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Kinematic Modeling and Observer Based Control of Soft Robot
using Real-Time Finite Element Method

Zhongkai Zhang, Jeremie Dequidt, Alexandre Kruszewski, Frederick Largilliere and Christian Duriez

Abstract—This paper aims at providing a novel approach to
modeling and controlling soft robots. Based on real-time Finite
Element Method (FEM), we obtain a globally defined discrete-
time kinematic model in the workspace of soft robots. From the
kinematic equations, we deduce the soft-robot Jacobian matrix
and discuss the conditions to avoid singular configurations.
Then, we propose a novel observer based control methodology
where the observer is built by Finite Element Model in this paper
to deal with the control problem of soft robots. A closed-loop
controller for position control of soft robot is designed based
on the discrete-time model with feedback signal being extracted
by means of visual servoing. Finally, experimental results on a
parallel soft robot show the efficiency and performance of our
proposed controller.

I. INTRODUCTION

Soft robots are defined as robotic systems of which
compliance of underlying materials is similar to that of
soft biological materials [1]. Due to their low stiffness of
structure, soft robots can reduce the harm to interact with
humans and show more adaptation to the environment. The
advantages of soft robots make them suitable for medical
applications, to manipulate objects with different shapes and
to work in confined spaces. Compared with their rigid-bodies
counterparts, soft robots have infinite degrees of freedom so
that the modeling, control, and trajectory planning are more
challenging. Traditional methods to model and control rigid
robots are difficult to be implemented for soft robots and thus
new approaches are required.

In the fields of soft robotics modeling, three main cate-
gories of kinematic models can be found: piece-wise constant
curvature (PCC), non-constant curvature and Finite Element
approximation. In the last ten years, researchers have done
many works [2], [3] based on PCC model which can be
considered as the simplest model of soft robot. However,
the PCC model can not account for all kinds of soft robots,
especially for the robots with non-constant sections. As a kind
of non-constant curvature models, Cosserat geometrically
exact models based on Cosserat rod theory has been explored
[4], [5], [6]. The two kinds of models have been researched
and used for model based control of soft robots. However,
they are difficult to feature soft robots with relatively complex
geometrical shapes or volume deformations. As a feasible
numerical method, Finite Element Method (FEM) is usually
limited to be used to provide a more realistic description of
mechanics performance [7] due to its higher computational
cost. The modeling of soft robots based on real-time FEM
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was first proposed in [8] which opens a new research field
for real time modeling and control of soft robots.

Based on the FEM model, open-loop control has been ex-
plored and experiments demonstrate its feasibility for control
of soft robots with different sizes and shapes. [8] builds
an inverse FEM model solved by iterative Gauss-Seidel
algorithm to compute control input at each step. In [9],
the inverse simulation method is applied to semi-automatic
deformable registration for adaptive radiotherapy. In order
to enable a high-rate control using the inverse FEM model,
an asynchronous simulation framework is proposed based on
multi-rate simulation [10]. Using a domain decomposition
strategy, this control method is modified to control continuum
robots with rigid vertebras [11]. In the above control methods,
no feedback signal from real soft robots is used to compute
the control input. Therefore, these controllers have relatively
lower accuracy and no robustness to disturbances. To avoid
the difficulties of modeling, model-free control methods [12]
were proposed to control soft robots using learning or op-
timization approaches. Generally speaking, model-free con-
trollers have higher robustness to the change of environment
but they are relatively complex with lower precision or longer
time for learning.

To further the work in [8], the intention of this paper
is to explore a novel method for model-based closed-loop
control of soft robots. It is very difficult to get a relatively
accurate model in analytical form for control design of soft
robots. Real-time FEM provides a better choice to model
the soft robots, especially for those with complex shapes
or contact with the environment, with higher accuracy and
acceptable computation time. Considering that the Jacobian
matrix is an important index in the analysis and control of
robots, we deduce the Jacobian matrix of soft robots based
on a globally defined kinematic model. A feasible strategy to
design closed-loop controller based on finite element model
is to combine the feedback signal from the real robot and
model information from the robot simulated by FEM. This
generates a novel observer based control strategy where the
observer is designed by FEM. There are two main methods in
the sampled-data control literature [13]. In the first method,
a continuous-time controller which is designed based on a
continuous-time plant model is discretized for implication.
While in the other method, a discrete-time model of the plant
is deduced for design of a discrete-time controller. In this
paper, we explore the second method using a new observer
based control strategy.



Two main contributions are presented in our work. Based
on real-time FEM, we get the kinematic equations which are
globally defined to describe the movement of soft robots and
then discuss the properties of soft-robot Jacobian Matrix. The
second contribution is that we provide a novel method for
closed-loop control of soft robot using a novel observer based
control strategy to guarantee the stability and the minimal
energy property of the robotic system. Besides, to our best
knowledge, this is the first paper which proposes a closed-
loop visual servoing controller based on Finite Element
Method for the control of soft robot.

This article is structured as follows. In Section 2, a globally
defined discrete-time kinematic model is obtained based on
the real-time Finite Element Method. The features of Jacobian
matrix for soft robots are also discussed in this section.
The principle of the proposed observer based control and
its design based on the discrete-time model are shown in
Section 3. Section 4 shows the experimental results on a
parallel soft robot using the controller designed in Section
3. Then conclusions and future researches are presented in
Section 5.

II. SOFT-ROBOT JACOBIAN MATRIX BASED ON FINITE
ELEMENT METHOD

A. Kinematic Modeling

This section is partly built on the modeling method in [8],
[14], [15] which propose to build the equilibrium function
for soft objects in the constraint space. The models proposed
by these papers describe the evolution of the steady state
(position of each nodes of the FEM) of the system when a
given input variation is applied. The are expressed in the form
of implicit discrete-time equations.

At each sampling time T (T is the sampling interval time
which is very small and is equal to the computation time of
the relative step), the quasi-static equilibrium function (i.e for
low velocities) of the entire robot is given by 1:

fext,k− f(xk)+HT
k λ k = 0 (1)

where xk is the state of the robot (position of each node at
sample time k). fext is the external loads (like the gravity) and
f(x) is the internal stiffness forces at a given position x of the
FEM nodes. HT λ represents the contributions of the actuators
and the contact forces (where HT provides the directions of
the forces on the nodes imposed by each actuator and contact
force, and λ is their unknown contributions).

A linearization of the internal forces is computed at the
(k+1) th sampling time using the FEM model:

f(xk+1)≈ f(xk)+K(xk)dxk+1 (2)

where K(xk) is the tangent stiffness matrix that depends
on the actual positions of the nodes and dxk+1 is the dis-
placement between consecutive positions (dxk+1 = xk+1−xk).
Substituting Eq. (2) into Eq. (1), the equilibrium equation at
each step can be established:

1This function is built on the assumption of low velocities, so the dynamic
feature (inertia force) of the robot is ignored.

K(xk)dxk+1 = fext,k+1− f(xk)+HT
k+1λ k+1 (3)

In motion space, the matrix K is often very large in
dimension so that the direct computation of equilibrium
equation is expensive. Instead, using the Schur complement
of the constraint problem, the FEM model equation can be
projected into the constraint space that drastically reduces its
size. Then, we have:

δ e,k =
[
He (xk−1)K−1 (xk−1)HT

a (xk−1)
]︸ ︷︷ ︸λ a,k +δ

f ree
e,k (4)

Wea (xk−1)

δ a,k =
[
Ha (xk−1)K−1 (xk−1)HT

a (xk−1)
]︸ ︷︷ ︸λ a,k +δ

f ree
a,k (5)

Waa (xk−1)

where δ e and δ a are, respectively, positions of the end-
effector and the actuator in constraint space. While δ

f ree
e and

δ
f ree
a are positions given at the free configuration (λ a = 0).

Wea and Waa are the basic matrices and are homogeneous
to a compliance. Using Wea, we can get a measure of
the mechanical coupling between effector and actuator, and
with Waa, the coupling between actuators. The matrix K
can be factorized using a LDL decomposition, even for a
large number of nodes and actuators. In order to obtain
the mechanical coupling between effectors and actuators, the
Jacobian matrix He is defined as an additional constraint at
the tip of the effector.

At the (k+1) th step, Eq.(4) can be written as:

δ e,k+1 = Wea (xk)λ a,k+1 +δ
f ree
e,k+1 (6)

Combining Eq. (4) and Eq. (6), and considering the rea-
sonable assumption of small displacements, i.e. Wea (xk) =
Wea (xk−1) and δ

f ree
e,k = δ

f ree
e,k+1, we obtain the discrete-time

model of soft robots:

δ e,k+1 = δ e,k +Wea (xk)∆λ a,k (7)

where ∆λ a,k = λ a,k+1−λ a,k.
Similarly, from Eq. (5), we have

δ a,k+1 = δ a,k +Waa (xk)∆λ a,k (8)

The compliance matrices Wea (xk) and Waa (xk) can not
be precomputed because their values change at each iteration.
Based on the fact that the soft materials have slow dynamics
and are not subject to high-frequency deformation, we can
make an assumption that the matrices Wea (xk) and Waa (xk)
are constant between two sample times.

At the next step, the matrices Wea (xk) and Waa (xk) are
computed under the configuration of the robot which is
updated by

xk+1 = x f ree,k+1 +K−1
k JT

k λ k (9)



Remark 1. Wea (xk) and Waa (xk) are not time-varying matri-
ces. Instead, their values depend on the positions of all nodes
(the configuration of soft robot) in the Finite Element Model.
In this paper, Wea (xk) and Waa (xk) mean the values of Wea
and Waa at the k th sampling time.

B. Jacobian Matrix

In the research field of robotics, the Jacobian matrix
(representing the differential relationship between the actuator
displacement and the effector motion) is heavily used to
analyze and control robots. For rigid robots, assuming that
the relationship between the task space and joint space is
x = f (q), the kinematics model of the robot can be written
as:

dx = Jdq (10)

where J is the Jacobian matrix and can be expressed as:

J =
d f (q)

dq
(11)

However Eq. (10) and Eq. (11) can not be written using
the geometry of soft robots, as it is done traditionally in
rigid robots. It needs to account for the mechanical coupling
between actuators and between actuators and effectors created
by the deformation [8]. In the control of soft robotic systems,
the position of end-effector δ e is the output variable in task
space and δ a is the input signal to the actuator in joint
space. Combining kinematic equations Eq. 7 and Eq. 8, the
differential relationship for soft robots can be written as:

dδ e = WeaW+
aa ·dδ a (12)

where dδ e = δ e,k+1 − δ e,k and dδ a = δ a,k+1 − δ a,k. The
Jacobian matrix for soft robots is J = WeaW+

aa. For the case
of 3D movement, there exist singular configurations when
rank (J)< 3 which should be avoided for control design and
analysis of the workspace. Note that Eq. (12) describes the
3D position movement of soft robots, the vector δ e always
contains three rows and thus we should make sure that

rank
(
WeaW+

aa
)
= 3 (13)

The matrix Waa is positive-definite if there is no linear
dependency between lines of Ha, which can be realized by
placing the actuators on different nodes of the FEM with
different directions. Considering this invertible property of
the matrix Waa, we have

rank (Wea) = rank
(
WeaW+

aa
)
= 3 (14)

Assuming that there are n actuators, Waa is a n× n square
matrix and Wea has 3 rows and n columns. Some conclusions
about soft robots, based on Eq. (13) and Eq. (14), can be made
as follows:

If n < 3, the robot is a less freedom system which means
that the 3D movement is limited no matter what kind of
controller is applied.

If n= 3, from Eq. (13), the matrix Wea should be invertible.
Then the unique solution of control input is obtained.

If n > 3, the matrix Wea should be a column non-singular
matrix (rank (Wea) = 3) and thus the pseudoinverse can be
computed by W+

ea =WT
ea
(
WeaWT

ea
)−1 which can be used for

control allocation.
Therefore, in the design and control of soft robots, we

should make sure that the matrix Wea is a column non-
singular matrix, the matrix Waa is invertible, and the number
of actuators is larger than 2. Then the position of soft-robot
end-effector can be controlled freely in 3D workspace.

III. CONTROLLER DESIGN

A. Observer based Control

The objective of this section is to design a control law
so that the end-effector of the robot can reach its desired
position ye,d asymptotically. The controller is designed based
on the kinematic equation Eq. (7) which can be rewritten as
the state-space model:

δ e (k+1) = δ e (k)+B(k)u(k) (15)
y(k+1) = δ e (k+1) (16)

where δ e is the state variable of the system (i.e. the position
of the end-effector δ e). B(k) is the input matrix and is equal
to Wea (xk). The tension input is u = ∆λ a, and the output of
the system is y = δ e. Based on the discrete-time model Eq.
(15), a feasible controller can be designed as

u(k) =−µB+ (k)
(
ye,k−ye,d

)
(17)

which is developed in the next subsection.
In traditional control implementation, control input is com-

puted by control law which is only based on the informa-
tion in the real space2. This is a feasible way to design
controllers whose feedback information can be measured or
observed in application (usually it is for systems with a
few degree of freedoms). However, it is not a good idea
for complex systems (like soft robots accurately modeled
by FEM and controlled by controller −µB+ (k)

(
ye,k−ye,d

)
) because neither Wea (xk) nor Waa (xk) can be computed
from the information of real robots. In this subsection, we
introduce a novel implementation of observer based control
for complex systems. The principle of this control strategy is
shown in Fig. (1).

The simulation model serves as an observer to obtain the
values of matrices Wea (xk) and Waa (xk) at each sampling
time. The tension ∆λ a is computed using information from
two basic components: one is the observer built by the Finite
Element Model (to obtain matrix Wea) and the other is the
robotic system (to obtain the output δ e). The input signal δ a
which is computed by substituting ∆λ a and Waa (obtained
from Finite Element Model) into Eq. (8) is used to drive
both the simulation model and the real robot. At the next
step computation, the model of the observer is updated based
on Eq. (9) to get the new updated matrices Wea and Waa.

2If the feedback information for the controller can be measured, different
sensors can be applied to extract this information. For information which is
not accessible directly, observers are used for real application.



Fig. 1. Implementation of controller proposed in this paper. Information
from both the real space and the simulation space is needed to compute the
control input. The information from robot in real space is used to generate
feedback signal for the controller and to adjust the simulation model step by
step. The model in simulation space can provide other information (like the
value of matrix B in Eq. (15)) which is needed for the controller.

Considering that it is impossible to take every disturbance
into consideration, the model in simulation space is usually
an approximation of the robot. Therefore, if the differences
between the accurate model and the simulation one are
obvious, the approximated model can be adjusted using the
information from real space to provide an accurate observer.

If the number of actuators is equal to the dimension of
end-effector space, we have W+

ea,k =W−1
ea,k and get the unique

solution of control input. Otherwise, the least 2-norm solution
of the control input can be obtained using the control law
Eq. (18). From the definition of 2-norm solution, we have

‖ λ a ‖2=
(

λ
T
a λ a

) 1
2
=
(
∑

n
i=1 λ 2

ai
) 1

2 . The unique solution of
displacement of actuators is obtained by computing Eq. (8)
at each step. Therefore, the displacement of actuators also

meets the condition: ‖ ∆δ a ‖2=
(

∆δ
T
a ∆δ a

) 1
2
=
(
∑

n
i=1 ∆δ 2

ai
) 1

2 .

Furthermore, we have ‖ λ a ‖2 · ‖∆δ a ‖2= λ
T
a ∆δ a =E 3 which

means the minimal control effort is applied to deform the
robot at each step.

Unlike the methods to compute the control input at each
step from Eq. (4) using GS [8] or QP [16] algorithms,
controllers in this paper are designed based on Lyapunov
method and are implemented using observer based control
strategy. Three assumptions are made to simplify the design
process.

1. The finite element model of soft robots in simulation
space is a precise model of the real robot and constitutes a
perfect state observer;

2. The robot workspace contains no singular configuration;
3. The actuators are not constrained (no saturation).

B. Control based on Discrete-time Model

Based on Lyapunov method, the position control law ∆λ a
for soft robot is designed in this subsection and is shown in
Result 1.

3The deformation energy E in each step is linked to the mechanical work
of the forces exerted by the actuators: E = λ

T
a ∆δ a.

Result 1. Considering the closed-loop system, described by
Eq. (7), the feedback control law to compute the forces is
designed as

u(k) =−µB+ (k)
(
ye,k−ye,d

)
(18)

Then for any µ s.t. 0 < µ < 2, the system is globally
asymptotically stable.

Proof: The error signal e is defined as: e = y−ye,d , then
we consider the Lyapunov candidate function:

V = eT e (19)

The variation of Lyapunov function can be written as:

∆V ∆
= V (k+1)−V (k)

= eT
k+1ek+1− eT

k ek

=
(
y(k+1)−ye,d

)T (y(k+1)−ye,d
)
−(

y(k)−ye,d
)T (y(k)−ye,d

)
= yT (k+1)y(k+1)−yT (k)y(k)−2yT (k+1)ye,d

+2yT (k)ye,d (20)

Substituting Eq. (7) into Eq. (20), we have

∆V =
(

2yT (k)+(B(k)u(k))T −2yT
e,d

)
·(B(k)u(k)) (21)

Substituting Eq. (18) into Eq. (21), the final form of ∆V is

∆V =−µ (2−µ)eT (k)e(k)≤ 0 (22)

In Eq. (22), ∆V < 0 stands for all e 6= 0, so that all solutions
converge to the set S :=

{
y | y(k) = ye,d

}
. From Eq. (18), we

can further conclude that the input µ converges to zero, so
that Eq. (8) is also stable.

Then the incremental displacement of actuators is obtained
by substituting u(k) into Eq. (8):

∆δ a (k) =−µJ(k)+
(
ye,k−ye,d

)
(23)

IV. EXPERIMENTS

A parallel soft robot with four legs (see Fig. 2) is consid-
ered to show the performance of controller Eq. (18). The soft
robot is made of silicone with a Young Modulus of 150kPa
and is driven by four inelastic cables (pulled by servomotors
with displacement controller) at each leg. The position of
end-effector is chosen as the feedback signal and is measured
at each step by the motion capture system (OptiTrack with
the accuracy of 0.1mm), which constitutes a position-based
visual servoing system. The soft robot is modeled in SOFA
framework where the value of matrices Wea and Waa is
computed at each step based on FEM. Instead, vectors δ e
and δ e,d are measured by the cameras in the real space.

There are two feasible ways to implement the control of
soft robots. When the forces of the cables are computed by
Eq. (18), torque control can be applied for the control of



Fig. 2. Picture of soft robot and its simulation model. The parallel soft robot
is made of silicone and is actuated with cables placed on the middle of each
leg. A rigid ball is used to generate the disturbance on the robot in order
to test the performance of the controller. A simulation model is built in the
scene of SOFA.

servomotors. In the second method which is applied by this
paper, we get the displacement of the cables by substituting
Eq. (18) into Eq. (8) at first and then control the servomotors
by the position control method. The other implementation of
the second method is to compute the displacement of cables
directly using control law ∆δ a,k =−µWaaB+ (k)

(
ye,k−ye,d

)
which is obtained by the model δ e,k+1−δ e,k =WeaW−1

aa ∆δ a,k
(combining Eq. (7) and Eq. (8)). In this method, the controller
is deduced using the same method for Eq. (18) and assuming
that the matrix Waa is invertible. In the second method, when
Eq. (18) is substituting into Eq. (8), we can also obtain the
control law which is the same with that by the third method.

Positioning and tracking performances of both closed-
loop controllers and open-loop controllers4 are shown in this
section. The position errors of the end-effector between its
real position and desired position at every step are depicted
in Fig. (3), Fig. (4), and Fig. (5), where the red lines depict
the changes of position errors using closed-loop controllers
while the green lines show that using open-loop controllers.
Control parameters and exact average errors are shown in
Tab. (I) where the shorthand notations of control methods
in experiments are: closed-loop positioning control (CPC),
open-loop positioning control (OPC), closed-loop positioning
control with disturbance (CPCD), open-loop positioning con-
trol with disturbance (OPCD), closed-loop tracking control
(CTC), and open-loop tracking control (OTC).

A. Positioning

In positioning experiments, we consider the performances
of both the closed-loop controller and the open-loop con-
troller in two situations: with and without disturbance. The
unknown disturbance is generated by an unmodeled rigid ball
swaying on the end-effector of the soft robot (see Fig. 2). The
initial tensions of four cables are set as 0.58 N which drives
the end-effector to the initial position [3,−122,129] (mm) for
the robot without disturbance and [4,−121,111] (mm) with
disturbance. The desired position is [10,−110,160] (mm) for
each case.

4In open-loop controller, the same control law (18) is used with the output
feedback signal being obtained from the simulation model.
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Fig. 3. Comparison of positioning errors between open-loop control and
closed-loop control

The Fig. (3) shows the performances of open-loop con-
trol and closed-loop control without the disturbance in the
environment. The positioning error is zero after 1.6 seconds
using the closed-loop control, while in open-loop control, due
to the modeling error of the simulation model, the position
error does not reach zero. As shown in Tab. (I), the average
positioning error within 8 seconds using closed-loop control
is about 9.74 mm lesser than that using open-loop control.
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Fig. 4. Comparison of positioning errors between open-loop control and
closed-loop control with unknown disturbance

The Fig. (4) presents the positioning errors in the appear-
ance of disturbance. The closed-loop control is effective for
positioning task with the positioning error being zero after
3.2 seconds and the average error being 3.23 mm (see Tab.
(I)). However, for open-loop control, the positioning error is
larger than that without disturbance.

B. Tracking

The tracking performances are presented in this sub-
section with the initial tension of cables being 0.87 N
for an initial position of the end-effector at [4,−121,141]
mm. The trajectory of the tracked object is described by
[2+20sin(t/5) ,−122+20cos(t/5) ,150] (mm). Another sit-
uation where the moving object has no preassigned path is
also considered.

As depicted in Fig.(5), the tracking performance is much
better with closed-loop control than that with open-loop
control (see average errors from Tab (I) : 1.94 mm for
CTC and 13.13 mm for OTC). Because of the loss of
dynamic information, the vibration of the soft robot can not
be suppressed and the tracking error exists for both control
methods no matter how long the tracking time is.

As shown in Fig. (6), the robot can track a moving object
without a preassigned path using the controller proposed in
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Fig. 5. Comparison of tracking errors between open-loop control and closed-
loop control

TABLE I
CONTROL PARAMETERS AND AVERAGE ERRORS IN EXPERIMENTS

Experiments Control parameters Average errors (mm)
CPC 0.12 2.46
OPC 0.5 12.20

CPCD 0.06 3.23
OPCD 0.5 15.84
CTC 0.12 1.94
OTC 0.5 13.13

this paper. The positions of both the object and the end-
effector are extracted by cameras at each step. At the initial
time, the position of the object is converted to coincide with
the position of the end-effector by the translational motion
(Teo = To − Te shown in Fig. (6)). Then for the following
steps, what the end-effector tracks is the equivalent object of
which position is obtained by the same translational motion
as that in the initial time.

V. CONCLUSION

This paper shows a novel method for kinematic modeling
and control of soft robots. The discrete-time model is deduced
based on real-time Finite Element Method and then a novel
observer based control method (the observer is built by
Finite Element Model) is proposed to control soft robots with
complex structure. Two kinds of experiments (positioning and
tracking) are implemented and show the effectiveness of the
proposed method.

The application of this approach to different soft robots
will be explored in the future work. The performance of our

Fig. 6. Soft robot tracks a moving object which lies on the middle of the two
markers placed on the black plane. The controlled point is the end-effector
of the robot.

control method is affected by the inaccuracy of models. If
the simulation model is highly imprecise, for example to deal
with the dynamic problem with the controller based on quasi-
static model, the control performance maybe unsatisfactory
and even unstable. So a more complex control method is
needed to increase the robustness and adaptivity of the
controller which is the future work in the field of soft robot
control.
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