
HAL Id: hal-01351144
https://hal.inria.fr/hal-01351144

Submitted on 22 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Microsecond-Accuracy Time Synchronization Using the
IEEE 802.15.4 TSCH Protocol

Atis Elsts, Simon Duquennoy, Xenofon Fafoutis, George Oikonomou, Robert
Piechocki, Ian Craddock

To cite this version:
Atis Elsts, Simon Duquennoy, Xenofon Fafoutis, George Oikonomou, Robert Piechocki, et al..
Microsecond-Accuracy Time Synchronization Using the IEEE 802.15.4 TSCH Protocol. IEEE
SenseApp 2016 - Eleventh IEEE International Workshop on Practical Issues in Building Sensor Net-
work Applications, Nov 2016, Dubai, United Arab Emirates. �hal-01351144�

https://hal.inria.fr/hal-01351144
https://hal.archives-ouvertes.fr

Microsecond-Accuracy Time Synchronization Using
the IEEE 802.15.4 TSCH Protocol

Atis Elsts∗, Simon Duquennoy†‡, Xenofon Fafoutis∗, George Oikonomou∗, Robert Piechocki∗, and Ian Craddock∗
∗Faculty of Engineering, University of Bristol

†Inria, Lille
‡SICS Swedish ICT

Abstract—Time-Slotted Channel Hopping from the
IEEE 802.15.4-2015 standard requires that network nodes are
tightly time-synchronized. Existing implementations of TSCH on
embedded hardware are characterized by tens-of-microseconds
large synchronization errors; higher synchronization accuracy
would enable reduction of idle listening time on receivers, in
this way decreasing the energy required to run TSCH. For
some applications, it would also allow to replace dedicated time
synchronization mechanisms with TSCH.

We show that time synchronization errors in the existing TSCH
implementations on embedded hardware are caused primarily
by imprecise clock drift estimations, rather than by real unpre-
dictable drift variance. By estimating clock drift more precisely
and by applying adaptive time compensation on each node in the
network, we achieve microsecond accuracy time synchronization
on point-to-point links and a < 2µs end-to-end error in a 7-
node line topology. Our solution is implemented in the Contiki
operating system and tested on Texas Instruments CC2650-
based nodes, equipped with common off-the-shelf hardware clock
sources (±20 ppm drift). Our implementation uses only standard
TSCH control messages and is able to keep radio duty cycle
below 1 %.

I. INTRODUCTION

There is a growing need to make low-power wireless
networks more reliable and more predictable in order to open
them up to a wider range of applications (e.g., industrial, auto-
motive, e-health applications). Time-Slotted Channel Hopping,
specified in the IEEE 802.15.4-2015 standard [1], offers these
features and has recently attracted attention from both industry
and academia.

As a consequence, there is a need for interoperable, high-
quality TSCH implementations for major Internet-of-Things
(IoT) hardware platforms and software ecosystems. The two
main qualities required by such implementations are, firstly,
high accuracy timing, required to keep timeslots closely
aligned on all devices in the network; secondly, high energy
efficiency in order to support devices with limited energy bud-
gets. These two qualities are closely interrelated; for example,
optimizing the energy efficiency by using a lower duty cycle
bounds the maximal frequency of network resynchronization
packet transmission; in turn, improving the timing accuracy
allows the system to have a lower duty cycle. Besides this,
high-accuracy network-wide time synchronization is beneficial
for many of the aforementioned applications.

A popular solution to improve the accuracy in TSCH net-
works is to use adaptive time synchronization [2], [3], which

consists of learning the local clock drift and compensating for
it on each node in the network. Adaptive synchronization for
TSCH was first implemented in the OpenWSN [4] network
stack with the main goal to reduce resynchronization fre-
quency. Our work builds on the same idea, but aims to reduce
the absolute synchronization error, and our implementation is
able to achieve an order-of-magnitude higher accuracy.

We start by identifying the properties required from a hard-
ware platform to achieve high-quality time synchronization,
and argue that even high amplitude clock drift can be accu-
rately compensated in software as long as the platform satisfies
two properties: firstly, high timing precision (in practice, high
clock resolution), secondly, low variance of the drift. We then
overview how a selection of popular IoT hardware platforms
lives up to these properties (Section III-B), and we show
that achieving simultaneously high-accuracy timing and low
Micro-Controller Unit (MCU) and radio duty cycle is chal-
lenging, as it requires the combination of timing measurements
from two different hardware clock sources. Subsequently, in
Section IV we mathematically model time synchronization in
TSCH networks and analyze the causes of synchronization
errors. Section V describes our implementation of platform-
independent adaptive time synchronization for TSCH in the
Contiki operating system and our port of TSCH to Texas In-
struments CC2650 System-on-Chip (SoC) hardware platform,
where we implement high-precision low-duty cycle timing for
TSCH.

By combining the adaptive synchronization with high-
precision timing, we create a high-accuracy version of TSCH.
The experimental results in Section VI show that using
4 second resynchronization period for neighbors we measure
< 2µs end-to-end maximum error in a 7-node line topology.
The improved accuracy allows to reduce idle listening during
TSCH guard time by an order of magnitude, and therefore the
total radio duty cycle by a factor of two: from 1.4 % to 0.73 %.

To the best of our knowledge, this work contributes the first
open-source port of TSCH to the CC2650 hardware platform1,
and we are the first to show how a standards-compliant
TSCH implementation can achieve microsecond-accuracy time
synchronization on common IoT hardware, while keeping the
MCU active <2 % and the radio active <1 % of time.

1Source code available at http://github.com/atiselsts/contiki/tree/ptsch

http://github.com/atiselsts/contiki/tree/ptsch

II. RELATED WORK

A. TSCH on IoT hardware

At the time of writing this paper, OpenWSN [4] is the de
facto TSCH reference implementation, while the Contiki port
for the JN516x hardware platform [5] is the de facto reference
implementation within the Contiki world [6]. OpenWSN and
Contiki versions of TSCH were demonstrated to be interoper-
able in Internet Engineering Task Force (IETF) plug-tests in
Prague (2015) and in Paris (2016).

However, the Contiki TSCH implementation was not eval-
uated in an energy-efficient mode since deep-sleep was not
supported on JN516x when the plugtests took place. We show
why adding support for deep sleep raises new challenges for
time-synchronized TSCH networks (Section V-C).

B. Time synchronization in TSCH

Adaptive synchronization for TSCH is described by Stanis-
lowski et al. [2] and was initially implemented in the Open-
WSN networking stack. The main idea behind adaptive syn-
chronization is that each network node learns its drift com-
pared to the time source and adaptively compensates for it. The
authors report 60µs maximal synchronization error on point-
to-point links when using 60 sec resynchronization period.

Chang et al. investigate how adaptive synchronization can
be improved by adapting control message exchange frequency
depending on synchronization quality, and tackles the addi-
tional challenges multihop networking brings [3]. Similarly to
Stanislowski et al., they report synchronization errors of up to
tens of microseconds.

Our work builds on these existing ideas, but substantially re-
duces synchronization errors by using higher-resolution clocks
readily available on existing IoT platforms (Table I). We do
that while continuing to use low-resolution timing during low-
power modes, therefore not decreasing energy-efficiency.

There exist a number of dedicated time synchronization
protocols for low-power and lossy networks [7], including
some that report sub-microsecond maximum errors [8]. How-
ever, they (1) are typically not optimized for energy efficiency
and (2) require additional message exchange, complicating
the implementation and making it standards-non-compliant.
Other options for accurate time synchronization include the
use of wired systems or having Global Navigation Satellite
System (GNSS) receivers on sensor nodes. However, these
options may be expensive, impractical, or outright impossible
to implement, as could be the case for indoor GNSS.

III. TIMING ON IOT HARDWARE

A. Desirable properties

The IEEE 802.15.4 standard specifies TSCH as a time-
sensitive Time Division Multiple Access (TDMA) protocol.
As a consequence, it sets the following timing-related require-
ments for devices implementing TSCH:
• The accuracy requirement: According to the IEEE 802.15.4-

2011 standard, radio symbol rate should be within a

±40 ppm deviation when using Quadrature Phase Shift
Keying (QPSK) modulation [1].

• The clock resolution requirement: Standard TSCH timings
are defined in microseconds [14] (in practice, all timings
are multiples of either 10 or 8µs), so the device should be
able to keep track of time with at least close-to-microsecond
granularity.

• The performance requirement: An implementation must be
sufficiently fast to receive and process (e.g., decrypt) a
packet, as well as construct, encrypt, and send an acknowl-
edgment within a 10-millisecond timeslot. The maximum
processing time between the end of frame and the start
of acknowledgment’s preamble is just 840µs according to
the standard, therefore hardware-accelerated decryption is
mandatory.

If adaptive synchronization [2] is used to improve the accuracy
of time synchronization, predictability of clock drift becomes
another important requirement. On IoT hardware complex
prediction algorithms are not common; this restricts to a more
specific notion of being predictable by simple extrapolation
from past values by using moving average or linear regression
algorithms. In particular, if the environment of the network
remains stable, the drift also should remain stable (i.e., has
low variance).

B. Hardware overview

In this paper we focus on Class-0 and Class-1 [15] IoT
hardware platforms; for examples see Table I. A typical IoT
system has several independent clock sources:
• Low-frequency (LF) crystal oscillator. Useful for accurate,

but low-resolution timing; all of the platforms in the Ta-
ble I use crystal oscillators with ≤ 20 ppm drift in room
temperature [16].

• High-frequency (HF) crystal oscillator used by the radio.
Accurate (≤ 40 ppm [11] [12] as required by the standard
or better) and high-resolution.

• High-frequency (HF) MCU-internal RC oscillator. Useful
for high-resolution timing, but typically not meeting the
40 ppm accuracy requirement; further in this paper, we focus
only on crystal oscillators.

With the exception of platforms equipped with the oldest-
generation CC2420 radio, all aforementioned systems offer
some access to the HF crystal oscillator used by the radio,
therefore enabling accurate, high-resolution packet timestamps
based on the internal radio clock. The CC2520 radio exports
this internal clock signal over a General-Purpose Input/Output
(GPIO) pin, while other systems offer an Application Pro-
gramming Interface (API) that can be used to read timestamps.
Resolutions vary between 62 500 Hz and 32 MHz.

In terms of accuracy, TSCH does not introduce any new
prerequisites. All systems with IEEE 802.15.4-2006 capable
radio chips meet this requirement: failure to do so would break
their ability to communicate with other nodes.

Existing TSCH implementations (OpenWSN [4],
TinyOS [17], Contiki before December 2015) pick either an

TABLE I: Comparison of timing sources on IoT hardware platforms

Radio or SoC Platform
examples

LF clock
frequency
(on example
platforms)

HF clock fre-
quency, max

Radio-clock
sourced
timestamp
resolution,
max

Synchroniza-
tion between
HF and LF
crystals

CC2420 [9] Tmote Sky and
Zolertia Z1

32 768 Hz 4 MHz and
8 MHz

n/a −

CC2520 [10] Wismote 32 768 Hz 16 MHz 16 MHz −
CC2538 [11] OpenMote and

Zolertia RE-Mote
32 768 Hz 32 MHz 32 MHz +

CC2650 [12] SensorTag and
SPES-2

32 768 Hz 48 MHz 4 MHz +

JN516x [5] JN5169 32 768 Hz 16 MHz 62 500 Hz −
Atmega256RFR2 [13] Radio-Sensors 32 768 Hz 16 MHz 4 MHz +/−

HF or an LF clock as the source for TSCH timing, but not
both. This is relevant to the stability requirement. In a node
that uses one hardware clock source during its wakeup periods
and a different clock source during its deep sleep periods,
the cumulative drift for this node is dependent on its sleep
schedule, which in turn is dependent on tasks running on it
and on network traffic levels. For example, for a node with
HF clock drifting at −20 ppm relative to its time source and
LF clock drifting at +20 ppm, the cumulative drift is a linear
combination of these values, with coefficients depending on
how much time is spent in each of the modes. Essentially,
this situation makes drift hard to predict.

Furthermore, if two or more unsynchronized clocks are
used, an error is introduced every time the node switches from
the low-power mode to the active mode; the magnitude of the
error depends on the granularity of these clocks; the maximal
error is at least as big as the tick duration of the highest-
frequency clock. Using Contiki’s IPv6 implementation with its
default parameters, we measured 10 to 20 MCU wakeups per
second. These errors are statistically independent and, while
asymptotically zero on the average, cumulative in the worst
case. To avoid this problem, if two or more clock sources
are used as the basis of TSCH timing, they must be mutually
synchronized. Few of the listed platforms offer an API for
such a synchronization (Table I).

Using a low-frequency clock source in general leads to a
large error in drift estimation (Fig. 5). Our results (Section VI)
show that this measurement error by itself can be significant
enough to severely limit the accuracy of network-wide time
synchronization achievable by TSCH.

The performance requirement, on the other hand, is satisfied
by all except the older generation Class-0 platforms (Tmote
Sky and Zolertia Z1), but even those can still run TSCH, albeit
using extended, nonstandard timeslot duration.

IV. MOTIVATION: ANALYTIC MODEL

According to the IEEE 802.15.4 standard, a node must start
transmitting MAC-layer frame exactly τo (transmission offset)
microseconds after the start of a timeslot. This transmission
is preceded by the transmission of the PHY-layer preamble

time

Tx

Rx

τo

τp

τg
ετ

Tx Preamble

Rx Preamble

Timeslot
start

Tx offsetRx start

ετ

Fig. 1: The guard time τg is asymmetric with respect to the
transmission offset τ0 in order to leave equally large error margins
ετ both before the expected start of the preamble transmission and
after the expected end of it.

and the start-of-frame descriptor, which cumulatively takes τp
microseconds.

TSCH incorporates a guard time to deal with loss of
synchronization. To account for both positive and negative
clock drift, the receiver wakes up before the expected start of
frame transmission offset and keeps the radio on for at least
τg microseconds, waiting for the start-of-frame descriptor to
be received. In the standard, the guard time is equally spaced
around the transmission offset τo, i.e., the node starts listening
at τo − τg

2 and ends listening at τo +
τg
2 . However, in this

paper we consider a more efficient implementation, in which
the guard time τg is equally spaced around τo− τp

2 , as shown
in Fig. 1. Thus, for a certain maximum synchronization error
ετ the minimum guard time is given by:

τg = τp + 2ετ (1)

Increasing the guard time makes the network robust to larger
synchronization errors, while decreasing it reduces idle listen-
ing, in this way allowing to save energy.

Fig. 2 plots the maximum synchronization error for a given
guard time. The value of τp is hardware-dependent; in this
paper, we assume τp = 160µs as defined by the standard
for radios operating in the 2.4 GHz frequency band. The
figure shows that the standard guard time (τg = 2200 µs)
is appropriate for TSCH networks with millisecond-accuracy
time synchronization. Decreasing the maximum synchroniza-
tion error to 10 µs (for example) allows to reduce the guard
time by an order of magnitude to τg = 180 µs, leading to a

Max. Synchronization Error (7s)
10

0
10

1
10

2
10

3
10

4

M
in

.
G

u
ar

d
 T

im
e

(7
s
)

0

1000

2000

3000

Fig. 2: Minimum TSCH guard time depending on the maximum
synchronization error.

proportional reduction in idle listening duration.

A. Timing errors due to production spread

One of the main reasons for clock drift is caused by
oscillator crystals deviating from their nominal frequency due
to production spread. Let us assume that the timings of
sender and receiver nodes are scheduled using crystals with
±ef ppm maximal frequency error, and that the environment
remains stable at the nominal operating temperature of crystals
(T0 oC). The worst case scenario is when one of the crystals
operates with +ef error, whilst the other operates with −ef
error, leading to 2ef drift amplitude (δ) between them. The
synchronization error ε after time interval ∆t is:

ε = ∆t
(1

1− ef
− 1

1 + ef

)
. (2)

For realistic (i.e., < 1 %) frequency errors it is approximately
equal to:

ε ≈ ∆t× 2ef . (3)

Further in this section, we assume constant sender-receiver
resynchronization period ∆t. In these settings, ε denotes the
maximum synchronization error for a given drift ef . For TSCH
to operate without packet loss due to synchronization errors
the following inequality needs to hold: ετ ≥ ε, therefore from
Eq. 1 and 3 one can calculate the minimum guard time (τg)
for a given retransmission period ∆t and clock drift ef :

τg ≥ τp + 4
(

∆t× ef
)
, (4)

as well as the minimal ∆t for a given guard time:

∆t ≤ τg − τp
4ef

. (5)

Fig. 3 plots the maximum transmission period for various drift
amplitudes for various guard times and τp = 160µs. As the
drift amplitude increases, more frequent packet transmissions
are required to maintain the nodes synchronized.

B. Timing errors due to differences in operating temperature

Crystal oscillators are also characterized by a parabolic,
temperature-dependent error. Typically, a crystal resonates
close to its nominal frequency at T0 = 25oC, but slows
down at temperature T at a rate of B(T − T0)2, where B is
the parabolic coefficient. Let us assume again the worst case

Drift Amplitude (ppm)

0.1 1 10 100

M
ax

.
R

es
y
n
ch

ro
n
iz

at
io

n
 P

er
io

d
 (

s)

10
-2

10
0

10
2

10
4

10
6

= = 2200 7s
= = 1200 7s
= = 200 7s

Fig. 3: Maximum resynchronization period depending on the drift
amplitude δ.

Temperature (
o
C)

0 10 20 30 40 50M
ax

.
R

es
y

n
ch

ro
n

iz
at

io
n

 P
er

io
d

 (
s)

10
0

10
2

10
4

10
6

10
8

Fig. 4: Dependency of the maximum resynchronization period ∆t
on the operating temperature T , assuming constant temperature T0

on the remote node; T0 = 25 oC, τg = 2200µs.

scenario for a TSCH link: one of the crystals operates at a
temperature T0, whilst the other operates at a temperature T .
The temperature-specific synchronization error ε after time
interval ∆t is:

ε = ∆t
(1

1−B(T − T0)2
− 1

)
≈ ∆t×B(T − T0)2 . (6)

For crystal model FC-135 (T0 = 25 oC, B = −0.04 ppm
[16]) in room temperatures (20 to 30 oC), the temperature-
dependent clock drift is≤ 1 ppm, whereas at 15 oC the drift for
this crystal rises up to 4 ppm. Fig. 4 shows how the maximum
resynchronization period ∆t depends on temperature.

C. Timing errors due to measurement errors

If implemented and enabled, adaptive synchronization al-
lows nodes running TSCH to learn the drift relative to their
time sources. However, the accuracy of the learning and
compensation is limited by the clock resolution of timers used
for received packet timestamps eRx, packet transmissions eTx,
and scheduling of the TSCH state machine eschedule.

The existing TSCH implementations typically schedule
packet transmissions and other TSCH operations on the edge
of a clock tick, therefore both eTx ≈ 0 and eschedule ≈ 0; let
us use η to denote the sum of these small errors:

η = eTx + eschedule . (7)

The expected value of eRx, in contrast, is quantization-
dependent. The worst-case value of eRx is equal to ttick. One
way to decrease these quantization-specific errors is to average

Timesource node

Node 1 hop away

time

time

eTx1

packet

The ideal packet
send time

eRx

time

packet

e2hop

Node 2 hops away

Timer ticks

eTx2

Fig. 5: Measurement error accumulation across multiple hops

them out by taking multiple measurements. As TSCH control
message transmission times are randomized, the errors can be
treated as statistically independent. The expected value of the
measurement error em, obtained by averaging N samples, is:

em =
ttick + η

N
. (8)

Assuming resynchronization period ∆t, the per-link drift
estimation error elink is given by:

elink =
em
∆t

. (9)

In contrast to the synchronization error due to a real drift
(Eq. 3), this error is inversely proportional to ∆t.

Finally, accumulation of per-link errors can happen across
multiple hops (Fig. 5) and in the worst case is bounded only
by the diameter d of the network:

enetwork ≤ d× elink . (10)

For example, if low frequency crystals are used (typical
frequency f0 = 32 768 Hz), the maximum quantization error
is equal to ttick = 1000000

32768 ≈ 30.5µs. Assuming ∆t = 10 s,
the drift estimation error using one sample (N = 1) is
approximately 3.05 ppm per-link. Assuming a 10-hop network,
the drift estimation error becomes 30.5 ppm in the worst-
case scenario. In contrast, with a 4 MHz clock source the
maximum measurement error is just ttick = 0.25µs and the
drift estimation error 0.025 ppm and 0.25 ppm respectively.
These values are two orders of magnitude smaller than the
real drift of off-the-shelf crystals, therefore measuring the local
drift and compensating for it allows to significantly improve
synchronization accuracy in TSCH networks.

D. An example

Let us assume that: (i) temperature is learned and compen-
sated on all nodes in the network for changes larger than et oC;
(ii) local drift is measured and compensated on all nodes with
measurement error em; and (iii) the resynchronization interval
is ∆t. Under these conditions, the unlearned remainder ε of
the drift on a link is given by:

ε = ∆t×Be2t +
em
∆t

. (11)

For example, if the constant clock drift amplitude drift is
estimated with error em = 0.25µs, there is a et = 1 oC
temperature change, and drift-temperature dependence is B =

−0.04 ppm per oC2 [16], then for ∆t = 10 s resynchronization
period the maximum absolute error between a pair of directly
connected nodes is abs(ε) = 0.425µs. These results suggest
that sub-microsecond time synchronization in a standards-
compliant TSCH network is possible.

V. DESIGN AND IMPLEMENTATION

We select the TI CC2650 for an implementation case study,
as this SoC offers access to the high-resolution internal radio
timer and also provides an API for synchronizing the radio
timer with the system’s LF clock.

A. Adaptive time synchronization (AS)

The time on each node in a TSCH network is periodically
resynchronized with the global time of the network; it happens
upon reception of either a data packet, a TSCH control packet,
or an acknowledgment from a timesource node. In 6tisch [18]
networks, the RPL parent of a node is used as its timesource.

In all known IoT implementations, the timing of TSCH
state machine is scheduled on top of clock tick-granularity
timing. The duration of a tick (ttick) is hardware-dependent
and bounds the achievable synchronization accuracy.

AS consists of two steps: learning (Fig. 6) and compensa-
tion (Fig. 7).

1) The learning step: Upon each resynchronization event,
the node learns the timing error of the local clock, therefore
is able to estimate the amplitude of the local clock drift by
dividing the error in clock ticks with the number of ticks
passed since the previous synchronization.

Our implementation of AS in Contiki uses these drift
estimates as the input. It stores the last n drift estimates in
a buffer and averages them to get an estimate to use in the
compensation step. We follow the assumption that the largest
part of the error in these drift estimates is due to imprecise
measurements, rather than due to real variability of the drift,
therefore averaging them gives a more accurate cumulative
estimate (Fig. 6). The implementation stores the drift estimates
as fixed-point numbers, expressed in units of 1

1024 of ppm.
2) The compensation step: Once the drift of the local

clock is known, it is used to adjust the timing of the TSCH
state machine. Upon finishing the actions in a given timeslot,
the Contiki TSCH implementation normally schedules next
wakeup at the time t, the start of the next active timeslot.
AS enhances this process by calculating the number c: the
expected drift in ticks until the start of that timeslot, and
scheduling the wakeup at time t+ c instead (Fig. 7).

time

D
ri

ft
,

p
p

m

- Drift measurement
- Drift estimate

Fig. 6: Learning the clock drift by averaging measurements in
the average case increases accuracy in contrast to using a single
measurement.

time

start of the
current active

timeslot

uncompensated
start of the next
active timeslot

compensated
start

c

Inactive TSCH timeslots

Fig. 7: Compensating for clock drift. Compensation amount c is
equal to the time until the next active slot times the estimated drift.

In order to avoid error accumulation in subsequent clock
compensations, our implementation uses tunit = µs

1024 as
the timing unit irrespective of ttick granularity. On each
compensation step i it calculates the compensation cunitsi and
splits it in parts cticksi = d cunitsi

tunit

ttick
e and cremainderi =

cunitsi − cticksi
ttick
tunit

. In the subsequent compensation, the
previously uncompensated value cremainderi is included in the
new value cunitsi+1

.
3) Differences from related work: Our AS approach follows

the main ideas from OpenWSN [2], [3], but with notable
differences:
• OpenWSN uses just the last measurement of the local

drift in the compensation step, therefore requires a large
resynchronization interval ∆t to accurately estimate drifts,
while our implementation uses the average of multiple
(n) measurements, and is able to achieve the same or
better accuracy by using n times shorter resynchronization
interval. More frequent resynchronization makes the system
more robust and quicker to adapt to changes in drift, and
in typical settings does not have large impact on energy
consumption (Section VI, Fig. 13b).

• In order to adaptively increase the resynchronization interval
∆t, OpenWSN integrates the estimation of the drift with
a mechanism for adaptive scheduling of resynchronization
messages. We instead provide just the basic learning &
compensation functionality, on top of which, in princi-
ple, application-specific adaptive resynchronization strate-
gies can be implemented as part of the future work.

It is also worth noting that in contrast to OpenWSN, the
existing Contiki TSCH implementation [6] does not require
the MCU to wake up at each slot, but only at the active
slots. Therefore our AS mechanism is designed to be able
to compensate drift across several inactive slots.

B. Porting TSCH to CC2650

Compared to asynchronous MAC layers popular in the
current IoT ecosystems, TSCH places significantly different
requirements on the OS and hardware.
• TSCH uses enhanced ACK packets, which current radio

chips do not support in hardware. Therefore, the radio
hardware’s automatic ACK transmission capability has to
be disabled by the driver and ACKs must be constructed
and sent by software;

• CCA in TSCH is optional, therefore the radio driver should
be able to turn it off;

• Packets are only expected at specific points of time, there-
fore polling is preferable to interrupt-based reception;

• Because of the time-sensitive nature of TSCH, accurate
HW-based packet Rx timestamps are highly desirable.

We started our implementation by adapting Contiki’s CC2650
radio driver based on these guidelines. Additionally, it turned
out that the initialization of the CC2650 is too slow (up to
1000µs) to function well with the existing TSCH implemen-
tation. We were forced to make two changes in Contiki’s
TSCH code to be able to keep the standard 10 ms slot
duration on CC2650. Firstly, we made the system wake up
1000µs before the start of the next active TSCH timeslot;
it preemptively initializes the HF crystal oscillator and then
immediately allows the MCU go back to the sleep mode.
Secondly, we disabled TSCH code that turned off the radio
within a TSCH timeslot, between the Tx/Rx of a packet and
its acknowledgment.

C. Enabling high-accuracy synchronization

The CC2650 radio core features an internal, high-frequency
(4 MHz) radio timer called “RAT”. Among other functions, the
radio uses the RAT to timestamp incoming frames. Using the
RAT is the most attractive option for TSCH timing. However,
it is only accessible when the radio core is powered-up and
running, therefore cannot be used e.g. to schedule TSCH
wakeup from a low-power mode. The other option is to follow
existing implementations on other systems and use the LF low-
resolution always-on real-time clock (RTC) for TSCH; this
achieves only 60µs accuracy even when AS is enabled [2],
however this RTC consumes extremely low-power and is very
suitable in order to minimize current draw during deep sleep.

These two options seemingly create a tradeoff between high
accuracy and low energy usage. However, the CC2650 exposes
an API that allows developers to synchronize the RAT with the
RTC. We exploit this option to achieve better results than using
each clock separately would give: every time the CC2650
radio is turned on, our Contiki implementation performs re-
synchronization of those two timing sources, therefore creating
a unified stable high-precision low-power clock source.

This high-precision implementation is able to transmit pack-
ets and timestamp received packets with sub-microsecond
error (ttick = 0.25µs) while keeping a low duty cycle:

• In order to transmit packets and acknowledgments in spe-
cific radio-timer time, we use the “triggered send” option
of CC2650 radio.

• We configure the CC2650 radio to include RAT-based
timestamps as part of the information provided for each
received packet.

• To schedule TSCH wakeups, we rely on the LF RTC.

The HF timing is used only when the radio is already on;
therefore this approach does not introduce energy consumption
overhead as compared to relying solely on the LF clock.
In order to avoid rounding errors in time conversions, the
implementation keeps track of TSCH timing in units of µs

1024 ,
selected because the least common multiple of 65 536 and
4 000 000 is 1 024 000 000.

TSCH time source

+4 ppm-1 ppm

6 intermediate
hops

1

2 3

4 5

6 7

+8 ppm-4 ppm

-5 ppm +11 ppm

0 ppm

Fig. 8: Testbed network topology and approximate clock drifts.
To estimate the network-wide error, we use the desynchronization
detected between nodes 6 and 7.

Fig. 9: Logic analyzer setup with seven nodes under test.

VI. EXPERIMENTAL RESULTS

We use a network of seven CC2650 nodes for the exper-
iments (Fig. 8). TSCH schedule on the nodes is configured
so that a circle topology is created by TSCH even though
the nodes are physically co-located. RPL routing tree in this
topology has two branches: one branch has nodes with positive
drift compared to the designated router, the other branch with
negative drift, creating the worst-case drift amplitude between
nodes 6 and 7. Unless stated otherwise, we enable AS with
measurement buffer size n = 8 and high-precision timing
(Section V-C) and run each experiment for 10 min. We rely
on TSCH beacons as the main form of synchronization packet
and use the Contiki-default beacon period of 4 sec; as for the
schedule, TSCH slotframe size is 47 and each node has one
active timeslots for Tx, and two active timeslots for Rx: one
for each of its two neighbors.

It is convenient to use the TSCH implementation itself
to estimate the desynchronization: each time a TSCH node
receives a packet from another node, it prints the estimated
synchronization error. To validate this technique, we attach
all seven nodes to a logic analyzer (Fig. 9) sampling with
16 MHz frequency and compare its measurements with the
errors simultaneously logged by our software running on the
nodes. The results (Fig. 10) show that this software-based
error estimation is accurate, but slightly overestimates the
actual desynchronization because of a larger clock granular-
ity (0.25µs vs. 0.062µs). Further in this paper, software-
estimated values are reported.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Detected error, usec

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

Software

Hardware

HW adjusted

Fig. 10: Distribution of synchronization errors estimated in
software vs errors measured with a logic analyzer. Software-
estimated errors are 0.250µs − 0.062µs = 0.188µs larger on
average because of larger timing granularity (4 MHz vs 16 MHz)
and are systematically offset by around 0.1µs (detection overhead).
Compensating for these two factors gives good a match between the
methods (the dashed line).

Fig. 11 displays the drift corrections on individual nodes,
while Table II includes the errors detected between nodes 6
and 7. Although both are just 3 hops away from the network
timesource, in the RPL topology they are separated by 6
intermediate hops. Even though they are not logical neighbors,
they may be physically close and capable of communicating.
If that is the case, then broadcast messages (e.g., RPL DIO)
coming from, for example, node 7 should be received not only
by its current routing-tree parent node 5, but also by node 6.
Therefore it is practically important to keep nodes 6 and 7
tightly synchronized to avoid losing packets.

We compare four configuration options of TSCH: LF-
only timing without AS (“default”, Fig. 11a) and with AS
(“adaptive”, Fig. 11b), and high-precision (Section V-C) tim-
ing without AS (“precise”, Fig. 11c) and with AS (“adaptive
precise”, Fig. 11d) while using LF during sleep mode.

The adaptive method with LF-timing gives larger maximum
error than the other methods due to imprecise estimation of
the drift-to-be compensated. High-precision timing is able to
better estimate drift values and therefore gives much better
results (Fig. 11d): < 2µs error between nodes 6 and 7.

Further experiments (Fig. 12) show that our implementation
requires neither high frequency of resynchronization nor large
buffers for keeping history of drift estimates in order to get
accurate results. The figure shows that reducing the beacon
period to less than 10 sec does not improve timing accuracy,
validating our assumption that most of the errors in drift
estimations are caused by measurement errors.

A longer-term evaluation (15 hour experiment) of high-
accuracy synchronization in star topology further confirms that
the errors have the magnitude expected when using a 4 MHz
clock (Section IV-D): on point-to-point links, the average error

TABLE II: Synchronization errors in the 7-node network

Method Maximum error, µs Average error, µs

Default 101.7 29.8
Adaptive 165.3 45.5
Precise 110.0 58.0
Adaptive & precise 1.8 0.4

2 3 4 5 6 7
Node

100

50

0

50

100

S
y
n
c

e
rr

o
r,

 u
se

c

(a) Baseline timing

2 3 4 5 6 7
Node

100

50

0

50

100

S
y
n
c

e
rr

o
r,

 u
se

c

(b) With adaptive time synchronization

2 3 4 5 6 7
Node

100

50

0

50

100

S
y
n
c

e
rr

o
r,

 u
se

c

(c) With precise timing

2 3 4 5 6 7
Node

100

50

0

50

100

S
y
n
c

e
rr

o
r,

 u
se

c

(d) With adaptive and precise

Fig. 11: TSCH time correction amplitude depending on configu-
ration options.

1 2 4 8 16 32
Buffer size

0.0

0.5

1.0

1.5

2.0

2.5

S
y
n
c

e
rr

o
r,

 u
se

c

Average error

Max error

1 2 4 10 30 60
Beacon period, seconds

0

2

4

6

8

10

12

S
y
n
c

e
rr

o
r,

 u
se

c

Average error

Max error

Fig. 12: Synchronization errors depending on TSCH settings in
the 7-node network.

is 0.24µs; 99.8 % of errors are below 1.0µs and 90.4 %
of errors are below 0.5µs. The maximum error is between
0.97µs and 1.5µs depending on the node.

This single-hop multi-node experiment also gathered suf-
ficient number of longer packets to show the effect of the
packet size. Figure 14 demonstrates that the start of transmis-
sion of 65-byte packets takes place on average 0.4µs later

180 1000 2200
Guard time, usec

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Du
ty

 c
yc

le
, %

MCU Radio

1 4 10 60
Beacon period, seconds

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Du
ty

 c
yc

le
, %

MCU Radio

Fig. 13: MCU and radio duty cycles depending on TSCH guard
time duration and beacon period. In our setup, decreasing the guard
time leads to larger gains than increasing beacon period.

1.0 0.5 0.0 0.5 1.0
Detected error, usec

0.0

0.5

1.0

1.5

2.0

P
ro

b
a
b
ili

ty
 d

e
n
si

ty

95-byte packets

30-byte packets

Fig. 14: Distribution of synchronization errors for 30-byte
(n = 112052) vs 95-byte (n = 383) packets.

than start of transmission of 30-byte packets. The result is
negative synchronization “errors” being detected on receivers
for the longer packets. This suggests that the synchronization
accuracy on CC2650 can be further increased by taking into
account packet sizes.

Thanks to the high-accuracy time synchronization, we are
able to reduce the TSCH guard time from its standard value
of 2200µs to 180µs while observing no decrease in PRR.
With our two-Rx-slots-per-47 TSCH slotframe, the radio duty
cycle is reduced by approximately 50 %, i.e. from 1.40 % to
0.73 % (Fig. 13a), an effect that would be even stronger if
the Contiki-default 1-in-7 slotframe were used. In contrast,
increasing the resynchronization period ∆t while keeping
guard time and schedule constant has smaller impact on energy
efficiency (Fig. 13b): in our setup using ∆t = 60 sec results in
1.27 % radio duty cycle. Further increase would give negligible
effects: in the experiment with 60-second period, > 99.9 % of
radio-on time is spent in idle listening. This result is at odds
with the direction pursued in existing work [2], [3], which
aims specifically to increase the resynchronization period.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that there is no need to make a trade-
off between high-accuracy time synchronization and low duty
cycles. By synchronizing the LF and HF timing sources on
CC2650 System-on-Chip nodes, we are able to accurately
learn and compensate for the drift of the local LF clock while
keeping MCU duty cycle below 2 % and radio below 1 %. The
4 MHz HF clock, active during the “on” mode, allows to pre-
cisely measure the local drift enabling sub-microsecond syn-
chronization on point-to-point links. For multihop networks,
the error increases no more than the number of hops between
nodes, leading to < 2µs empirically observed maximal error
in a 7-node line topology. The method presented in this paper
does not require any protocol extensions on top of standard
IEEE 802.15.4 TSCH and is robust to changes in configuration
settings.

In the future work, we plan to verify that the same idea
is applicable to other modern IoT hardware platforms using
similar architectures, such as the CC2538 System-on-Chip.
Due to a higher timestamp resultion (Table I), the CC2538 is
likely to produce even better results. We also plan to study the
implications on the networking layer, for example, on TSCH
scheduling.

ACKNOWLEDGMENTS

This work was performed under the SPHERE (a Sensor
Platform for Healthcare in a Residential Environment) In-
terdisciplinary Research Collaboration (IRC) funded by the
UK Engineering and Physical Sciences Research Council
(EPSRC), Grant EP/K031910/1. It was also partly supported
by a grant from CPER Nord-Pas-de-Calais/FEDER DATA and
by the distributed environment Ecare@Home funded by the
Swedish Knowledge Foundation.

The authors are thankful to Antonis Vafeas for his help with
logic analyzer measurements.

REFERENCES

[1] “IEEE Standard for Local and metropolitan area networks—Part 15.4,”
IEEE Std 802.15.42015, 2015.

[2] D. Stanislowski, X. Vilajosana, Q. Wang, T. Watteyne, and K. S. Pis-
ter, “Adaptive synchronization in IEEE802.15.4e networks,” Industrial
Informatics, IEEE Transactions on, vol. 10, no. 1, pp. 795–802, 2014.

[3] T. Chang, T. Watteyne, K. Pister, and Q. Wang, “Adaptive synchroniza-
tion in multi-hop TSCH networks,” Computer Networks, vol. 76, pp.
165–176, 2015.

[4] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “OpenWSN: a standards-based low-power
wireless development environment,” Transactions on Emerging Telecom-
munications Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[5] “JN516x IEEE802.15.4 Wireless Microcontroller,” http://www.nxp.com/
documents/data sheet/JN516X.pdf.

[6] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH,” in
Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2015, pp. 337–350.

[7] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems. ACM, 2004, pp.
39–49.

[8] R. Lim, B. Maag, and L. Thiele, “Time-of-flight aware time synchro-
nization for wireless embedded systems,” in EWSN 2016, pp. 149–158.

[9] “CC2420: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver,” http:
//www.ti.com/lit/gpn/cc2420.

[10] “CC2520: 2.4 GHZ IEEE 802.15.4 / ZIGBEE RF TRANSCEIVER,”
http://www.ti.com/lit/gpn/cc2520.

[11] “CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-
GHz IEEE 802.15.4, 6LoWPAN, and ZigBee Applications,” http://www.
ti.com/lit/ds/symlink/cc2538.pdf.

[12] “CC2650 SimpleLink Multistandard Wireless MCU,” http://www.ti.com/
lit/ds/symlink/cc2650.pdf.

[13] “8-bit AVR Microcontroller with Low Power 2.4GHz
Transceiver for ZigBee and IEEE 802.15.4: AT-
mega256RFR2,” http://www.atmel.com/images/atmel-8393-mcu
wireless-atmega256rfr2-atmega128rfr2-atmega64rfr2 datasheet.pdf.

[14] “IEEE Standard for Local and metropolitan area networks—Part 15.4,
Amendment 1: MAC sublayer,” IEEE Std 802.15.4e-2012, 2012.

[15] C. Bormann, M. Ersue, and A. Keranen, “Terminology for Constrained-
Node Networks,” IETF, RFC 7228, 2014.

[16] “FC-135R / FC-135 kHz range crystal unit,” https://support.epson.biz/
td/api/doc check.php?dl=brief FC-135R en.pdf.

[17] “TinyOS implementation of TSCH,” https://github.com/EIT-ICT-RICH/
tinyos-main/tree/tkn-tsch.

[18] “IPv6 over the TSCH mode of IEEE 802.15.4e IETF working group,”
https://tools.ietf.org/wg/6tisch/.

http://www.nxp.com/documents/data_sheet/JN516X.pdf
http://www.nxp.com/documents/data_sheet/JN516X.pdf
http://www.ti.com/lit/gpn/cc2420
http://www.ti.com/lit/gpn/cc2420
http://www.ti.com/lit/gpn/cc2520
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.ti.com/lit/ds/symlink/cc2650.pdf
http://www.ti.com/lit/ds/symlink/cc2650.pdf
http://www.atmel.com/images/atmel-8393-mcu_wireless-atmega256rfr2-atmega128rfr2-atmega64rfr2_datasheet.pdf
http://www.atmel.com/images/atmel-8393-mcu_wireless-atmega256rfr2-atmega128rfr2-atmega64rfr2_datasheet.pdf
https://support.epson.biz/td/api/doc_check.php?dl=brief_FC-135R_en.pdf
https://support.epson.biz/td/api/doc_check.php?dl=brief_FC-135R_en.pdf
https://github.com/EIT-ICT-RICH/tinyos-main/tree/tkn-tsch
https://github.com/EIT-ICT-RICH/tinyos-main/tree/tkn-tsch
https://tools.ietf.org/wg/6tisch/

	Introduction
	Related work
	TSCH on IoT hardware
	Time synchronization in TSCH

	Timing on IoT hardware
	Desirable properties
	Hardware overview

	Motivation: Analytic model
	Timing errors due to production spread
	Timing errors due to differences in operating temperature
	Timing errors due to measurement errors
	An example

	Design and implementation
	Adaptive time synchronization (AS)
	The learning step
	The compensation step
	Differences from related work

	Porting TSCH to CC2650
	Enabling high-accuracy synchronization

	Experimental results
	Conclusions
	References

