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Abstract— The use of model-free control (MFC) spreads now
more and more in industry. Nevertheless, control unknown delayed
systems with this method remains an open problem. In this
contribution, we present the use of model-free control in this context
and we propose a solution to improve the effectiveness of this
approach using a parameter estimation.
Key words : Model-free control, parameter estimation,
delayed systems, unknown delay

I. INTRODUCTION

A lot of dynamic systems present a delay more or less
important. We can find this kind of systems in many
domains as physics, chemistry, aeronautics,...[7], [5]. In
presence of delays, different modifications arise (different
schemes of models, problems of stablity in control,...) [4].
Indeed, sometimes systems become unstable or have a loss
of performance as over/under shoots or output swings and
the consequences could be disastrous.

There exist many ways to tackle and to solve the problem of
delayed systems in the literature, only two are quoted here.
The first one is the Smith predictor [6] [13], which is based
on a classic control adjusted with respect to the delay. This
method works only if the delay is relatively well-known.
On the other hand, we have the model predictive control
[11] and [10], which is based on a cost function that we
have to minimize to find the optimal control. This cost
function depends on different parameters as the reference
variable, the controlled variable,...This method requires a
good knowledge of the model. In this paper, we will use
another method.

Around ten years ago, a new approach, usually known as
model-free control, has been proposed by M. Fliess and C.
Join [2] and [8]. This method is based on an ultra-local
model estimated at each time. We will show how this
method can be applied on delayed systems for which the
delay is unknown.

Usually, model-free control is based on the scheme presented
in fig 1. We have to estimate F to make the input/output
behaviour of the system be equivalent to an integrator
cascade of order v. With a delayed system, this equivalent
model does not remain valid. Intuitively, in this context, an

Fig. 1. MFC principle

equivalent model should be :

Y (s)

U(s)
=
e−τs

sv
(1)

If the delay τ is unknown, we cannot use this model (1).
So, in this contribution we will present a new solution to
solve this problem considering only stable delayed systems.

This paper is organized as follows, section 2 presents
the model-free control. Section 3 explains our contribution
to improve the effectiveness of classic MFC. The last section
gives a concrete application and a conclusion is made in the
last section.

II. MODEL-FREE CONTROL : USUAL APPROACH

With model-free control method, we want the input/output
behaviour of the considered system be ruled by equation (2)
without knowing the exact model of the system :

y(v)(t) = F (t) + αucsm(t) (2)

where :
• y(t) and ucsm(t) are respectively the controlled output

and input.
• v is the time derivative order, usually no more than 2

because it is sufficient to describe the behaviour of the
system.

• F (t) groups all the unknown signals (disturbance,
noise,...) and the imperfections of the model. It is
estimated at each sample time.

• α was until now considered as a constant [8]. It can be
viewed as a scaling between y(v)(t) and ucsm(t).



Assuming the estimation of F (t), the control law is designed
as :

ucsm(t) =
1

α

(
−F (t)− C(e(t)) + y

(v)
ref (t)

)
(3)

with e(t) = y(t) − yref (t) and C(e(t)) is a functionnal of
the error. It is chosen such as y(v) + C(e) is stable.

In the following, we approach F (t) by a constant
function (noted F̂ ) in a short interval [t − T, t] where T is
the estimation horizon. By sliding this interval, it becomes
[0, T ] with σ ∈ [0, T ] the time variable. It exists several
ways to estimate F (t). In this paper, we propose the
continuous estimation of F (t) using algebraic technics [3].
To do this, we take equation (2) with v = 1, because it is
sufficent in the Laplace domain :

sY (s)− y(0) =
F̂

s
+ αUcsm(s) (4)

Then, we derive this equation with respect to s to eliminate
the initial condition y(0) which is a constant term :

F̂

s2
= −Y (s)− sdY (s)

ds
+ α

dUcsm(s)

ds
(5)

Now, by applying the inverse Laplace transform on the
interval [0, T ] we get :

σF̂ = −y(σ) + (
d

dσ
σy(σ))− ασucsm(σ) (6)

And finally, by evaluating (6) in T , we have :

T F̂ = −y(T ) + (
d

dσ
σy(σ))(T )− αTucsm(T ) (7)

Remark : We use equation (7) to estimate F because the
first derivative of y(t) is generally not reachable (and in a
more general context the vth derivative).

III. α ONLINE ADAPTATION AND SIMULATIONS

With the classic approach, the control is designed as given
in equation (3). But now, with α variable, we will use this
control law :

ucsm(t) =
−F̂ (t)

α̂(t)
−Kpe(t) +

ẏref (t)

α̂(t)
(8)

We consider in the following (v) = 1. Furthermore, in the
following, C(e) will just be a proportionnal corrector Kp as
in equation (8).
We do not divide Kp by α to make the correction applied to
the error uniform during all the simulation. Furthermore, we
can see that if α is constant, with a simple variable change,
we come back in the classic approach with :

K̃p =
Kp

α
(9)

In the following, we will present how the adaptation of α is
made.

A. α online adaptation

In the most proposed works, α is constant. Since a few
years, the problem of its online estimation is discussed [1].
So the most important contribution of this paper is to
propose an estimation algorithm of α.
As said before, α is a scaling between y(v)(t), with v = 1,
and ucsm(t). If the magnitude of the vth derivative of the
output is going too high, the initial chosen value for α can
become irrelevant. In this paper, we show that for important
delays we have a loss of effectiveness with α constant. It
is why we propose this new approach for α online estimation.

When α is variable, it leads that equations (5) and
(7) become respectively :

F̂

s2
= −Y (s)− sdY (s)

ds
+ α(s) ∗ dUcsm(s)

ds
(10)

And :

T F̂ = −y(T ) + (
d

dσ
σy(σ))(T )− α(T )Tucsm(T ) (11)

Where ∗ is the convolution product.
Assuming that α(t) is constant for a short time lapse, the
estimation of F (t) remains valid.

The idea here, is to consider the error between y(t) and
yref (t). From (3) it comes :

e(t) =
1

Kp

(
−F̂ (t) + ẏref (t)

α(t)
− ucsm(t)

)
(12)

Control objective is to track yref (t) (in ideal way e(t) = 0)
and then :

ucsm(t) =
−F̂ (t) + ẏref (t)

α(t)
(13)

So it comes the estimation of α :

α̂(t) =
−F̂ (t) + ẏref (t)

ucsm(t)
(14)

And, the new control law becomes (8).

Now, we show some simulations explaining from where
comes the difference between classic model-free control and
our proposal.

Delayed systems are considered :

Y (s)

U(s)
= G(s)e−τs (15)

with G(s) a stable transfer function. U(s)e−τs is equivalent
to u(t−τ) with respect to the inverse Laplace transform. As
explained in the introduction, we do not know the delay τ .
We will explain the influence of the variable parameter. We
set :

∆u(t) = u(t)− u(t− τ) (16)



and with respect to the Laplace transform :

∆U(s) = U(s)− U(s)e−τs (17)

So, it comes :

Y (s) = G(s)U(s)e−τs = G(s)(U(s)−∆U(s)) (18)

We have to focus on the value of the ∆u(t) term because if
this term is neglictable we come back in a classical situation
without delay. The simulations presented here will show this
value for both cases with α constant and α variable using a
particular system which is a stable second order :

Y (s)

U(s)
=

e−τs

s2 + 1.4s+ 1
(19)

Fig. 2. In clear line |u(t)− u(t− τ)| and in black ||y(t)− yref (t)|| in
function of the delay τ in [s] for α constant.

Fig. 3. In clear line |u(t)− u(t− τ)| and in black ||y(t)− yref (t)|| in
function of the delay τ in [s] for α variable.

On figures 2 and 3, we represent the value of ∆u(t) term
and the quadratic error with respect to delay τ . On figure 2
we can see that with α constant, the system becomes quickly
unstable (black line), that is why there is nothing more after a
delay of around twenty samples (0.2s). But, before this limit
the value of ∆u is small enough so it is why the system
remains stable (see [9] for more explanations).
On figure 3, we see that ∆u(t), the blue line, stays small
a very long time thanks to the α adaptation. The system
remains stable as long as ∆u is unimportant. It means that
we have more or less the required model given in equation
(21). After a limit, around 200 samples (2s), the system
becomes unstable.
So, when the estimation algorithm is used, we have shown
that term ∆u(t) can be neglected and we come back in a
well-known situation :

Y (s) ≈ G(s)U(s) (20)

B. Implementation issue

In this short subsection, we explain how the
implementation for our simulations was made. We
want to implement numerically the control. To do that, we
have to discretize the equations given previously.

In a first time, the reference trajectory is obtained by
filtering a step signal with a second order filter. Indeed, it
is done to make the signal smoother and mainly, to have no
problem with the derivative of the reference which appears
in (3) or (12).
Next, the more important thing is to discretize the F
estimation, given in equation (6), so it gives :

F̂ (k) =
−y(k) +A(k)− kTeα(k − 1)ucsm(k − 1)

kTe
(21)

with Te the sampling period and where :

A(k) = ky(k)− (k − 1)y(k − 1) (22)

F̂ (k) is also filtered with a second order to be robust in
presence of noise and then comes the adaptation of α :

α̂(k) =
−F̂f (k) + ẏref (k)

ucsm(k − 1)
(23)

where F̂f (k) is the filtered estimation of F̂ (k).
And finally we get the control law :

ucsm(k) =
−F̂f (k)

α̂(k)
−Kpe(k) +

ẏref (k)

α̂(k)
(24)

with :
ẏref (k) =

yref (k)− yref (k − 1)

Te
(25)

In the next section, we show some simulations using this
implementation.



IV. SIMULATIONS AND RESULTS

Here, we apply the algorithm explained in the previous
section on an unknown delayed system and the efficiency
of this approach is shown.

As said before, we consider here the following particular
system, corresponding to (13):

Y (s)

U(s)
=

e−τs

s2 + 1.4s+ 1
(26)

With :
• Y (s) and U(s) the output and the input.
• τ an unknown delay.

This is a stable second order delayed system. We control
the system with the model-free control and we will present
a comparison between classic model-free control and
model-free control with α adaptation.
We do not need to consider a more complex system because
control an unknown delayed system with good performances
remains an open problem.

Each simulation has been done with the same parameters
and the x-axis is graduated in time. Every time, "optimal"
parameters were chosen, in particular α for the classic
MFC. On figure 4, we can see the outputs obtained for

Fig. 4. Comparison between classic MFC and our proposal for a delay of
1 sample

a delay of one sample (0.01s) in both cases. We see that
results are different because there is an over threshold with
our proposed method but both results remain correct. For
a delay of ten samples (0.1s) (figure 5), result remains
equivalent for the proposed algorithm ; whereas result
obtained with usual model-free control is degraded (some
swings appear). This phenomenon increases with the delay
and the system finally diverges as we can see in figure 6.

Fig. 5. Comparison between classic MFC and our proposal for a delay of
10 samples

Fig. 6. Comparison between classic MFC and our proposal for a delay of
20 samples

With this three figures, we can see that when α is
variable we clearly extend the range of accepted delay in
front of the classic method without changing any parameters
in the simulation for all cases.

Remark : It is important to note that we do not care
about the initial condition of α for the algorithm. Indeed, α
is automatically adapted and it does not affect the output as
shown in figure 7. On the contrary, if the chosen value for
α in the classic method is not as well as needed (chosing
this value by testing), some problems appear (figure 8). On
figure 7 we can see that α becomes exactly identical in
both cases with α(0) = 100 and α(0) = 1. It is clearly an
advantage in front of the classic method.



Fig. 7. Comparison of output with different initial conditions of α for a
delay of 10 samples.

Fig. 8. Comparison of output with different α constant for a delay of 10
samples.

Now, some additive simulations to show the accepted range
of delay for our proposed method.
As seen before, with the classic method of model-free
control, a delay of around 10 samples is acceptable but no
more in our particular case. After this limit, the system
becomes unstable and the output diverges (figure 6). With
the proposed algorithm we see that a limit far more high is
acceptable, a bit less than 200 samples. On figure 9, we can
see the different outputs for different delays (50 and 100
samples) with our method. In front of the classic MFC, a
bigger delay is accepted, so we can say that our proposal
improve the effectiveness of the classic MFC.

Fig. 9. Comparison of output with different delays.

Here, a comparison with a classic PI controller is made as
in [12] but using a MSE calculation. The controller has
this form : C(e) = (Pk + Pi

s )(E(s)). We consider that
the delay is in : τ ∈ [0; τmax], with τmax = 10[s] (100
samples), but we do not know its exact value. With a MSE
calculation, we find the best tunning for Pk and Pi in the
worst case, i.e. when the delay τ = τmax. We find the
following parameters : Pk = 0.1 and Pi = 0.08. With this
tunning for the controller, we know that the system remains
stable for any delay in the defined interval.

Fig. 10. Comparison between our proposed method and the "best" PI
controller for a delay of 100 samples.

On figure 10, we can see the output of our system with
a delay of 100 samples with the tunning of the controller



which garantees the smallest MSE. With the PI method we
find MSEPI = 0.287. On the opposite, with our proposed
MFC and for the same delay, we find MSEMFC = 0.139.
With a MSE which is two times higher with the PI controller,
we can say that our proposed method presents clearly an
advantage against classic methods like PI controller when
the delay is unknown.

To conclude this section, we show two simulations
(figure 11 and 12) to prove the robustness of our method in
presence of an output additive noise.

Fig. 11. Results for a delay of 10 samples in the presence of noise.

Fig. 12. Results for a delay of 50 samples in the presence of noise.

V. CONCLUSION

In this contribution, unknown delayed systems were
considered. We present a solution to control this kind of
system using model-free control method. Furthermore,
an improvement of this method was explained. Indeed,
a method to adapt online the parameter α was presented.
An explanation of the difference between usual model-
free control and our proposal was done thanks to some
simulations. With different simulations and different delays,
the efficiency of this approach has been shown when the
delay is unknown.
More, a comparison with a classic PI controller has been
done. Thanks to a MSE calculation, we have shown that our
proposal presents better results than the classic PI controller.

For the future, a more mathematical proof will be
presented and this method will be applied on systems
described by partial derivative equations because a link
between unknown delayed systems and distributed systems
can be made.
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