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Abstract. Feature selection in classification can be modeled as a com-
binatorial optimization problem. One of the main particularities of this
problem is the large amount of time that may be needed to evaluate the
quality of a subset of features. In this paper, we propose to solve this
problem with a tabu search algorithm integrating a learning mechanism.
To do so, we adapt to the feature selection problem, a learning tabu
search algorithm originally designed for a railway network problem in
which the evaluation of a solution is time-consuming. Experiments are
conducted and show the benefit of using a learning mechanism to solve
hard instances of the literature.

1 Introduction

A lot of computational challenges are linked to the big-data context and knowl-
edge discovery represents a very active research domain. Classification is one of
the critical tasks of knowledge discovery. In a classification context, a dataset is
composed by a set of observations. Each observation is defined by a set of fea-
tures and a class. The goal is to learn a model on those data in order to predict
classes of new observations. However, the high number of features complicates
the learning of the model, and, as a result, makes difficult the correct prediction
of new observations. Consequently, a preliminary phase is applied to help the
construction of the model, the feature selection phase.

The feature selection problem consists in choosing a subset of features, among
a larger set. It may be used (i) to simplify the understanding of a model in order
to facilitate its comprehension by users, (ii) to reduce the computational time
of algorithms that exploit those data, (iii) to reduce overfitting, in other words,
to reduce the specialization of the model to known observations.

The feature selection problem in classification can be modeled as a combina-
torial optimization problem [4], first because it consists in choosing a subset of
features among N (2N possible subsets exist), and secondly because the qual-
ity of a subset may be evaluated (by the quality of the classification model
constructed with this subset, for example). However, the use of a classifier to



construct the model may be time expensive if an elaborate one is used. This may
be a difficulty for optimization approaches to deal with large datasets.

In this paper we investigate an optimization approach able to jointly deal
with large datasets and time-consuming classifiers. This approach based on Tabu
Search integrates a learning mechanism in order to evaluate only promising sub-
sets of features.

The remainder of this paper is organized as follows. Section 2 introduces the
feature selection problem. Section 3 presents the Learning Tabu Search approach
proposed. Section 4 drives experiments and compares results with the classical
Tabu Search approach in order to appreciate the contribution of the learning
mechanism. Finally, section 5 gives some conclusions and perspectives for future
works.

2 The Feature Selection Problem in classification

2.1 Problem description

In a classification problem, a set of observations with known classes is used
to learn a classification model to predict the class of any new observations. A
feature selection process may be used to select information that may help the
classification. In this context, a dataset (in the following called instance) is
represented by a set of d observations. Each observation i is characterized by n
features and one class. Hence an instance is represented by a matrix A of d rows
and n columns which represents the value of each feature for each observation,
and a vector C of size d which represents the class of each observation, as follows:

A =

a11 · · · a1n...
. . .

...
ad1 · · · adn

 , C =

c1...
cd

 (1)

where ci ∈ {1, ..., k} with k the number of classes.
An instance is composed by two sets. The first one, called training set, allows

resolution approaches to learn a model and, the second one, called validation
set, is used to evaluate that model on new observations.

2.2 Resolution approaches

For this problem, resolution approaches may be classified in three major types
according to the way the search procedure and the classifier are combined:

– Filter approaches: Select features independently of the classification method
used.

– Wrapper approaches: Exploit the classifier performance to select features.
This type of approaches is used in this paper, and detailed hereafter.

– Embedded approaches: Combine filter and wrapper approaches. They are
used to reduce overfitting.



The wrapper model, initiated by R. Kohavi [13], applies a search procedure
to find different subsets that are evaluated with a classifier on the training set.
The best subset found during the search procedure is then evaluated on the
validation set (see Figure 1). An advantage of this approach is to be able to
deal with correlations between features and to find relevant associations of them.
However, this kind of approaches may generate overfitting, i.e., the specialization
of the model to observations used to build the model. Moreover, the computing
time may become large with regard to the classifier used, when the dataset
contains a large number of observations and/or features.

All features features subset Classify Quality + Best subset

Evaluate subset

Training Set Validation Set

Fig. 1. Wrapper approach

2.3 State of the art

Finding the best subset of features can be viewed as a combinatorial optimization
problem. Hence, a lot of methods, such as metaheuristics have been proposed to
solve it. Table 1 presents some metaheuristics from the literature, to tackle this
problem together with the type of approach used for resolution.

Table 1. Metaheuristics for the feature selection problem. The bibliographic
reference, the date and the resolution approach are also given.

Ref Date Algorithm Approach

[20] 1998 Genetic Algorithm with DistAl Wrapper
[7] 2000 Niched Pareto Genetic Algorithm Wrapper
[15] 2006 Genetic Algorithm Wrapper
[14] 2007 HillClimbing Filter +Wrapper
[12] 2007 NSGA II Wrapper
[6] 2009 Genetic Algorithm + Iterated Local Search Embedded
[1] 2010 Multi-Cluster Feature Selection Wrapper
[8] 2010 Simulated Annealing and Genetic Algorithm Wrapper
[3] 2012 Particle Swarm Optimization Wrapper
[19] 2013 Particle Swarm Optimization Wrapper
[18] 2014 Modified micro Genetic Algorithm Wrapper

This table shows that very recent methods have been proposed. Most of them
are wrapper approaches. The population-based algorithms are mainly applied
and, in particular, genetic algorithms which seem to be the favored metaheuris-
tics for this problem. On the contrary, very few local search algorithms exist.

While using an efficient classifier, such as SVM (Support Vector Machine) [17],
on large datasets, the evaluation of a subset may be time consuming. In this con-
text, population based metaheuristics that need to make many evaluations at



each generation, are not any more good candidates and local search approaches
may be privileged. Indeed, local search approaches benefit from neighborhood
relationships, exploit them to guide the search and to spare some evaluations.

Following these remarks, this paper proposes a local search that integrates a
mechanism to learn about these neighborhood relationships to guide the search
efficiently.

3 The Feature Selection Problem with Learning Tabu
Search

Learning Tabu Search is an efficient local search integrating a learning mecha-
nism. This section presents the steps needed to adapt this method to the Feature
Selection (FS) problem. First, the modeling of this problem is described. Then,
the integration of the learning mechanism into a tabu search is explained. Finally,
each component of the method is detailed to understand the adaptation.

3.1 Feature Selection Problem modeling

Representation of solutions A solution s is a subset of features. It is repre-
sented by a bit string of size n, the total number of features: s = [a1, ..., an] with
ai ∈ {0, 1},∀i ∈ {1, ..., n}. The ith bit ai indicates if the feature i is chosen
(ai = 1) or, on the contrary, if it is not (ai = 0).

Evaluation of solutions For the FS problem in classification, several crite-
ria are commonly used to measure the quality of a solution. First, it may be
measured by the quality of the classification realized using the selected features.
Most of classifiers propose to compute the accuracy, which is defined as the ra-
tio between the well-classified observations and the total number of observations
tested. The accuracy is computed as follows:

accuracy =
number of well-classified observations

total number of observations

Secondly, the number of selected features is an important criterion for FS
problem. Indeed, in order to obtain more interpretable models, the number of
selected features should be minimized. This criterion is defined as the ratio
between the number of selected features (# S Features) and the total number of
features (# Features). In order to obtain a maximization criterion, the criterion,
noted features, is defined as follows:

features = 1− # S Features

# Features

This paper considers these two maximization criteria, accuracy and features.
Note that, in the literature, other criteria are also used such as sensitivity or
specificity. In this work, the FS problem is presented as a single-objective com-
binatorial optimization problem.



Consequently, the fitness function f is defined as a weighted sum between
accuracy and features:

f = α ∗ accuracy + (1− α) ∗ features

where α ∈ [0, 1] is a weighting coefficient (set to 0.75 in the experiments). The
goal is to find the subset of features that maximizes f .

Neighborhood For the FS problem, we consider the well-known one-flip neigh-
borhood defined, for all s in the search space, as follows:

N 0
1 (s) = {s′ | ∃i ∈ {1, ..., n} s.t. a′i 6= ai and ∀j 6= i, a′j = aj}

As the number of selected features has to be minimized, a good solution is
represented with most of bits equal to 0. Hence the probability of flipping a bit
from 0 to 1 is higher than flipping a bit from 1 to 0. Consequently, in order to
give the same chance to both flips 0 to 1 and 1 to 0, we divided the neighborhood
into two sub-neighborhoods. The add neighborhood (NA) is the set of neighboring
solutions where one bit has been flipped from 0 to 1. The drop neighborhood (ND)
is the set of neighboring solutions where one bit has been flipped from 1 to 0.
Then, N 0

1 (s) = NA(s)∪ND(s) and NA(s)∩ND(s) = ∅. The neighborhoods NA

and ND are mathematically defined as:

NA(s) = {s′ | ∃i ∈ {1, ..., n} with a′i = 1 and ai = 0 and ∀j 6= i, a′j = aj}

ND(s) = {s′ | ∃i ∈ {1, ..., n} with a′i = 0 and ai = 1 and ∀j 6= i, a′j = aj}

3.2 From Tabu Search to Learning Tabu Search

In local search algorithms and in particular in Tabu Search, the exploration of
the neighborhood of a solution can be time-consuming. Indeed, in the original
Tabu Search method, all the non-tabu neighbors of a solution are evaluated at
each iteration. In the FS problem, the evaluation of a solution is computed by
applying a classification procedure (KNN, SVM,...). This one can be computa-
tionally expensive when the number of observations and/or features becomes
large. Hence, the evaluation of the whole neighborhood at each iteration can not
be considered.

D. Schindl, and N. Zufferey designed the Learning Tabu Search (LTS) [16]
in order to avoid this. Hence, the exploration of the neighborhood is divided
into two steps: (i) the quality of all neighbors is estimated and, (ii) the Q most
promising ones are fully evaluated. LTS is based on an estimation function used
to estimate the potential quality of each neighboring solution. The computation
of this estimation is based on this idea: “if, some combinations of characteristics
often belong to good solutions during the search process, such combinations of
characteristics should be favored when generating new solutions”. The estima-
tion of the quality of one combination is computed from the quality of solutions



where this combination appears. Therefore, LTS needs a memory to save the
quality of each features combination.

The performance of LTS rests on the definition of this memory that rep-
resents the learning mechanism. This mechanism is related to the pheromones
concept of ant colony optimization (ACO) algorithms [5]. The quality of one
combination is then called its trail value. The higher the trail value of a com-
bination, the better is its quality. Like in ACO, the memory has to be updated
to increase the trail of promising combinations and to decrease those that are
associated to bad ones. An evaporation procedure is used to forget them.

In LTS, the update procedure is applied at regular intervals, called cycles.
The quality of the best solution found during each cycle is used to update the
trail values. The size of the cycle is a sensible parameter of LTS., as it impacts
the performance of the learning mechanism.

The update procedure aims to concentrate the search in regions containing
high quality solutions. In order to visit new regions of the solutions space, a di-
versification procedure has been introduced. This procedure modifies the policy
of choosing the Q most promising neighbors to be evaluated during the neighbor-
hood exploration. Usually, a learning mechanism favors the neighbors with the
highest estimation values but, it may lead to a premature convergence of LTS.
To avoid this issue, when diversification is triggered, the combinations with the
lowest estimation values are favored.

Algorithm 1: Learning Tabu Search (LTS)

begin
s← initial solution;
s∗ ← s;
repeat

Estimate the quality of non-tabu neighbors of N (s);
NQ ← Q most promising neighbors of N (s) according to the
diversification policy;
s← max

s′∈NQ

f(s′);

if s > s∗ then
s∗ ← s;

if s > ŝ then
ŝ← s;

Update the tabu list;
if End of cycle then

Update trails of each combination with ŝ;

until Stopping condition is met ;
return s*



Algorithm 1 gives an insight of LTS. From an initial solution, different steps
are applied until the stopping criterion is met. Every non-tabu neighbors are esti-
mated and then, the Q most promising neighbors are evaluated. Most promising
neighbors stands for neighbors with the highest estimation when diversification
is disabled but, ones with the lowest estimation when diversification is triggered.
At the end of the neighborhood exploration, the best solutions s∗ of the search, ŝ
of the current cycle and the tabu list are updated. At the end of each cycle, trail
values are updated from the fitness of ŝ according to the diversification policy.

3.3 Learning Tabu Search for Feature Selection

In the following, we explain the adaptation of LTS to the FS problem.

Definition of trail This paper proposes to consider the combination of two
features. A combination of two features is interesting if these features are both
selected in good solutions i.e., the combination of these two features brings
information for the classification task. The trail value tr(ai, aj) associated to
features ai and aj , indicates if the combination of ai and aj is promising, thanks
to the observations of the search history.

Estimation of neighbors A solution s and each neighbor s′ differ from one
bit ai. The estimation of a neighbor (Estim(s, ai)) (i.e., its potential quality),
is computed from the relevance of selecting the feature ai in relation to other
features in s: Estim(s, ai) =

∑
aj∈s tr(aj , ai).

Neighborhoods exploration NA and ND are the neighborhoods composed
with add flips and drop flips respectively. A promising add flip is to add a feature
ai to a solution s, if Estim(s, ai) is high in order to select a feature which
brings the most information to the solution. A promising drop flip is to delete a
feature ai from a solution s, if Estim(s, ai) is low. During the exploration of the
neighborhood in LTS, only the Q best promising neighbors are evaluated. Then,
Aq (resp. Dq) is the subset of non-tabu neighbors of NA (resp. ND) composed of
the q neighbors with the highest (resp. lowest) estimations. Finally, all neighbors
of Aq ∪Dq are evaluated and the best one is chosen.

Update procedure As mentioned before, the trail values tr(ai, aj) are up-
dated at the end of each cycle from the best solution ŝ found during this cycle:
tr(ai, aj) = ρ ∗ tr(ai, aj) + ∆tr(ai, aj), where ρ ∈ [0, 1] is the evaporation rate
and ∆tr(ai, aj) is proportional to the fitness of ŝ, if ai and aj both belong to ŝ,
and is equal to 0 otherwise.

Diversification procedure It is used to escape from a region of the search
space. Therefore, when the mechanism is triggered, the construction of the sets
Aq and Dq during the exploration of the neighborhood is inverted i.e., Aq (resp.
Dq) is the subset of non-tabu neighbors of NA(s) (resp. ND) composed of the q
neighbors with the lowest (resp. highest) trail values. This mechanism depends on



two parameters t1 and t2: the mechanism is triggered after t1 iterations without
improving s∗ (the best solution found during the search), and is disabled as soon
as s∗ has improved, or after t2 iterations with diversification.

4 Experiments

4.1 Experimental protocol

We choose to compare LTS to other local search algorithms: a Hill Climbing
(HC) and a Tabu Search (TS). Hill Climbing is a classic local search algorithm,
that has the major inconvenient, to stop the search when it falls in a local
optimum. In order to give the same chance for all algorithms, when HC falls in a
local optimum, it restarts the search with a random solution until the stopping
time is reached.

The Tabu Search is a local search that uses a memory to escape from local
optima. The memory is used to store recently visited solutions that are qualified
as tabu. At each step, the tabu search moves to the best non-tabu solution of the
neighborhood. Hence, the tabu search is able to escape from a local optimum by
moving to the least deteriorating neighbor. In the literature, Tabu Search applies
the best improvement strategy for the neighborhood exploration. Nevertheless,
this strategy may be time-consuming when the evaluation is costly, therefore in
this paper, we choose a first improvement strategy.

Instances used for experiments are divided into two parts. The first one is
the training set, used by the algorithm to look for the best subset of features.
The second one is the validation set, used to evaluate the ability of the subset
of features previously found, to well classify new data.

For each instance with their training and validation sets, we performed for
each algorithm the following different steps: (i) the search algorithm is performed
on the training set, (ii) the best solution found is selected and its accuracy
on the validation set is computed, (iii) these two steps are executed 30 times
per instance per algorithm, (iv) the statistical Wilcoxon test is performed on
fitness obtained on the training set to compare algorithms, and (v) the statistical
Wilcoxon test is performed on accuracy obtained on the validation set.

4.2 Description of instances

Experiments are computed using six instances from the literature. Each line of
these instances represents an observation. Table 2 details information about the
instances used for experiments (well-balanced binary classes).

An important point is the classifier used to compute the accuracy. In this
paper, we used SVM [17] (Support Vector Machine) that constructs hyperplanes
to separate data into two classes. This procedure becomes time consuming when
the number of observations increases and when data are difficult to separate into
two classes. Hence, for such instances, the runtime needed by SVM to construct
and then evaluate a model is expensive.



Table 2. Instances description. The total number of features (# Features), the
size of the training |T | and validation |V | sets (i.e., number of observations), the run-
time (in seconds) needed by SVM to build and evaluate a model on each training set
(without feature selection), and the runtime (in seconds) allocated to each optimiza-
tion algorithm are given. Instances are divided into two groups according to the SVM
runtime.

Name # Features |T | |V | SVM Allocated
Runtime Runtime

Schizophrenia [2] 410 56 30 0.01 500
Colon [21] 2000 62 32 0.052 120
Breast [21] 24481 78 26 0.734 500

Arcene [10] 10000 100 100 1.123 3000
DNA [9] 180 1400 600 1.172 500

Madelon [11] 500 2000 600 38.089 5000

In consequence, we choose to distinguish two groups of instances (low evalu-
ation cost vs. high evaluation cost) according to the SVM runtime when applied
on the training sets. The first one groups Schizophrenia, Colon and Breast in-
stances (SVM runtime lower than 1 second) and the second one groups Arcene,
DNA and Madelon instances. Note that, SVM requires more than 38 seconds
on Madelon instance to compute the accuracy on the whole training set.

Preliminary experiments helped to set the allocated runtime given to HC,
TS and LTS. This allocated runtime is the same for the three methods, and is
partially dependent on SVM runtime, since it is used within the evaluation to
compute the accuracy of a solution. Let us remark, that even if Arcene instance
requires less than 2 seconds to compute the accuracy, preliminary experiments
showed that the convergence is quite low but happened for each algorithm before
3000 seconds.

4.3 Parameters

Different parameter settings were studied before deciding which one to use for
the final experiments. Table 3 shows parameters involved in this study.

Table 3. Learning Tabu Search parameters. Gives each parameter together with
its setting value.

Parameter Value

Size of Tabu List 7
Size of Aq and Dq (q) 10

Cycle (I) 10
Evaporation rate (ρ) 0.9

Number of iterations with diversification (t1) 10
Number of iterations without diversification (t2) 10

Aggregation factor (α) 0.75

Two parameters deserve special attention. The first one is q that tunes the
number of promising estimated neighbors from each set, Aq and Dq, that will be



evaluated. Indeed, if q is small, LTS converges quickly because the first best so-
lutions are often the same. Otherwise, if q is large, LTS becomes time-consuming
because many solutions are evaluated. Note that q could be adapted to the in-
stance size, but preliminary experiments show that q = 10 appears to be a good
trade-off for these instances. The second one is the size of a cycle (I). If I is
small, the learning mechanism will make overfitting because the search has not
enough time to find a new best solution. Otherwise, if I is large, the learning
mechanism will take much time to discover good combinations and to forgot
bad ones. Preliminary experiments show that I = 10 appears to be also a good
trade-off.

4.4 Performance analysis

This analysis is organized in two parts. The first part deals with the optimization
perspective (capacity of the method to find a good subset of selected features
i.e., with a high fitness value) and evaluates its performance on the training
set with the single-objective function defined in Section 3.1. The second part
concerns the datamining perspective (capacity of the model to predict class of
unknown observations) and evaluates results obtained on the validation set.

Analysis of the optimization approach: Table 4 shows a comparative study
between the proposed approach LTS and the other approaches. For each instance,
the accuracy computed with SVM from the whole features is pointed out in order
to exhibit the benefit of the feature selection.

This table shows that concerning results about the fitness, LTS gives in most
of the cases the best results with a standard deviation close to zero. In details,
we can see that LTS often gives the best accuracy and selects always the least
number of features.

This may be explained by the neighborhood exploration strategy. Indeed,
LTS selects for evaluation the q best add flips as well as the q best drop ones.
Consequently, drop flips have as much chances to be chosen as add flips. On the
contrary, other approaches have a random neighborhood. As the number of se-
lected features is small, the probability to find a drop flip is low and may required
the evaluation of many neighbors. As a result, LTS can find a solution with a
good accuracy with the least number of features faster than other algorithms.

Table 4 also shows that, for each instance, LTS improves results obtained by
the original Tabu Search. These results show the improvement obtained by the
introduction of the learning mechanism.

In order to analyze the behavior of the different algorithms, we computed
their evolution over time. Figure 2 shows the evolution of the average fitness of
each approach over the time and gives the box-and-whisker plots (after one third,
two thirds, and at the end of the allocated runtime) on Madelon instance, which
is the most difficult instance to solve. For this one, LTS has a quick progression
compared to the two other methods. Indeed, Madelon is a high-cost instance,
so thanks to the estimation function, LTS avoids a large number of evaluations.



Table 4. Average and standard deviation (in brackets) of Fitness, Accuracy and
# S Features values obtained on training sets for HC, TS and LTS. For each algo-
rithm, the fitness values have been computed from the Accuracy and # S Features,
the number of selected features (see Section 3.1). Fitness values in bold stand for
algorithms outperforming the other one(s) according to the Wilcoxon test. For each
instance, the value of the accuracy obtained by SVM without any feature selection is
pointed out in brackets. The statistical comparison between algorithms is given under
the instance name.

Instance Algorithm Fitness Accuracy (%) # S Features

HC 0.992(0) 99.946(0.097) 11.788(3.735)

Schizophrenia (69.64%) TS 0.968(0) 97.132(4.173) 16.939(26.246)

LTS > HC > TS LTS 0.995(0) 100(0) 8.758(0.627)

HC 0.998(0) 99.951(0.079) 10.909(11.835)

Colon (87.09%) TS 0.982(0) 97.752(3.405) 10.97(6.905)

(LTS = HC) > TS LTS 0.996(0) 99.609(0.655) 6.788(3.047)

HC 0.98(0) 97.319(7.382) 18.394(44.684)

Breast (67.3%) TS 0.94(0) 92.308(16.18) 13.121(7.86)

HC > (LTS = TS) LTS 0.94(0) 92.075(16.817) 11.879(8.172)

HC 0.999(0) 99.879(0.11) 21.97(40.405)

Arcene (83%) TS 0.971(0) 96.273(10.392) 22.273(18.08)

LTS > HC > TS LTS 0.999(0) 100(0) 14.97(9.905)

HC 0.941(0) 95.71(0.364) 19.152(27.82)

DNA (89.57%) TS 0.941(0) 95.762(0.343) 19.485(21.633)

LTS > (HC = TS) LTS 0.945(0) 95.234(0.46) 13.606(8.434)

HC 0.712(0) 64.135(0.331) 37.273(92.017)

Madelon (56,45%) TS 0.714(0) 63.885(0.453) 31.03(46.905)

LTS > (HC = TS) LTS 0.731(0) 65.152(0.107) 15.606(10.246)
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Consequently, LTS finds the potential good solutions more quickly than other
approaches. These results show the interest of the estimation function.

To understand the behavior of the learning mechanism, we also investigate
the dynamic of add and drop flips over time. Thus, Figure 3 shows, for one execu-
tion, the evolution of the different metrics (Fitness, Accuracy and # S Features)
for LTS on Madelon instance. We can observe several phases on this figure. The
first one (from the beginning to time 1000 sec approximately) adds features to
increase the accuracy, and in consequence also the fitness. The second one starts
when fitness is high. In this phase, the learning mechanism chooses the worst
features to remove thanks to the trail values. As LTS removes features, which
bring the least information, the accuracy decreases slightly while the second
part of the fitness that favors small subsets of features increases. Consequently
LTS makes a good trade-off between the accuracy and the number of selected
features.
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Fig. 3. Evolution of Fitness, Accuracy and # S Features values for LTS on Madelon
instance. For more readability, the accuracy curve has been translated by +0.08.

Analysis of the datamining approach: Table 5 shows the results about
the accuracy values on both training and validation sets for each instance. The
objective is to analyze the ability to make a good classification on the validation
set, using features selected on the training set.

A first observation is that performance decreases between the training set and
the validation one. This difference reveals overfitting, that is to say, the solution
built on the training set is specific for these data. Consequently, the solution
looses in prediction quality for new data. This is especially true for instances with
few observations and confirms the difficulty to find a good classification model.



The standard deviations obtained with the validation set on these instances are
high and show a bad stability of the results produced. Conversely, in instances
with a large numbers of observations, the standard deviations obtained with the
validation sets are reasonable. Solutions are less sensitive to the data used for
the validation.

As for the training set, LTS manages to obtain better or equivalent results
than other approaches on the validation set. In particular, we can observe an
improvement about the results obtained by LTS compared to TS.

In conclusion, these experiments show the good performance of the Learning
Tabu Search regarding both the optimization and the datamining perspectives.
In particular, these experiments show the contribution of the learning mecha-
nism, as the Learning Tabu Search is able to find better subset of features than
the classical Tabu Search although they are based on the same components.
Table 5. Average and standard deviation (in brackets) of Accuracy values obtained
on both training and validation sets for HC, TS and LTS. Accuracy values in bold
stand for algorithms outperforming the other one(s) according to the Wilcoxon test.
The statistical comparison between algorithms is given. The double line shows the
separation between low and high evaluation time cost.

Instance Algorithm Accuracy (%) Accuracy (%)
Training Validation

Schizophrenia HC 99.946(0.097) 60.208(87.454)

TS 97.132(4.173) 55.457(119.31)

LTS 100(0) 61.319(66.62)

(LTS = HC) > TS LTS > HC > TS

Colon HC 99.951(0.079) 94.318(26.523)

TS 97.752(3.405) 91.004(39.524)

LTS 99.609(0.655) 94.127(23.655)

HC > LTS > TS (LTS = HC) > TS

Breast HC 97.319(7.382) 54.079(105.34)

TS 92.308(16.18) 50.116(106.77)

LTS 92.075(16.817) 52.098(98.087)

HC > (LTS = TS) LTS = HC = TS

Arcene HC 99.879(0.11) 72.18(16.028)

TS 96.273(10.392) 71.69(22.15)

LTS 100(0) 74.60(21.43)

(LTS = HC) > TS LTS > HC > TS

DNA HC 95.71(0.364) 93.63(2.50)

TS 95.762(0.343) 93.25(2.57)

LTS 95.234(0.46) 94.09(2.37)

(HC = TS) > LTS LTS = HC = TS

Madelon HC 64.135(0.331) 57.07(4.84)

TS 63.885(0.453) 56.56(4.23)

LTS 65.152(0.107) 59.69(1.485)

LTS > (HC = TS) LTS > (HC = TS)



5 Conclusion and perspectives

This work proposes to consider the Feature Selection problem for classification
as a combinatorial optimization one and presents an adaptation of the Learning
Tabu search to solve it. The objective was to be able to jointly deal with large
datasets and efficient classifiers. Indeed, these two elements may lead to an ex-
pensive objective function, which is a difficult aspect for optimization methods
that require a large amount of evaluations.

Therefore, to solve the Feature Selection problem with a local search, we
first propose of modelization, including the definition of neighborhood operators.
Then we propose some adaptations of the Learning Tabu Search, previously pro-
posed to solve a railway network problem, to the FS problem. Some specificities
for the FS problem are presented and explained.

Experiments are conducted in order to analyze the benefit of the integration
of a learning mechanism. Then, the Learning Tabu Search is mainly compared to
the classical Tabu Search, using exactly the same components except the learn-
ing mechanism. Datasets from the literature are used. Some of them have a low
cost evaluation time, whereas others are more costly. The main conclusions are
that according to the optimization perspective (the ability to obtain good fitness
solutions), the Learning Tabu Search obtained better results than the classical
Tabu Search, especially for high evaluation cost instances. This is due to the use
of the estimation function that avoids many evaluations and allows the Learn-
ing Tabu Search to progress faster. Regarding the datamining perspective (the
ability to find solutions that can lead to good classifications on other datasets),
a same observation is done: the Learning Tabu Search obtained better results
than the classical Tabu Search. This may be explained by the small number
of features selected by the Learning tabu Search compared to other methods.
Hence, these experiments show the contribution of the learning mechanism.

This work is very encouraging and perspectives of future works are interest-
ing. As far as the Feature Selection problem is concerned, such perspectives may
deal either with the extension of the learning mechanism (other definition of
the trail, for example) for LTS, or with the integration of the proposed learning
mechanism in other metaheuristics that may benefit from the estimation func-
tion. Other perspectives deal with the definition of such a learning mechanism
for other optimization problems with a high cost evaluation function.
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6. Béatrice Duval, Jin-Kao Hao, and Jose Crispin Hernandez Hernandez. A memetic
algorithm for gene selection and molecular classification of cancer. In Genetic
and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal,
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