interfaces isexpressed in the Petri

net by control places and related arcs connecting the different Petri net transitions. Moreover, tokens are placed in

the control places encoding the initial states of the LTS interfaces (Alg. 2:4), and their evolution will simulate the

execution of the entire system.

c:a?

??c:a

c:s’c:s

c:a?

c:s’

??c:a

c:s

c:a?

(a) Message emission in components / reception in adaptor

c:a!

!!c:a

c:s’c:s

c:a!

c:s’

!!c:a

c:s

c:a!

(b) Message reception in components / emission in adaptor

Fig. 10. Encoding patterns for component protocols (and related marking evolution semantics)

As far as the contract encoding is concerned (Alg. 2:13–24),every synchronous vector is encoded using atau [18]

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

Algorithm 2 build PetriNet
constructs a Petri net encoding from component interfaces and an adaptation contract

inputs componentsC1, . . . , Cn with each Ci = 〈Ai, Si, Ii, Fi, Ti〉, and an adaptation contract(V, L =

(AL, SL, IL, FL, TL))

output Petri netN

1: N := emptyPetriNet() // all the following actions operate onN

2: for all Ci = 〈Ai, Si, Ii, Fi, Ti〉 , i ∈ {1, . . . , n} do

3: for all sj ∈ Si do add a placeci :sj endfor

4: put a token in placeci :Ii // Ii is the initial state ofCi

5: for all a! ∈ Ai do add a place??ci :a endfor

6: for all a? ∈ Ai do add a place!!ci :a endfor

7: for all (s, e, s′) ∈ Ti with l = e do

8: add a transition with labell, an arc from placeci : s to the transition and an arc from the transition to

placeci :s
′

9: if l has the forma! then add an arc from the transition to place??ci :a endif

10: if l has the forma? then add an arc from place!!ci :a to the transitionendif

11: end for

12: end for

13: for all sL ∈ SL do add a placecL :sL endfor

14: put a token in placecL :IL // IL is the initial state ofL

15: for all tL = (sL, 〈e1, . . . , en〉 , s′L) ∈ TL with ∀i ∈ {1, . . . , n} li = ei do

16: add a transition with labeltau, an arc from placecL :sL to the transition and an arc from the transition to

placecL :s′L

17: for all li do

18: if li has the forma! then add an arc from place??ci :a to the transitionendif

19: if li has the forma? then add an arc from the transition to place!!ci :a endif

20: end for

21: end for

22: for all (fr, f1, . . . , fn) ∈ FL × F1 × . . . × Fn do

23: add a (loop)accept transition with arcs from and to each of the tuple elements

24: end for

25: return N

transition (Fig. 11, Alg. 2:16–20) as it represents an internal action of the adaptor. Arcs are added (Alg. 2:16) to

connect thesetau transitions in order to enforce their application orderingin the vector LTS. Message transfer is

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Algorithm 3 build adaptorreordo
constructs an adaptor with reordering for a set of components given an adaptation contract

inputs componentsC1, . . . , Cn with eachCi = 〈Ai, Si, Ii, Fi, Ti〉, and an adaptation contract(V, L)

output adaptorAd = 〈A, S, I, F, T 〉

1: N := build PetriNet({C1, . . . , Cn}, (V, L)) // see Algorithm 2

2: M := get markinggraph(N)

3: Ad :=reduction(removedeadlocks(M))

4: return Ad

enabled using input/output arcs that connect atau transition to the places related to the component events involved

in the corresponding vector (Alg. 2:17–20).

tau

??c1:a

CL:s’LCL:sL

tau

CL:s’L

??c1:a

CL:sL

tau

!!c3:c!!c3:c

!!c2:b!!c2:b

< c1:a!, c2:b?, c3:c? >

Fig. 11. Encoding pattern for adaptation contracts (and related marking evolution semantics)

We will illustrate further in this section (Ex. 6) this encoding into Petri nets on theeMuseum application.

Algorithm 3 generates an adaptor protocol from a set of component LTSsCi and an adaptation contract. This

algorithm respectively (i) builds a Petri net encoding for both component LTSs and the contract (Alg. 3:1),

(ii) generates the marking graph for this Petri net which contains all the possible evolutions of the adaptor

wrt. the component LTSs it is in charge of (Alg. 3:2), and (iii) removes remaining deadlocks (removedeadlocks)

which correspond to spurious interactions, andtau transitions (reduction) introduced during the Petri net generation

(Alg. 3:3).

The reduction function is used to simplify the adaptor protocols. At this level, several behavioural reductions

modulo an equivalence relation can be applied (e.g., tau*.a, observational, branching). In our experiments, we used

in particular a combination of branching and weak trace reductions that enable (i) to eliminatetau transitions

introduced for message transfer in the encoding of vectors into Petri nets (which are meaningless at the level of the

adaptor) while preserving the deadlock freedom property, (ii) to cut similar paths (traces), and (iii) to determinize

the adaptor protocols using a classical automata theory algorithm.

The theoretical complexity of this algorithm lies mainly inthe marking graph construction, which is exponen-

tial [26]. In practice, it is less expensive as parts of the net are 1-bounded (there is only one token in only one of

the places corresponding to the component interface states). We emphasise that the adaptation techniques presented

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

in this section work also for adaptation without reordering. However, since the computational complexity of these

techniques is greater than those presented in the former section, they are privileged only if reordering is needed.

The proof of correctness of Algorithm 3 can be found in Appendix II.

Example 6:Let us now describe the last version of theeMuseum application. A third component, a generic

pay-per-view subscription server,SUB, is used to manage subscription modes (guest mode for free access and user

mode for paying access) and related access identifiers. Uponreception of a registration message (guestmode or

usermode), it returns an access identifier (userid message). In case of user registration, reception of the payment

information (payinfo message) is required before sending the identifier. Moreover, usingdebit, the user shopping

cart can be updated (with an access authorization sent back each time) before abill is finally sent (the user account

being debited at the same time). There are also changes in newversions of the other two components which are

reused.ROOM needs an identifier (id) to be given before information sending in order to update a log file. The

access toROOM is controlled by a signal detecting the entry (enter) and the leaving (leave) of the room.PDA

sends payment information (credentials) before logging in and waiting for an acknowledgement (ticket). Finally,

after logging out,PDA waits for aninvoice of the services it acceded to.

enter?

video!

selection?list!

videorequest?

text!
textrequest?

again?

video!quit?
leave?

id?

id?

(a) ROOM LTS

query!

mpeg?, pdf? choice!

list?

shutdown!

invoice? logout!

ticket?

credentials!

login!

(b) PDA LTS

guestmode?

userid! bill! exit?

userid!

payinfo?usermode?

debit?auth!

(c) SUB LTS

Fig. 12. eMuseum, version 3

The new corresponding LTSs are given in Figure 12 (changes are in bold). One may note that:

• PDA does not deal with identifiers when doing requests, whileROOM needs them (id?);

• ROOM knows nothing about guest and user modes;

• reordering is required, first becausePDA andROOM do not support requests in the same way:PDA sends a

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

query before waiting a list of items and selecting one, whileROOM presents its list of items and waits for one

to be selected before waiting for either a text or a video request. Moreover,PDA and SUB do not treat the

logging in protocol in the same way, the order of the payment information and login request being different

in both components.

To work this out, vectors are first defined (differences with the previous example are in bold font). There are two

new vectors for the entering and leaving of the system (triggered by the adaptor), while the one forPDA shutdown

is reused. In the first case, entering also triggers the guestmode (initial mode).

venter= 〈ROOM:enter?,PDA: ,SUB:guestmode?〉, vleave= 〈ROOM:leave?,PDA: ,SUB: 〉, and

vend = 〈ROOM: ,PDA:shutdown!,SUB: 〉.

Vectors for lists and choices are also reused:

vlist = 〈ROOM:list!,PDA:list?,SUB: 〉 andvchoice = 〈ROOM:selection?,PDA:choice!,SUB: 〉.

Vectors for entering text (resp. video) mode and for text (resp. video) exchange are reused but for two differences:

(i) query in PDA now corresponds to requests inROOM, and (ii) SUB should be informed about each video being

sent:

vtmode = 〈ROOM:textrequest?,PDA:query!,SUB: 〉, vtget = 〈ROOM:text!,PDA:pdf?,SUB: 〉,

vvmode = 〈ROOM:videorequest?,PDA:query!,SUB:debit?〉, vvget = 〈ROOM:video!,PDA:mpeg?,SUB:auth!〉,

and

vquit = 〈ROOM:quit?,PDA: ,SUB: 〉.

Vectors for changing mode are reused and modified to supportSUB:

vuser = 〈ROOM: ,PDA:login!,SUB:usermode?〉 andvguest = 〈ROOM: ,PDA:logout!,SUB:guestmode?〉.

Vectors that support the additional payment relations betweenPDA andSUB are added:

vinfo= 〈ROOM: ,PDA:credentials!,SUB:payinfo?〉, vbill= 〈ROOM: ,PDA:invoice?,SUB:bill!〉, and

vexit= 〈ROOM: ,PDA: ,SUB:exit?〉.

Identifier exchange is finally specified with three vectors (one for guest mode, one for user mode and one for

re-sending):

vgid= 〈ROOM:id?,PDA: ,SUB:userid!〉, vuid= 〈ROOM:id?,PDA:ticket?,SUB:userid!〉, and

vreid= 〈ROOM:id?,PDA: ,SUB: 〉.

Vector vagain is left over, suppressing the possibility for video re-sending.

As for the previous example, we may now use a vector LTS to specify their possible orderings. We propose two

different contracts: one supporting only theGUEST mode (Fig. 13(a)) and one supporting both modes (Fig. 13(b)).

The contract for theGUEST mode (Fig. 13(a)) focuses on what happens between one entersand one leaves

the room. Moreover, it specifies that once the identifier has been first exchanged, the identifier is re-sent by the

adapter (vector vreid) only if a new query happens (vector vtmode). But for these two constraints, the contract

is not restrictive and does not specify any particular ordering of vectors. The adaptation process will therefore

find all possible ones such that the adapted system does not deadlock. The contract for the full mode (Fig. 13(b))

adds a part relative to theUSER mode. One may note that it is symmetric to theGUEST mode contract but for

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

v e n t e r

G U E S T 1 s t

I N I T

G U E S T x t h

 v g i d

v l e a v e

v l e a v e

S e l e c t T , v t m o d e

S e l e c t T

v r e i d v t m o d e

S e l e c t = v l i s t , v c h o i c e , v e n d
S e l e c t T = S e l e c t , v t g e t

(a) GUEST mode vector LTS

v e n t e r

G U E S T 1 s t

I N I T

G U E S T x t h

 v g i d

v l e a v e

v l e a v e

S e l e c t T , v t m o d e

S e l e c t T

v r e i d v t m o d e

S e l e c t = v l i s t , v c h o i c e , v e n d
S e l e c t T = S e l e c t , v t g e t

S e l e c t V = S e l e c t , v v g e t , v i n f o

U S E R 1 s t

U S E R x t h
 vex i t

 v g u e s t

 v g u e s t

 v u s e r

 v u s e r

S e l e c t V

S e l e c t V

 v u i d

v v m o d e

v r e i d

v q u i t

v t m o d e

v q u i t

 vb i l l

v l e a v e

(b) full mode vector LTS

Fig. 13. Adaptation contracts foreMuseum, version 3

some differences. We must first take into account thequit message emission by the adaptor (vector vquit) to avoid

blocking once a video has been exchanged. This is put into practice, e.g., by adding this vector in the vector LTS

at the end of the vtmode loops (twice). Moreover, while passing fromGUEST to USER mode is quite simple

(vector vuser), leavingUSER mode should also take into account the final payment using vectors vbill and vexit.

This is representative of one-to-many correspondence, here betweenlogout in PDA and bothexit andguestmode

in SUB. The obtaining of the full mode contract (and the differencebetween theUSER and theGUEST modes)

has been achieved in several steps, using post-generation adaptor assessment (see support for contract design in

Section VIII). In the sequel, we will present our approach onthe first contract due to the complexity of the adaptor

for the full mode.

The Petri net generated for this example is given in Figure 14. To help the reader, we present separately the

parts of the Petri net which are generated forROOM, PDA, SUB, and the contract. The nets are glued on dashed

places,accept transitions and, for the contract, on vector transitions.

The adaptor for theGUEST mode has 204 states and 404 transitions (494 states and 1101 transitions before

pruning paths to deadlocks). After reduction, the resulting final adaptor has 52 states and 104 transitions (Fig. 15,

where the initial state is in light gray and the final states are in black). We emphasize that it is much simpler to

give an adaptation contract and use our automatic adaptor protocol generation techniques than writing directly the

protocol by hand.

One may note different things (see the zoom in Fig. 15):

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

ROOM:enter!

!!ROOM:again

ROOM:selection!ROOM:list?

ROOM:videorequest!

ROOM:text?

ROOM:textrequest!

ROOM:again!

ROOM:video?

ROOM:quit!
ROOM:leave!

ROOM:id!

ROOM:id!

accept

!!ROOM:enter

!!ROOM:leave

??ROOM:text !!ROOM:id !!ROOM:textrequest

??ROOM:list !!ROOM:selection

ROOM:video?

??ROOM:video

!!ROOM:videorequest
!!ROOM:quit

(a) ROOM encoding

PDA:query?

PDA:pdf!

PDA:choice?

PDA:list!

PDA:shutdown?

PDA:invoice!

PDA:logout? PDA:ticket!

PDA:credentials?

PDA:login?

PDA:mpeg!

accept

??PDA:query

!!PDA:list

??PDA:choice

!!PDA:pdf

!!PDA:mpeg

??PDA:logout !!PDA:ticket

??PDA:shutdown

??PDA:credentials

??PDA:login

!!PDA:invoice

accept

(b) PDA encoding

SUB:guestmode!

SUB:userid? SUB:bill? SUB:exit!

SUB:userid?

SUB:payinfo!SUB:usermode!

SUB:debit!

accept

!!SUB:payinfo!!SUB:usermode!!SUB:guestmode

!!SUB:debit

??SUB:bill !!SUB:exit

??SUB:userid

??SUB:auth

SUB:auth?

(c) SUB encoding

!!SUB:guestmode !!ROOM:enter

tau (venter)

tau (vlist)

??ROOM:list !!PDA:list

tau (vchoice)

??PDA:choice !!ROOM:selection

tau (vtmode)

??PDA:query !!ROOM:textrequest

tau (vtget)

??ROOM:text !!PDA:pdf

tau (vreid)

tau (vend)

tau (vleave)

!!ROOM:id

??PDA:shutdown

!!ROOM:leave

tau (vgid)

??SUB:userid

(d) contract encoding (vectors)

tau (venter)

tau (vlist)

tau (vchoice)

tau (vtmode)tau (vtget) tau (vreid)

tau (vend)

tau (vleave)

tau (vgid)

tau (vleave)

accept

tau (vtmode)tau (vlist)

tau (vchoice)

tau (vend)

tau (vtget)

(e) contract encoding (vector LTS)

Fig. 14. Petri net encoding foreMuseum, version 3 (GUEST mode)

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

0

3

ROOM:enter!

1

PDA:query?

4

SUB:guestmode!

2

PDA:shutdown? 5

accept

6

PDA:query?

8

PDA:shutdown?11

ROOM:list?

12

SUB:guestmode!

10

ROOM:leave!

16

ROOM:list?

17

SUB:guestmode!

27

PDA:list!

28

SUB:guestmode!

35

PDA:choice?

36

SUB:guestmode!

39

ROOM:selection!

40

SUB:guestmode!

42

ROOM:textrequest!

43

SUB:guestmode!

45

SUB:guestmode!

47

SUB:userid?

48

ROOM:id!

49

ROOM:text?

24

PDA:pdf!

51

ROOM:list?

50

ROOM:leave!

29

PDA:query?

31

PDA:shutdown?

33

ROOM:list?

32

ROOM:leave!

37

ROOM:list?

41

PDA:list!

44

PDA:choice?

46

ROOM:selection!

ROOM:textrequest!

ROOM:textrequest!

SUB:userid?

26

20

PDA:shutdown?

22

ROOM:leave!

34

SUB:userid?

SUB:userid?

30

ROOM:leave!PDA:shutdown?

SUB:userid?

23

PDA:query?

SUB:userid?

SUB:userid?

PDA:list!

SUB:userid?

ROOM:selection!

ROOM:enter!

7

SUB:guestmode! PDA:query?

9

PDA:shutdown?13

SUB:userid?ROOM:enter!

ROOM:enter!

18

SUB:userid?

ROOM:enter!

21

SUB:userid?SUB:guestmode!

19

ROOM:leave!

PDA:pdf!

PDA:query? SUB:guestmode!

ROOM:enter!

PDA:query?

PDA:shutdown? 25

accept

SUB:userid?

PDA:shutdown?ROOM:leave!

ROOM:list?PDA:query?

15

ROOM:enter!PDA:shutdown? SUB:userid?

14

SUB:guestmode!PDA:shutdown?ROOM:leave!

SUB:userid?

ROOM:list?

ROOM:enter!

38

ROOM:leave!

SUB:userid?

SUB:userid?

PDA:choice?

PDA:shutdown? ROOM:leave!

PDA:query?

PDA:pdf!

SUB:guestmode!ROOM:enter!

SUB:guestmode!ROOM:enter!PDA:shutdown?

SUB:guestmode!PDA:shutdown?

SUB:guestmode!

ROOM:enter!

ROOM:enter!PDA:shutdown?

PDA:shutdown?

0

3

ROOM:enter!

6

PDA:query?

16

ROOM:list?

46

47

ROOM:textrequest!

27

PDA:list!

44

ROOM:selection!

35

PDA:choice?

41

PDA:choice?

39

ROOM:selection!

37

PDA:list!

42

ROOM:textrequest!

29

ROOM:list?

45

SUB:guestmode!

24

PDA:query? 32

ROOM:leave!

SUB:userid?

49

PDA:pdf!

48

ROOM:id!

ROOM:text?

Fig. 15. Adaptor protocol foreMuseum, version 3 (GUEST mode)

• name mismatch is solved,e.g., choice in PDA vs selection in ROOM;

• messages are reordered when required,e.g., PDA sendingquery and then waiting for thelist of possible

information to be displayed, whileROOM sending first thelist and waiting for aselection before waiting for

either atextrequest or videorequest which correspond toquery;

• id is re-sent toROOM when required;

• the contract is permissive –e.g. wrt. in which order to apply vectors vlist, vchoice, vtmode, vtget and vvend –

and the adaptor contains all possible orderings not leadingto deadlocks (yet we only have represented one

possible ordering on the zoom).

The adaptor for the full mode has 1477 states and 3326 transitions (2719 states and 6464 transitions before

pruning paths to deadlocks). After reduction, the resulting final adaptor has 307 states and 627 transitions. Due

to its size, the adaptor is given in Appendix I. Performing verification on the adapted system (made up of the

components and the adaptor) we have been able to check withCADP that important system-level properties are

enforced through adaptation: (i) no video is sent before thePDA logs on, and (ii) adebit is performed for each

video being sent.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

VI. T HE ADAPTOR TOOL

The approach for software adaptation that we have presentedin the former sections of this article has been

implemented in a tool, calledAdaptor [27]. The kernel ofAdaptor corresponds to the implementation of the

algorithms that generate adaptor protocols being given behavioural interfaces of components and an adaptation

contract. In addition,Adaptor presents graphical interfaces to load and visualise the different inputs, to apply

the different adaptation steps, and to visualise the intermediate encodings and final results. The tool was initially

developed in Python (about 9,000 lines of code1), and usesGTK+ technology for the development of the user

interface. More recently, to simplify the access and use of the tool, a Web service version ofAdaptor (WS-

Adaptor) has been implemented in Java. It enables one to adapt component protocols without installing more than

a GUI client (the engine and the required dependencies running in the distant Web service host).

Different input and output formats are used to describe respectively interfaces of components, contracts, and

resulting adaptors. As regards inputs, LTS interfaces may be described usingXML or the Aldebaran textual

format [21] (file extension.aut). Vectors and vector LTSs involved in contracts are specified usingXML.

Once the inputs are loaded,Adaptor usesdot [28] (graphviz) to visualise interfaces of components, intermediate

results for contracts, Petri nets, and adaptors. Textual formats are also possible for visualisation, or storing and

analysis purposes, namely.aut for LTSs and.net for Petri nets.Adaptor interacts with two other external tools,

namelyTINA and CADP. TINA [29] is a tool to design and validate Petri nets. It allows to apply structural and

reachability analysis on Petri nets.TINA is used inAdaptor to compute marking graphs from Petri nets encodings.

CADP [21] is a toolbox to verify concurrent systems. It is used to compute the mismatch test using itsEXP.OPEN

tool, and to perform reductions of the adaptor LTSs usingBCG MIN andReductor.

The current version ofAdaptor fully supports transactional components. For non-transactional ones, avoiding

state explosion when computing marking graphs requires that messages cannot be infinitely generated. This means

first that a component should not send some message infinitelyand independently (i.e., without having this action

triggered by a message reception or requiring an acknowledgement). In the same way, the adaptor should not

infinitely and independently generate messages using vectors such as〈 , . . . ,c:m?, , . . .〉.

Adaptor has been used to generate the adaptor protocols presented inthis article but it has been validated and

applied to many other examples as well (approximately 70 examples which correspond to 25,000 lines ofXML

specification) such as a Video-On-Demand service, a pervasive music player, a library lending system, and several

simpler client/server systems. More details are availableon theAdaptor Web page [27].

We show in Figure 16 three screenshots ofAdaptor to give a flavour of what the tool looks like, here applied

to eMuseum. The Adaptor GUI is made up of three different windows: the left-hand sidewindow contains the

already loaded component interfaces and contracts, the right-hand side window is used to visualise all the elements

involved in the adaptation process (interfaces, contracts, Petri nets, adaptors) under different formats (graphical,

textual,XML), and the bottom window is the console window. The first screenshot in Figure 16 shows theSUB

1approx. 5,000 lines of code correspond to the encoding of theadaptation techniques, and approx. 4,000 lines to the user interface.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

Fig. 16. Screenshots of theAdaptor tool – eMuseum, version 3

component LTS. The second screenshot is a textual description of the contract we have presented in Example 6.

Finally, the last one shows a piece of the adaptor during the adaptation process (before reduction).

VII. R ELATED WORK

Software composition and adaptation is currently a hot topic in Software Engineering research. A quick look

over the Web will easily produce a great number of works —ranging from deep theoretical works (e.g.,[30], which

uses category theory for signature adaptation viasuperposition, or name morphisms) to more practical proposals

(e.g.,[31] for Web Services). Furthermore, an increasing number of events are specifically focused on adaptation,

or have it as one of their main topics (e.g.,the WCAT series of workshops [32], starting in 2004).

The issues related with software component integration have been a classical field of study in Software Engi-

neering, and component mismatch has been described at all the levels of interoperability. A taxonomy of interface

mismatches appears in [2], classifying them intotechnicalmismatch, coming from the use of different operating

systems, platforms and frameworks;signaturemismatch, related with different names of methods and services,

parameter and exception types, and parameter ordering;protocol or behaviouralmismatch, caused by different

message ordering, and absence or surplus of messages;quality of servicemismatch, linked to different assumptions

on properties like security, persistency, reliability or efficiency; and finally,conceptualor semanticmismatch,

coming from the use of homonyms, synonyms for describing theservices provided, or the existence of sub- and

super-ordination relations between services.

Although some practical issues related with technical interoperability between different platforms still remain,

we consider that these are not demanding a significant research effort. Accordingly, the research in the field has

recently begun to explore the rest of sources of mismatch mentioned above. In particular, in this work the focus on

both the signature and behavioural levels, where the use of formal notations based on logic formulas, Petri nets,

process algebras, state machines, and many others have beenpromoted for enhancing software interfaces with a

behavioural description (see [33] for an early instance). One of the first proposals for defining behavioural mismatch

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

from a formal point of view can be found in [8], where process algebra is used for specifying and reasoning about

software composition. The work is continued in [34], where ameans of characterizing connector wrappers as

protocol transformations, and reasoning about their properties is presented. A similar approach is presented in [13],

where compatibility and substitutability is defined in the context of CORBA, as a first attempt to put these ideas

into industrial practice.

However, once behavioural mismatch is detected, the issue of how to adapt component protocols in order to solve

it arises. Many of the approaches found in the literature work at the implementation level, some of them [35]–[37],

related with existing programming languages and platforms, such as BPEL or SCA components, and suggesting

manual or at most semi-automated techniques for solving behavioural mismatch. For instance, [35] describes a

model-based approach to verifying Web service compositions, including the verification of properties created from

design specifications and implementation models to confirm expected results. However, once a violation of the

properties is detected, it should be manually corrected, either in the implementation of the components or in

the specification models, as part of an iterative development process. Also in the context of Web services and

BPEL, [36] outlines a methodology for the generation of adaptors capable of solving behavioural mismatches

between BPEL processes. In their adaptation methodology, the authors use an intermediate workflow language for

describing component behavioural interfaces, and they uselock analysis techniques to detect behavioural mismatch.

Similarly, [37] provides automated support for the identification of protocol-level mismatches, but is able to generate

an adaptor only in the absence of deadlock. If deadlock may arise from the combination of the components, the

authors propose a way to handle the situation by generating atree for all mismatches that result in a deadlock, and

suggesting some hints for assisting the designer in the manual implementation of the actual adaptor.

Current approaches aiming to provide a fully automated solution to this problem are comparatively fewer, and

can be divided intorestrictive, generative, and ad hoc [4]. Restrictive approaches [38]–[42] simply try to solve

the problem by cutting off the behaviour that may lead to mismatch, thus restricting the functionality of the

components involved. On the contrary, generative approaches like [9], [43], [44] try to accommodate the protocols

without restricting the behaviour of the components, by generating adaptors that act as mediators, remembering and

reordering events and data when necessary. Finally,ad hocapproaches (see for instance [45]–[47]), do not address

the adaptation from a general, automatable point of view, but propose specific practical solutions for particular

situations instead.

The foundation for automatic behavioural adaptation was set by Yellin and Strom (YS). In their seminal article [9],

they introduced formally the notion ofadaptoras a software entity capable of enabling the interoperationof two

components with mismatching behaviour. They used finite state machines to specify component interaction, to

define a relation of compatibility, and to address the task of(semi-)automatic adaptor construction following the

generative approach mentioned above.

More recently, Schmidt and Reussner (SR) presented a particular adaptation approach as a solution to synchro-

nisation problems between concurrent components [45]. Theproposal addresses for instance situations where one

component is accessed simultaneously by two other components. The approach is based on algorithms close to the

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

synchronous products we use in this article. Moreover, theycan solve protocol incompatibilities enabling one of the

involved components to perform several communication actions before or after synchronising with its partners. These

ideas are implemented in the CoConut/J tool suite [48], where the authors introduce the concept of parameterised

contracts and a model for component interfaces. The paper also presents algorithms and tools for specifying and

analysing component interfaces in order to check interoperability and to generate adapted component interfaces

automatically. In comparison, our proposal is more generaland based on a rich notation to deal with possibly

complex adaptation scenarios, whereas the SR approach works out only precise situations in which mismatch may

happen, without using any contract language for adaptor specification.

In their paperAdapt or Perish[49], Dumas and collaborators presented an approach to behavioural interface

adaptation based on the definition of a set of adaptation operations for establishing the basic relation patterns

between the messages names used in the components being adapted, and they defined a trace-based algebra for

describing the transformations required to solve the adaptation problem. They also present a visual notation for

describing a mapping between the behavioural interfaces ofthe components. Their approach is similar to ours in the

sense that these basic operations correspond to the different relations (one-to-one, one-to-many, many-to-one, one-to-

zero, etc) between message names that can be defined by means of our synchronous vectors. However, their proposal

does not present a solution for deriving an adaptor from the visual mappings, but just contains a preliminary (i.e.,

non sufficient) condition for detecting deadlock scenariosin the behavioural interfaces. Moreover, their mappings

require to relate the messages at the behavioural level (i.e., matching messages directly from the component protocol

specifications), while our adaptation contracts are more abstract, since the mapping is performed at the signature

level (i.e., between the messages declared in the component interfaces) from which we automatically obtain an

adaptor solving the mismatch at the behavioural level. Finally, their approach is not able to perform message

reordering when it is required for solving the problem.

Taking the YS proposal as a starting point, the work of Brogi and collaborators (BBCP) [43], [44] presents a

methodology for generative behavioural adaptation. In their proposal, component behaviour is specified using a

process algebra —a subset of theπ-calculus—, where service offering/invocation is represented by input/output

events in the calculus, respectively. The starting point oftheir adaptation process is amapping, an adaptation

contract that states correspondences between the servicesof the components being adapted. Then, an adaptor

generation algorithm refines the specification given by the mapping into a concrete adaptor implementation, taking

into account the behavioural interfaces of the components,which ensures correct interaction between them according

to the mapping. The adaptor is able to accommodate not only signature mismatch between service names, but also

behavioural mismatch (i.e., the interaction protocols that the components follow, or the partial ordering in which

services are offered/invoked).

Another interesting proposal in this field is that of Inverardi and Tivoli (IT) [38]. Certain aspects of their work go

beyond BBCP by addressing how to enforce certain behavioural properties (namely liveness and safety properties

expressed as specific processes) out of a set of already implemented behaviours. Starting from the specification

with MSCs of the components to be assembled and of the properties that the resulting system should verify, they

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

automatically derive the adaptor glue code for the set of components in order to obtain a property-satisfying system.

In order to do that, they follow the so-called restrictive approach. The IT proposal was extended in [39] with the use

of temporal logic; coordination policies are expressed as LTL properties, and then translated into Büchi automata.

Recent outcomes of this research line allow a distributed implementation of the adaptors [40], and take into account

time and other QoS issues [41].

Another example of the restrictive approach is the work of deAlfaro and collaborators [11], [42], who use game

theory to achieve behavioural adaptation. One of the relevant features of the proposal is that time information can

be taken into account within the component interfaces.

Our approach to behavioural adaptation can be considered asboth generative and restrictive, since we address

behavioural adaptation by enabling event reordering (as inBBCP), while we also remove incorrect behaviour (as

in IT). Similarly to both of them, our main goal is to ensure deadlock freedom. However, more complex adaptation

policies and properties can be specified by means of our vector LTSs. A deeper comparison with the aforementioned

approaches yields that our proposal addresses system-wideadaptation (i.e., differently from BBCP, it may involve

more than two components), and that it is based on LTS descriptions of component behaviour, instead of using

process algebra as in BBCP. However, we may also describe behaviour by means of a simple process algebra, and

use its operational semantics to derive LTSs from it [14]. Differently from IT, which requires name matching, we

use synchronous vectors in our adaptation contracts, playing a similar function than the mapping rules in BBCP.

With that, we are able to perform adaptation of incompatibleevents. Finally, our approach is fully tool equipped,

while BBCP have only presented a sketch of the implementation of their adaptation algorithm.

Nevertheless, the most relevant achievement of our currentproposal is the use of vector LTSs for imposing

additional properties over adaptation contracts. In fact,the semantics of BBCP mappings can be expressed by

combining their different rules in a vector LTS with a singlestate and all vector transitions looping on it. On the

contrary, our vector LTSs are much more expressive, solvingthe problem of BBCP underspecified mappings [43],

and allowing to take into account a new class of adaptation problems.

A different characterisation of behavioural adaptation techniques may classify them intoimmutableandcontextual.

Immutable approaches are those that define a static set of rules for describing the adaptation required, and these rules

are applied uniformly during the whole adaptation process.On the contrary, contextual adaptation pays attention

to context information in order to decide on-the-fly the adaptation strategy to apply. Our present approach allows

contextual adaptation by the use of vector LTSs which governwhen the adaptation rules are applied (as shown

in Figs. 7 and 13), while the rest of the approaches mentionedabove are static. Some recent works based on the

BBCP proposal try to address more flexible ways of contextualadaptation [50].

Finally, most of the current adaptation proposals — and our present work among them— may be considered as

global, since they proceed by computing global adaptors for closedsystems made up of a predefined and fixed set

of components. However, this is not satisfactory when the system may evolve, with components entering or leaving

it at any time,e.g., for pervasive computing. To enable adaptation on such systems, anincrementalapproach should

be considered, by which the adaptation is dynamically reconfigured depending on the components present in the

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 29

system. One of the first attempts in this direction is [51], whose proposal for incremental software construction by

means of refinement allows for simple signature adaptation.However, to our knowledge the only proposal addressing

incremental adaptation at the behavioural level is [52].

VIII. C ONCLUDING REMARKS

Software Adaptation is widely accepted as a promising solution to favour the reuse of black-box components

that require non intrusive adjustments to make them fit with the specificities of the system-to-be. In this article, we

have presented a proposal for software adaptation at the signature and behavioural levels based on a simple adap-

tation contract notation. These contracts can be used to express correspondences (possibly involving mismatching

messages) between an arbitrary number of components, but also complex adaptation scenarios. Our proposal is

equipped with two algorithms depending whether reorderingis necessary or not in the adaptation process. The first

one is based on synchronous product computation, and the second one on encodings into Petri nets. Our proposal

is completely supported by a tool which was applied to many examples.

In this article we follow a regular model-based approach, focusing on abstract (platform-independent) behavioural

interface models, LTSs. It has been demonstrated, usually for verification purposes, that such abstract models

could be derived from existing implementation platforms’ languages,e.g., [53]–[55] for Web services. As regards

adaptation, model-based behavioural adaptation has been applied to COM/DCOM components in [38] and to Web

services in [36], [37]. In a recent paper [15], we have addressed WF components. We have shown how LTS

descriptions could be extracted automatically from WF workflows, and how a new WF component could be obtained

from an adaptor protocol generated with the techniques we have presented here. Therefore, we think the proposed

adaptation techniques are of great interest for real-worldsoftware components or Web services.

There are still some open issues in our proposal deserving future work. In this part of the conclusion, we

will particularly emphasise three perspectives, namely data adaptation, contract design support, and application to

pervasive systems.

Data adaptation. Taking data exchange into account in protocols is importantto ensure full compatibility. So far,

this can be supported in the approach at hand using additional messages for data exchange in the abstract component

protocols (LTSs), as presented in Section II-A. Provided this encoding is performed as a pre-processing, and the

adaptation contract takes the additional messages into account, the protocols can be adapted, as demonstrated in [15].

Supporting directly data types would be more efficient but would require first more expressive models than

LTSs. In particular, we consider Symbolic Transition Systems (STSs) [56] or Extended State Diagrams [57] as

good candidates since they allow the description of the datainvolved in the operations within the protocol without

suffering from the state explosion problem. Then, data types should be taken into account also in the contract

specification as for the additional message encoding technique, above. As far as the adaptation process itself is

concerned, we are studying two possible techniques. The first one is compatible with the approach at hand,e.g.,

for the reordering approach, it consists in taking the data types into account in the Petri net encoding patterns (data

types resources being generated for component emissions, data type resources being consumed for components

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 30

receptions and data types being transferred for data vectors). We are currently looking for an efficient Petri net

encoding, using Petri net extensions, in order to avoid state explosion problems. The second technique specifically

addresses these efficiency issues. It consists in implementing data adaptation separately from the message-based

one, through a data adaptation engine that would be embeddedin the adaptor implementation, and that would store

received values and redistribute themwrt. the correspondences expressed in the data contract.

Support for contract design.The design of an adaptation contract may be a non-trivial anderror-prone task, leading

to too many interactions being removed in the adaptation process to ensure deadlock-freedom. To address this issue,

recent work has focused on post-generation adaptor assessment, either by reusing existing model-checkers [58],

or by developing new tools such asClint [59], that is able to graphically represent deadlocks in components and

interactions that are removed in the adaptation process. The former approach is more powerful yet it requires

temporal logic formulas are given. This is the approach we have used in this article to obtain our mappings. The

later is less expressive (as far as the kind of properties which are assessed over the adapted system are concerned)

yet, it benefits from being fully-automatic.

Approaches dedicated to the automatic generation of compositions are indeed the current goal of research groups

working at the semantic interoperability level,e.g.,adding semantic annotation to (Web) services [60]. Yet, enforcing

a semantic description for all components (including legacy ones) is a strong assumption.

We are convinced that an assisted design approach is a good trade-off between complete automation and manual

writing of the composition and adaptation contracts. Further, it enables a end-user composition vision [61], [62].

As a perspective, we plan to propose techniques to support the contract design task. A partial specification of the

contract could be given for which remaining composition issues (such as deadlocks in components and interactions

that would be removed by the adaptation process) would be emphasised usingClint. In addition, incremental contract

construction, where at each step possible message correspondences to complete the contract would be proposed,

would foster the user-friendliness of the contract design process.

Self-adaptive pervasive systems.A perspective in the context of funded research projects is to apply our adaptation

techniques to pervasive systems. In this field, self-adaptation is a mandatory feature because less assumptions can

be done on the system at hand,e.g.,new components or services can show up or disappear at run-time while the

overall adaptation mechanism should support these evolutions and keep on making the system work in a reliable

way. Dynamic Aspect Oriented Programming is a technology weare currently exploring as well to put into practice

adaptation techniques in this highly dynamic context.

Acknowledgements

The authors thank Sandrine Beauche and Juan David G. Urbano for their participation to the implementation

of Adaptor, as well as Bernard Berthomieu, Frédéric Lang, Massimo Tivoli, and François Vernadat for their

help on external tool support, interesting comments and fruitful discussions. The authors are also grateful to the

anonymous referees whose comments helped a lot to improve this article. This work is partially supported by the

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 31

projects “PERvasive Service cOmposition” (PERSO) funded by the French National Agency for Research (ANR-

07-JCJC-0155-01), TIN2004-07943-C04-01 funded by the Spanish Ministry of Education and Science (MEC), and

P06-TIC-02250 funded by the Andalusian local Government.

REFERENCES

[1] O. Nierstrasz and T. D. Meijler, “Research Directions inSoftware Composition,”ACM Computing Surveys, vol. 27, no. 2, pp. 262–264,

1995.

[2] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli, “Towards an Engineering Approach to Component Adaptation,”

in Architecting Systems with Trustworthy Components, ser. Lecture Notes in Computer Science, vol. 3938. Springer, 2006, pp. 193–215.

[3] C. Canal, J. M. Murillo, and P. Poizat, “Coordination andAdaptation Techniques for Software Entities,” inECOOP 2004 Workshop Reader,

ser. Lecture Notes in Computer Science, vol. 3344. Springer, 2004, pp. 133–147.

[4] ——, “Software Adaptation,”L’Objet. Special Issue on Coordination and Adaptation Techniques, vol. 12, no. 1, pp. 9–31, 2006.

[5] G. Agha, “Special Issue on Adaptive Middleware,”Communications of the ACM, vol. 45, no. 6, pp. 30–64, 2002.

[6] C. Szyperski,Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1998.

[7] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau, “MakingComponents Contract Aware,”IEEE Computer, vol. 32, no. 7, pp. 38–45, 1999.

[8] R. Allen and D. Garlan, “A Formal Basis for ArchitecturalConnection,”ACM Transactions on Software Engineering and Methodology,

vol. 6, no. 3, pp. 213–249, 1997.

[9] D. M. Yellin and R. E. Strom, “Protocol Specifications andComponents Adaptors,”ACM Transactions on Programming Languages and

Systems, vol. 19, no. 2, pp. 292–333, 1997.

[10] J. Magee, J. Kramer, and D. Giannakopoulou, “BehaviourAnalysis of Software Architectures,” inProc. of the 1st Working IFIP Conference

on Software Architecture (WICSA1). Kluwer Academic Publishers, 1999, pp. 35–49.

[11] L. de Alfaro and T. A. Henzinger, “Interface Automata,”in Proc. of the 8th European Software Engineering Conference held jointly

with the 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC/FSE’01). ACM Press, 2001, pp.

109–120.

[12] F. Plasil and S. Visnovsky, “Behavior Protocols for Software Components,”IEEE Transactions on Software Engineering, vol. 28, no. 11,

pp. 1056–1076, 2002.

[13] C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo, “Adding Roles to CORBA Objects,”IEEE Transactions on Software

Engineering, vol. 29, no. 3, pp. 242–260, 2003.

[14] C. Canal, P. Poizat, and G. Salaün, “Synchronizing Behavioural Mismatch in Software Composition,” inProc. of the 8th IFIP International

Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’06), ser. Lecture Notes in Computer Science, vol.

4037. Springer, 2006, pp. 63–77.

[15] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat, “A Model-Based Approach to the Verification and Adaptationof WF/.NET

Components,” inProc. of the 4th International Workshop on Formal Aspects ofComponent Software (FACS’07), ser. Electronic Notes in

Theoretical Computer Science. Elsevier, 2007, to appear.

[16] K. Scribner,Microsoft Windows Workflow Foundation: Step by Step. Microsoft Press, 2007.

[17] J. A. Bergstra, A. Ponse, and S. A. Smolka, Eds.,Handbook of Process Algebra. Elsevier, 2001.

[18] R. Milner, Communication and Concurrency, ser. International Series in Computer Science. Prentice Hall, 1994.

[19] M. Bernardo and P. Inverardi, Eds.,Formal Methods for Software Architectures, ser. LNCS. Springer, 2003, vol. 2804.

[20] A. Arnold, Finite Transition Systems, ser. International Series in Computer Science. Prentice Hall, 1994.

[21] H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “CADP 2006: A Toolbox for the Construction and Analysis of Distributed Processes,”

in Proc. of 19th International Conference on Computer Aided Verification (CAV’07), ser. Lecture Notes in Computer Science, vol. 4590.

Springer, 2007, pp. 158–163.

[22] S. Haddad and P. Poizat, “Transactional Reduction of Component Compositions,” inProc. of the 27th IFIP International Conference on

Formal Methods for Networked and Distributed Systems (FORTE’07), ser. Lecture Notes in Computer Science, vol. 4574. Springer, 2007,

pp. 341–357.

[23] J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages and Computation. Addison Wesley, 1979.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 32

[24] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of Behavioural Models from Scenarios,”IEEE Transactions on Software Engineering,

vol. 29, no. 2, pp. 99–115, 2003.

[25] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[26] C. Rackoff, “The Covering and Boundedness Problems forVector Addition Systems,”Theoretical Computer Science, vol. 6, pp. 223–231,

1978.

[27] “Adaptor, December 2007 distribution (LGPL licence).” 2007, http://adaptorweb.lcc.uma.es/.

[28] E. Gansner, E. Koutsofios, and S. North,DOT User’s Manual, Jan. 2006.

[29] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The Tool TINA – Construction of Abstract State Spaces for Petri Nets and Time Petri Nets,”

International Journal of Production Research, vol. 42, no. 14, pp. 2741–2756, 2004.

[30] M. Wermelinger, A. Lopes, and J. L. Fiadeiro, “A Graph Based Architectural (Re)configuration Language,” inProc. of the 8th European

Software Engineering Conference held jointly with the 9th ACM SIGSOFT International Symposium on Foundations of Software Engineering

(ESEC/FSE’01). ACM Press, 2001, pp. 20–32.

[31] S. Dustdar and W. Schreiner, “A Survey on Web Services Composition,” International Journal of Web and Grid Services, vol. 1, no. 1,

pp. 1–30, 2005.

[32] “International Workshop Series on Coordination and Adaptation Techniques,”http://wcat.unex.es.

[33] D. Lea and J. Marlowe, “Interface-Based Protocol Specification of Open Systems Using PSL,” inProc. of the 9th European Conference

Object-Oriented Programming (ECOOP’95), ser. Lecture Notes in Computer Science, vol. 952. Springer, 1995, pp. 374–398.

[34] B. Spitznagel and D. Garlan, “A Compositional Formalization of Connector Wrappers,” inProc. of the 25th International Conference on

Software Engineering (ICSE’03). IEEE Computer Society, 2003, pp. 374–384.

[35] H. Foster, S. Uchitel, J. Maggee, and J. Kramer, “Model-based Verification of Web Service Compositions,” inProc. of the 18th IEEE

International Conference on Automated Software Engineering (ASE’03). IEEE Computer Society, 2003, pp. 152–163.

[36] A. Brogi and R. Popescu, “Automated Generation of BPEL Adapters,” inProc. of the 4th International Conference on Service Oriented

Computing (ICSOC’06), ser. Lecture Notes in Computer Science, vol. 4294. Springer, 2006, pp. 27–39.

[37] H. R. Motahari-Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati, “Semi-Automated Adaptation of Service Interactions,” in

Proc. of the 16th International World-Wide Web Conference (WWW’07), 2007, pp. 993–1002.

[38] P. Inverardi and M. Tivoli, “Deadlock Free Software Architectures for COM/DCOM Applications,”Journal of Systems and Software,

vol. 65, no. 3, pp. 173–183, 2003.

[39] ——, “Software Architecture for Correct Components Assembly,” in [19] , pp. 92–121.

[40] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli, “SYNTHESIS: A Tool for Automatically Assembling Correct and Distributed Component-

based Systems,” inProc. of the 29th International Conference on Software Engineering (ICSE’07). IEEE Computer Society, 2007, pp.

784–787.

[41] M. Tivoli, P. Fradet, A. Girault, and G. Goessler, “Adaptor Synthesis for Real-Rime Components,” inProc. of the 13th International

Conference on Tools and Algorithms for the Construction andAnalysis of Systems (TACAS’07), ser. Lecture Notes in Computer Science,

vol. 4424. Springer, 2007, pp. 185–200.

[42] L. de Alfaro and M. Stoelinga, “Interfaces: A Game-Theoretic Framework to Reason about Open-Systems,” inProc. of the 2nd International

Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA’03), ser. Electronic Notes in Theoretical

Computer Science, vol. 97, 2004, pp. 3–23.

[43] A. Bracciali, A. Brogi, and C. Canal, “A Formal Approachto Component Adaptation,”Journal of Systems and Software, vol. 74, no. 1,

pp. 45–54, 2005.

[44] A. Brogi, C. Canal, and E. Pimentel, “Component Adaptation Through Flexible Subservicing,”Science of Computer Programming, vol. 63,

no. 1, pp. 39–56, 2006.

[45] H. W. Schmidt and R. H. Reussner, “Generating Adapters for Concurrent Component Protocol Synchronization,” inProc. of the 5th

International Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS’02). Kluwer Academic Publishers,

2002, pp. 213–229.

[46] H. Min, S. Choi, and S. Kim, “Using Smart Connectors to Resolve Partial Matching Problems in COTS Component Acquisition,” in

Proc. of 7th International Symposium on Component-Based Software Engineering (CBSE’04), ser. Lecture Notes in Computer Science,

vol. 3054. Springer, 2004, pp. 40–47.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 33

[47] B. Benatallah, F. Casati, D. Grigori, H. R. Motahari-Nezhad, and F. Toumani, “Developing Adapters for Web ServicesIntegration,” inProc.

of the 17th Conference on Advanced Information Systems Engineering (CAiSE’05), ser. Lecture Notes in Computer Science. Springer,

2005, vol. 3520, pp. 415–429.

[48] R. H. Reussner, “Automatic Component Protocol Adaptation with the CoConut/J Tool Suite,”Future Generation Computer Systems, vol. 19,

no. 5, pp. 627–639, 2003.

[49] M. Dumas, K. W. S. Wang, and M. L. Spork, “Adapt or Perish:Algebra and Visual Notation for Service Interface Adaptation,” in Proc.

of the 4th International Conference on Business Process Management (BPM’06), ser. Lecture Notes in Computer Science, vol. 4102.

Springer, 2006, pp. 65–80.

[50] J. Cubo, G. Salaün, J. Cámara, C. Canal, and E. Pimentel, “Context-Based Adaptation of Component Behavioural Interfaces,” inProc.

of the 9th Conference on Coordination Models and Languages (Coordination’07), ser. Lecture Notes in Computer Science, vol. 4467.

Springer, 2007, pp. 305–323.

[51] R. J. Back, “Incremental Software Construction with Refinement Diagrams,” Turku Center for Computer Science, Tech. Rep. 660, 2005.

[52] P. Poizat and G. Salaün, “Adaptation of Open Component-based Systems,” inProc. of the 9th IFIP International Conference on Formal

Methods for Open Object-Based Distributed Systems (FMOODS’07), ser. Lecture Notes in Computer Science, vol. 4468. Springer, 2007,

pp. 141–156.

[53] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting BPEL Web Services,” inProc. of the 13th International Conference on World Wide

Web (WWW’04). ACM Press, 2004, pp. 621–630.

[54] G. Salaün, L. Bordeaux, and M. Schaerf, “Describing and Reasoning on Web Services using Process Algebra,” inProc. of the IEEE

International Conference on Web Services (ICWS’04). IEEE Computer Society, 2004, pp. 43–51.

[55] H. Foster, S. Uchitel, and J. Kramer, “LTSA-WS: A Tool for Model-based Verification of Web Service Compositions and Choreography,”

in Proc. of 28th International Conference on Software Engineering (ICSE’06). ACM Press, 2006, pp. 771–774.

[56] O. Maréchal, P. Poizat, and J.-C. Royer, “Checking Asynchronously Communicating Components using Symbolic Transition Systems,” in

Proc. of the International Symposium on Distributed Objects and Applications (DOA’2004), ser. Lecture Notes in Computer Science, vol.

3291. Springer, 2004, pp. 1502–1519.

[57] C. Attiogbé, P. Poizat, and G. Salaün, “A Formal and Tool-Equipped Approach for the Integration of State Diagramsand Formal Datatypes,”

IEEE Transactions on Software Engineering, vol. 33, no. 3, pp. 157–170, 2007.

[58] P. Poizat, G. Salaün, and M. Tivoli, “An Adaptation-based Approach to Incrementally Build Component Systems,” inProc. of the 3rd

International Workshop on Formal Aspects of Component Software (FACS’06), ser. Electronic Notes in Theoretical Computer Science, no.

182. Elsevier, 2007, pp. 155–170.

[59] J. Cámara, G. Salaün, and C. Canal, “Clint: A Composition Language Interpreter,” inProc. of the 11th International Conference on

Fundamental Approaches to Software Engineering (FASE’08). Springer, 2008, to appear.

[60] S. Ben Mokhtar, N. Georgantas, and V. Issarny, “COCOA: COnversation-based Service Composition in PervAsive Computing Environments

with QoS Support,”Journal of Systems and Software, Special Issue on ICPS’06, vol. 80, no. 12, pp. 1941–1955, 2007.

[61] M. Burnett, C. Cook, and G. Rothermel, “End-user software engineering,”Communications of the ACM, vol. 47, no. 9, pp. 53–58, 2004.

[62] X. Liu, G. Huang, and H. Mei, “Towards End User Service Composition,” in Proc. of the 31st Annual International Computer Software

and Applications Conference (COMPSAC’07), 2007, pp. 676–678.

February 1, 2008 DRAFT

IE
E

E
T

R
A

N
S

A
C

T
IO

N
S

O
N

S
O

F
T

W
A

R
E

E
N

G
IN

E
E

R
IN

G
34

A
P

P
E

N
D

IX
I

A
D

D
IT

IO
N

A
L

F
IG

U
R

E
S

0

4

ROOM:enter!

2

PDA:query?

1

PDA:credentials?

5

SUB:guestmode!

3

PDA:shutdown?

6

accept

216

12

SUB:userid?

232

ROOM:leave!

217

PDA:shutdown?

14

SUB:userid?

214

230

SUB:userid?

231

ROOM:leave!

40

PDA:invoice!

212

SUB:bill?

213

SUB:guestmode!PDA:invoice!

210

229

SUB:auth?

228

ROOM:videorequest!

211

ROOM:selection!

165

184

PDA:choice?

185

SUB:userid?

264

271

ROOM:list?

272

SUB:auth?

265

273

PDA:mpeg!ROOM:quit!

218

ROOM:enter!

39

PDA:invoice!

219

234

ROOM:list?

233

PDA:login?

133

151

SUB:debit!

150

PDA:list!

132

149

PDA:ticket!

131

148

PDA:query?

SUB:userid?

130

147

PDA:list! SUB:payinfo!

137

153

PDA:logout?

154

PDA:query?ROOM:list?

136

SUB:userid?

ROOM:list?

135

SUB:userid?

134

152

SUB:usermode!

139

ROOM:list?

156

SUB:auth?

138

155

SUB:bill?

166

186

SUB:debit!PDA:list!

24

46

PDA:login?

47

SUB:guestmode!

25

48

PDA:login?

49

SUB:userid? ROOM:list?

26

44

SUB:userid?

42

ROOM:enter!

27

51

ROOM:enter!

50

PDA:login?

20

SUB:guestmode!

43

SUB:usermode!

41

ROOM:list?

21

SUB:userid? ROOM:enter!

22

45

SUB:payinfo!ROOM:enter!

23

SUB:guestmode! SUB:usermode!ROOM:list?

28

53

SUB:guestmode!

52

PDA:list!

29

54

SUB:userid?

ROOM:list?

161

177

SUB:userid?

175

ROOM:enter!

180

PDA:invoice!

289

ROOM:quit!

8

PDA:credentials?

10

PDA:query?

PDA:shutdown?

15

ROOM:list?

16

SUB:guestmode!

ROOM:leave!

281

PDA:mpeg!

285

ROOM:list?

ROOM:list?SUB:guestmode! PDA:login?

283

ROOM:quit!

288

SUB:bill?

163

182

ROOM:videorequest!

183

SUB:usermode!

PDA:mpeg!

284

ROOM:quit!SUB:auth?

287

291

SUB:debit! ROOM:quit!

286

290

SUB:exit! ROOM:quit!

119

SUB:exit!

258

267

SUB:payinfo!

120

ROOM:list?

SUB:debit!

121

ROOM:enter!

140

SUB:usermode!

122

ROOM:enter!

141

SUB:userid?

123

ROOM:enter!

142

SUB:userid?

124

ROOM:enter! PDA:query? PDA:logout?

125

ROOM:enter!

143

SUB:bill?

126

ROOM:enter!

144

SUB:auth?

127

145

SUB:userid?

128

ROOM:textrequest!

129

146

PDA:choice? SUB:usermode!

269

276

SUB:auth?

275

ROOM:quit!

268

274

ROOM:list? SUB:debit!

167

187

ROOM:selection!

188

SUB:debit!

118

ROOM:list?

PDA:ticket!

59

75

PDA:query?

72

PDA:credentials?

58

PDA:query? PDA:credentials?

55

76

SUB:userid?

ROOM:list?

56

ROOM:leave!

ROOM:list?

71

PDA:login?

65

PDA:ticket!

66

ROOM:enter!

67

SUB:usermode!SUB:userid?

74

PDA:list!SUB:guestmode!

73

PDA:choice?

259

SUB:userid?ROOM:list?

298

301

PDA:shutdown?

302

SUB:guestmode!

18

ROOM:quit!

299

ROOM:quit! PDA:invoice!

303

SUB:userid?

ROOM:quit!

282

PDA:mpeg!

297

SUB:userid?

195

ROOM:quit!

300

PDA:shutdown?

294

PDA:invoice!SUB:guestmode!

191

ROOM:quit!

295

192

ROOM:quit!

292

SUB:guestmode!

296

PDA:shutdown?

173

ROOM:quit!

293

PDA:invoice!SUB:userid? ROOM:quit!SUB:bill?

171

ROOM:quit!SUB:auth?

172

ROOM:quit!

164

ROOM:selection! SUB:payinfo!

201

57

PDA:pdf!

199

ROOM:enter! SUB:userid?

200

PDA:credentials?PDA:query?

PDA:shutdown?

220

ROOM:list?

ROOM:leave!

PDA:shutdown?ROOM:leave!SUB:userid?

197

ROOM:enter!

SUB:bill?

178

ROOM:enter!

SUB:guestmode! ROOM:leave! PDA:invoice!

190

SUB:exit!

193

SUB:guestmode!

215

ROOM:leave!

208

ROOM:list?

115

SUB:payinfo!

114

SUB:userid?

88

93

SUB:usermode!

92

PDA:ticket!

89

108

SUB:guestmode!

107

ROOM:textrequest!

111

SUB:payinfo!PDA:query?

110

SUB:usermode!PDA:list!

113

PDA:query?

112

SUB:userid?

PDA:ticket!

82

99

PDA:ticket!

94

ROOM:list?

83

100

SUB:guestmode!

101

SUB:usermode!

95

ROOM:enter!

80

SUB:usermode!PDA:ticket!

81

98

SUB:payinfo!ROOM:list?

97

PDA:ticket!

86

103

PDA:ticket!

104

SUB:userid?

ROOM:enter!

87

106

PDA:query?

105

PDA:logout?ROOM:enter!

84

102

SUB:usermode!

96

ROOM:enter!

85

PDA:query? SUB:payinfo!PDA:logout?ROOM:enter!

251

262

SUB:auth?

261

ROOM:id!

304

306

SUB:userid?

32

ROOM:quit!

198

ROOM:enter!SUB:userid?

19

PDA:invoice!

256

266

SUB:payinfo!

206

225

SUB:debit!

224

ROOM:selection!

226

240

PDA:choice?

257

SUB:userid?ROOM:list?

ROOM:enter! SUB:guestmode! PDA:invoice!

254

ROOM:quit! SUB:auth?

7

ROOM:enter!SUB:guestmode! SUB:usermode!

247

SUB:usermode!

ROOM:quit!

279

PDA:query?

278

PDA:logout?

255

ROOM:video?

ROOM:quit!SUB:userid?

SUB:guestmode! ROOM:quit!PDA:shutdown?

305

SUB:userid? ROOM:quit!PDA:invoice!ROOM:quit!

SUB:auth?

239

ROOM:selection!

PDA:shutdown?

60

ROOM:quit!

ROOM:quit!

245

SUB:usermode!

244

PDA:invoice!

ROOM:textrequest! SUB:userid?

109

ROOM:selection!

241

SUB:debit!

253

ROOM:quit!

252

ROOM:selection!

243

ROOM:id!

242

ROOM:video? SUB:auth?

SUB:payinfo!

116

ROOM:enter! PDA:logout? PDA:query?

SUB:userid?

117

ROOM:enter!SUB:userid? ROOM:enter! SUB:payinfo!ROOM:enter!

ROOM:enter! SUB:debit!

SUB:guestmode!

PDA:ticket!

ROOM:enter!

ROOM:enter! SUB:exit!

38

ROOM:list?

PDA:query?

PDA:shutdown?

PDA:credentials?

ROOM:leave!

ROOM:quit!SUB:guestmode!

ROOM:leave!SUB:userid?

30

ROOM:enter!

37

ROOM:enter! PDA:login?

36

ROOM:list?

PDA:query?

PDA:shutdown?

PDA:credentials?

ROOM:leave!

35

SUB:userid?PDA:query? PDA:credentials?

34

PDA:shutdown?SUB:userid?

246

ROOM:list? SUB:payinfo!

ROOM:quit!PDA:query? PDA:logout?

ROOM:videorequest!

205

223

ROOM:videorequest! SUB:userid?

238

SUB:userid?

237

ROOM:id!

176

SUB:exit!ROOM:enter!

PDA:shutdown?ROOM:leave!

61

77

SUB:userid?

62

78

SUB:payinfo!

63

ROOM:list? SUB:usermode!

79

PDA:ticket!

64

SUB:userid?ROOM:list?PDA:logout? PDA:query? SUB:usermode!ROOM:enter!ROOM:list? SUB:usermode!PDA:ticket! ROOM:enter! SUB:payinfo!PDA:ticket!

68

ROOM:enter!

PDA:ticket!

69

SUB:userid?

PDA:invoice!SUB:userid?

196

ROOM:leave!

174

SUB:guestmode!

194

PDA:invoice!SUB:guestmode! PDA:shutdown?ROOM:leave!SUB:auth?ROOM:list? SUB:bill?

170

SUB:userid?

203

222

SUB:usermode!

221

ROOM:video?

236

ROOM:video? SUB:payinfo!

PDA:invoice!SUB:guestmode! ROOM:quit!

181

ROOM:leave!PDA:pdf!

202

ROOM:list?

SUB:debit!

263

ROOM:list?

248

ROOM:list? SUB:payinfo!

ROOM:id!

204

SUB:usermode! SUB:payinfo!ROOM:videorequest!

PDA:shutdown?ROOM:enter! SUB:userid?

11

SUB:guestmode! ROOM:enter!

162

ROOM:text?

SUB:debit!

209

ROOM:videorequest!SUB:userid?ROOM:selection!

PDA:credentials?

PDA:query?

207

PDA:list! SUB:auth?

ROOM:selection!

SUB:auth?

189

PDA:choice?

PDA:pdf!

PDA:invoice!SUB:userid?

235

ROOM:quit! SUB:usermode!

PDA:choice?

SUB:debit!

277

SUB:auth?

PDA:logout? PDA:query?

ROOM:list?

SUB:userid?

ROOM:list? PDA:ticket!

168

PDA:choice?

SUB:auth?

169

PDA:list!

ROOM:videorequest!SUB:auth?ROOM:id!

91

PDA:choice?

90

ROOM:selection! SUB:userid?

PDA:ticket! SUB:payinfo!SUB:usermode!PDA:query? SUB:usermode!SUB:guestmode! PDA:ticket!PDA:logout?ROOM:list? SUB:payinfo!PDA:query?ROOM:list? SUB:usermode!

ROOM:enter!SUB:userid? ROOM:list?SUB:guestmode!

13

ROOM:enter!

33

SUB:userid? SUB:guestmode!

31

ROOM:leave!

PDA:credentials?PDA:query? SUB:guestmode!

17

ROOM:enter!PDA:query? PDA:credentials?

PDA:shutdown?

accept

PDA:credentials?PDA:query?

PDA:shutdown?

SUB:userid? ROOM:list?

ROOM:leave!

PDA:shutdown?ROOM:enter!SUB:userid? PDA:shutdown?SUB:guestmode! ROOM:leave!

ROOM:list?

SUB:userid?

PDA:query? PDA:logout?ROOM:list? SUB:payinfo!

270

ROOM:video?

280

SUB:debit!

SUB:payinfo!ROOM:id!

ROOM:videorequest! SUB:debit!

SUB:auth?ROOM:list?

PDA:list!

SUB:auth?

PDA:choice? SUB:debit!

SUB:exit!

SUB:payinfo!

SUB:guestmode! ROOM:leave! PDA:invoice!ROOM:list? SUB:debit!

157

SUB:userid?ROOM:enter!

ROOM:list?

159

SUB:auth?ROOM:enter!

158

SUB:bill?ROOM:enter!

PDA:mpeg!

PDA:login?

SUB:debit!

250

ROOM:id! ROOM:videorequest! SUB:auth?

227

ROOM:video? SUB:debit!

SUB:debit! ROOM:quit!

SUB:auth?

PDA:choice?

ROOM:list? SUB:usermode!ROOM:quit!

249

SUB:payinfo! ROOM:video? SUB:userid?

ROOM:leave! PDA:invoice!SUB:userid? PDA:invoice! SUB:userid?

ROOM:list?SUB:usermode!

SUB:auth?

ROOM:list?SUB:userid?ROOM:list? PDA:login? SUB:guestmode! SUB:usermode!PDA:login?

70

SUB:userid? PDA:ticket!ROOM:enter! SUB:usermode! ROOM:enter! SUB:userid?ROOM:list?SUB:userid? ROOM:list? SUB:payinfo!

PDA:shutdown?ROOM:leave!SUB:userid?

SUB:guestmode! SUB:usermode!

ROOM:enter! PDA:login?

9

SUB:guestmode!PDA:query?

PDA:shutdown?

SUB:userid? ROOM:enter! PDA:credentials?

ROOM:enter! PDA:login?SUB:userid?

PDA:mpeg!ROOM:list?

ROOM:selection! SUB:usermode! SUB:payinfo!PDA:choice?

ROOM:enter!

ROOM:id!

ROOM:enter! SUB:debit! SUB:guestmode!ROOM:enter!

160

PDA:invoice!

ROOM:enter!SUB:payinfo!

ROOM:enter! SUB:exit!

SUB:debit!ROOM:id!

PDA:list!

PDA:list!

SUB:userid?

PDA:query?

SUB:usermode!PDA:ticket!

PDA:list!SUB:userid?PDA:choice?ROOM:selection! SUB:guestmode! PDA:login? ROOM:list? SUB:usermode!PDA:ticket!PDA:login?

SUB:exit!ROOM:quit!

ROOM:list? PDA:logout? SUB:usermode!PDA:query? SUB:userid?

SUB:debit!

ROOM:quit!

260

SUB:userid?

ROOM:id!ROOM:video? SUB:auth?

SUB:debit!ROOM:video?

SUB:debit!ROOM:quit!

SUB:userid?

SUB:userid?

SUB:guestmode! ROOM:enter!

SUB:guestmode!ROOM:enter! PDA:shutdown?

SUB:guestmode! PDA:shutdown?

SUB:guestmode!ROOM:enter!

ROOM:enter! PDA:shutdown?

PDA:shutdown?

ROOM:enter!SUB:guestmode!

179

PDA:shutdown?

SUB:guestmode!ROOM:enter!

SUB:guestmode!PDA:shutdown?

SUB:guestmode!

F
ig.

17.
A

daptor
protocol

foreM
useum

,
version

3
(full

m
ode)

F
e

brua
ry

1,
2008

D
R

A
F

T

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 35

II. PROOFS

Proof: [Alg. 1 correctness] It follows from Def. 9 that the set of traces of the adaptor LTS resulting from

the product,ΠL((C1, . . . , Cn), L), contains all interactions which are possible in between the components. The

reason is that the product is computed taking into account, at each moment, which messages are available for

emission or reception in the different components, and keeps in the product only the transitions corresponding

to legal correspondences defined in the vector LTS. Thereafter, the application ofremovedeadlocksensures all

interactions ending in incorrect states (deadlocks) are removed. It therefore results from the two points above that

only correct interactions,i.e., such that (i) they ensure termination in final states and (ii) they correspond at each

step to messages that are sent or received by components, arepreserved.

Then, directions of events are reversed. This ensures the adaptor resulting from it, let us note itAL, can communi-

cate correctly at each step of the aforementioned traces with the components: the productAL||ΠL((C1, . . . , Cn), L)

where synchronisation is made on a vector basis – LTS labels are vectors inAL and ΠL((C1, . . . , Cn), L), and

are synchronised if they correspond – is correct. Permutations then replace inAL each transition labelled with a

vector by a sub-LTS whose set of traces corresponds to all possible event orderings of the vector, yielding adaptor

Ad. Therefore, for any order in which the different componentsimplied in a step of a vector trace do communicate

– i.e. for all possible component communications interleavings (|||) – the adaptor is ready to communicate on the

corresponding communication event. This yieldsAd||(C1||| . . . |||Cn) is correct. Moreover, since prefixing is used,

components inC1|| . . . ||Cn do not synchronise and therefore it follows thatAd||(C1||| . . . |||Cn) is equivalent to

Ad||(C1|| . . . ||Cn), and thereforeAd is correct. Note that for optimising reasons, event reversal and permutations

are performed at the same time in the algorithm. Adaptation being a process which is dependent of the adaptation

contract, the process may yield empty adaptors in some cases, since, as in all restrictive adaptation approaches

(see related work in Section VII), removal of paths to error states (here deadlocks) may reduce the set of correct

interactions to none. Then, putting such an adaptor in the component system will yield also an adapted system in

which no interactions are possible. Making initial states being final (I ∈ F , Def. 1) ensures this is correct.

Proof: [Alg. 3 correctness] The Petri net based adaptor computation relies on the encoding of different parts

relative to the components interfaces with event mirroring(let us note themPNi, i ∈ {1, . . . , n}) and to the

vectors and vector LTS (let us note itPNL). Taking eachPNi separately, and supposing the places corresponding

to messages sent by the adaptor (the!!ci :a places) are always fed, then its marking graph,M(PNi)
2, is an LTS which

exactly corresponds (through mirroring) to componentCi LTS. Therefore, allM(PNi)||Ci are correct (no deadlock,

components end in final states). Taking the product of these LTS,M(PN1)|| . . . ||M(PNn), yields a perfect adaptor

– (M(PN1)|| . . . ||M(PNn))||C1|| . . . ||Cn has no deadlock – as (i)(M(PN1)|| . . . ||M(PNn))||C1|| . . . ||Cn is

equivalent to(M(PN1)||C1)|| . . . ||(M(PNn)||Cn) thanks to indexing which ensures event names disjointness,

and (ii) eachM(PNi)||Ci is correct.

2
M corresponds to theget marking graph function in Algorithm 3, and is used here for the sake of conciseness.

February 1, 2008 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 36

Now, taking the global Petri net marking graph (let us note itAd), where separate nets are glued usingPNL,

we can observe that the set of traces ofAd is, up to graph reduction (see comment below), a subset of theset of

traces ofM(PN1)|| . . . ||M(PNn). This results from the fact that now the input places are onlyfed through place

transfers defined inPNL, e.g., some transitionci : a!, requiring a token in place!!ci : a, is only possible now if

(provided that a vector〈ci :a?, cj :b!〉 exists) first, transitioncj :b? has been fired – adding a token in place??cj :b

– and then, a transfer from place??cj :b to place!!ci :a has been done – using atau transition. Yet, all remaining

traces ofAd (with respect toM(PN1)|| . . . ||M(PNn)) are correct as each such trace either:

(i) ends in a final state and, being also up to graph reduction atrace inM(PN1)|| . . . ||M(PNn), results in

correct interactions with the components (mirroring and ordering), or

(ii) does not end in a final state and hence is removed by theremovedeadlocksstep.

The reduction step is performed at the end of the adaptor computation process. As this reduction respects

deadlock freedom (in the usual acceptation of it,i.e., there is no state inS without outgoing transitions), and since

our deadlock freedom property is a weaker property (there isno state inS\F without outgoing transitions), it

results that reduction respects the adaptor properties.

February 1, 2008 DRAFT

