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ABSTRACT

We consider the task of audio source localization using a mi-
crophone array on a mobile robot. Active localization algo-
rithms have been proposed in the literature that can estimate
the 3D position of a source by fusing the measurements taken
for different poses of the robot. The robot movements are typ-
ically fixed, however, or they obey heuristic strategies, such as
turning the head and moving towards the source, which may
be suboptimal. In this paper, we propose to control the robot
movements so as to locate the source as quickly as possible.
We represent the belief about the source position by a discrete
grid and we introduce a dynamic programming algorithm to
find the optimal robot motion minimizing the entropy of the
grid. We report initial results in a real environment.

Index Terms— Source localization, occupancy grid, ac-
tive sensing, mobile robot control.

1. INTRODUCTION

Robot audition is an emerging research field at the interface
of audio signal processing, artificial intelligence, and control
theory [1]. Today, assistive robots typically carry several mi-
crophones enabling them to locate and to recognize speech
and other sound events. This enables the detection of visually
hidden sound sources and efficient interaction with humans.

Source localization techniques fall into three classes [2].
One approach is to compute the time delay of arrival (TDOA)
between every two microphones using generalized cross-
correlation with phase transform (GCC-PHAT) [3] and to
derive the source position by triangulation. It is typically out-
performed by steered response power (SRP) [2] or multiple
signal classification (MUSIC) [4] techniques that compute
the pseudo-likelihood of each candidate position on a grid
and pick the maxima on that grid. See [2,5,6] for experimen-
tal comparisons. Binaural extensions of the above techniques
have been designed for situations when the array is mounted
on a head [7]. Particle filtering-based tracking algorithms
have also been studied for moving sources [8–10].

All three categories of techniques have been implemented
on robots [7,11–13]. They are most often used to estimate the

source angle of arrival (AoA), as with a static far-field micro-
phone array. Mobile robots are not restricted to this, however,
and they can estimate the full 3D position of the source by tak-
ing measurements at different poses. So-called active source
localization algorithms [7] have been proposed to integrate
these measurements into a single location estimate by means
of triangulation [14, 15], occupancy grids [11, 16], nonlinear
extensions of Kalman filtering [17], or particle filtering [18].
Occupancy grids are one of the most successful frameworks
for environment modeling in robotics [19]. The algorithms
in [11, 16] estimate the posterior probability of each candi-
date position on a grid by rescaling the GCC-PHAT pseudo-
likelihood. Such an inverse sensor model treats each cell of
the grid separately and it results in probability values which
do not integrate to 1, which leads to inconsistent maps [20].

The above algorithms operate by making the robot follow
a fixed patrolling path [21] or heuristic motion strategies in-
spired from humans [22], such as turning the head towards the
source [7,23] and getting closer to it [21,24]. Arm movements
resulting in dynamic change of the array aperture have also
been studied [25]. These strategies have been shown to im-
prove localization performance experimentally but they may
be suboptimal, especially for arrays of three or more micro-
phones which do not fit the geometry of binaural hearing.

In this paper, we provide two contributions. Firstly, we
represent the belief about the source position by a discrete
grid and we update it over time using a rigorous forward sen-
sor model [20]. Secondly, we quantify the information car-
ried by the grid by its entropy and we introduce a dynamic
programming algorithm to find the optimal robot motion min-
imizing the expected future entropy. The structure of the rest
of the paper is as follows. The position mapping algorithm
and the motion control algorithm are described in Sections 2
and 3, respectively. We report initial results in a real environ-
ment in Section 4 and we conclude in Section 5.

2. SOURCE POSITION MAPPING

We represent the environment as a discrete 3D grid whose
cells are binary random variables encoding the presence or



absence of an audio source at each position. The goal of map-
ping is to estimate the posterior probability of these variables
given a set of measurements. The number of parameters of
the posterior grows exponentially with the size of the grid,
hence approximations are required.

A popular approximation is to assume independence and
to estimate the occupancy of each cell separately [19]. This
approach used in [11, 16] suffers from two drawbacks. First,
the resulting maps are inconsistent: when the robot does not
move, the probabilities will converge to 1 for all cells along
the line from the microphone array to the source, while the
source is present in one of those cells only. Secondly, the
probabilities do not integrate to 1, which makes it difficult to
quantify the amount of information carried by the grid.

2.1. Discrete grid

To address these issues, we adopt a rigorous approach based
on a probabilistic forward sensor model [20]. We assume that
there is a single active sound source located at absolute po-
sition s. We partition the time axis into time frames indexed
by t and we denote by pt = [xt, yt, θt] the pose of the micro-
phone array at time t, i.e., its absolute position [xt, yt, z] and
its orientation θt w.r.t. the y-axis. We further denote by mt

the acoustic measurement at time t. The posterior probability
of the source position to be estimated is then equal to

P (s = i|m1:T , p1:T ) (1)

where m1:T = {m1, . . . ,mT }, p1:T = {p1, . . . , pT }, and
i = [xi, yi, zi] is any cell of the grid.

2.2. Forward sensor model

The sensor model p(mt|s = i, pt) defines the likelihood that a
given localization technique applied to one signal frame pro-
vides a measurement mt given the source position i and the
robot pose pt. In the case of a linear far-field microphone ar-
ray, the measurements mt are AoA estimates relative to the
array and the sensor model can be expressed as

p(mt|s = i, pt) = p(mt|dit, αit) (2)

where

dit = [(xi − xt)2 + (yi − yt)2 + (zi − z)2]1/2 (3)

αit = arccos
(yi − yt) cos θt − (xi − xt) sin θt

dit
(4)

are the distance and the AoA of cell i relative to the array at
time t, respectively. More general parameterizations can be
found for nonlinear or nonplanar arrays.

As an example, let us consider the scenario of a Turtlebot1

equipped with a Kinect. We estimate the source AoA from

1http://www.turtlebot.com/

the Kinect’s 4-microphone linear array output using MUSIC
with generalized singular value decomposition (GSVD) [13]
as implemented in HARK [1]. MUSIC-GSVD is a variant of
MUSIC that is robust to spatially correlated noise and that op-
erates in real time. The input covariance matrix Rxx(t, f) and
the noise covariance matrix Rnn(f) are classically estimated
in each time frame t and each frequency bin f by averaging
the short time Fourier transform (STFT) of the input signal
and a noise-only signal. The SVD of Rnn(f)

−1Rxx(t, f) is
then computed and the left singular vectors are used to com-
pute the MUSIC angular spectrum, whose maximum yields
the estimated source AoA mt.

In order to learn the sensor model (2), we simulated
speech recording in the presence of spatially isotropic Gaus-
sian noise via the image method [26] using Roomsimove2.
The room size, the reverberation time (250 ms), the intensity
of speech and noise, and the noise spectrum roughly match
those of the real environment in Section 4. The microphones
were supposed to be omnidirectional since we did not have
access to the head-related transfer functions (HRTFs) of the
Kinect coupled with the Turtlebot. For each of 360 true AoAs
(from 0◦ to 359◦) and 5 distances (from 0.5 to 3 m), we built
the histogram of AoAs estimated by MUSIC-GSVD over 50
time frames and 100 random robot poses.

The resulting probability density is illustrated in Fig. 1
for two AoAs. At small distance, it concentrates around the
true AoA and its symmetric w.r.t. the microphone axis, a phe-
nomenon known as front-back confusion for humans. As dis-
tance increases, it becomes smeared and spurious peaks ap-
pear at 0◦ and 180◦ due to lower signal-to-noise ratio.

Fig. 1 also shows that the likelihood of correct measure-
ment is higher for broadside AoAs (close to 90◦) in the audi-
tory fovea [7, 23], and for endfire AoAs (close to 0◦ or 180◦)
which do not suffer from front-back confusion. Nevertheless
the posterior probability of correct localization (not shown in
the figure) decreases from broadside to endfire.

2.3. Updating the grid

The grid (1) is initialized with uniform probability. It is then
recursively updated after each new measurement using Bayes
law as

P (s = i|m1:T , p1:T ) =

P (mT |s = i, pT )P (s = i|m1:T−1, p1:T−1)∑
i′ P (mT |s = i′, pT )P (s = i′|m1:T−1, p1:T−1)

(5)

3. ROBOT MOTION CONTROL

The mapping algorithm in Section 2 makes it possible to esti-
mate the 3D coordinates of the source to a certain extent. We
now turn to the question of controlling the robot motion so as
to estimate it to the best extent possible in a given time.

2http://www.loria.fr/~evincent/Roomsimove.zip
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Fig. 1. Top and middle: example sensor model distributions.
Bottom: likelihood of correct measurement up to tolerance ε.

3.1. Cost function

For a given set of measurements, we quantify the amount of
information carried by the grid by its entropy:

H(s|m1:T , p1:T ) =

−
∑
i

P (s = i|m1:T , p1:T ) logP (s = i|m1:T , p1:T ). (6)

The lower the entropy, the greater the amount of information.
Let us assume that the robot has taken measurements up

to a certain time T and that we wish to move it to a new pose
at time T +1. In order to find the optimal pose at time T +1,
we need to compute the entropy conditionally to the motion
sequence pT+1:T+K for all possible motion sequences up to
a fixed horizon T + K. This entropy cannot be determinis-
tically computed, since future measurements mT+1:T+K are

unavailable, but its expectation can be expressed as

EmT+1:T+K
[H(s|m1:T+K , p1:T+K)] =

∑
mT+1:T+K

P (mT+1:T+K |m1:T , p1:T+K)H(s|m1:T+K , p1:T+K) (7)

with

P (mT+1:T+K |m1:T , p1:T+K) =∑
i

P (s = i|m1:T , p1:T )

K∏
k=1

P (mT+k|s = i, pT+k). (8)

The expression in (7) is intractable due to combinatorial ex-
plosion of the set of future measurements with increasing K.

In order to address this issue, we compute the expectation
of the entropy separately for each future pose pT+k instead:

cpT+k
= EmT+k

[H(s|m1:T ,mT+k, p1:T , pT+k) (9)

=
∑

mT+k

P (mT+k|m1:T , p1:T , pT+k)

H(s|m1:T ,mT+k, p1:T , pT+k) (10)

where

P (mT+k|m1:T , p1:T , pT+k) =∑
i

P (s = i|m1:T , p1:T )P (mT+k|s = i, pT+k) (11)

andH(s|m1:T ,mT+k, p1:T , pT+k) is obtained via (5) and (6)
for each mT+k and p1:T . We interpret the quantity (9) as the
cost of a future pose and we denote it as cpT+k

.

3.2. Dynamic programming algorithm

We assume that the cost of moving from one pose pT+k to
the next pT+k+1 is 0 when this motion is feasible and +∞
otherwise. The optimal motion sequence is given by:

p̂T+1:T+K = min
pT+1:T+K

K∑
k=1

cpT+k
. (12)

This is a conventional dynamic programming problem. In
the terminology of hidden Markov models, the cost of each
pose is the log-observation probability and the cost of each
move is the log-transition probability. The optimal sequence
is obtained via the Viterbi algorithm (a.k.a. the Bellman algo-
rithm in robotics). Once it has been found, the robot moves
to the optimal pose p̂T+1, takes a new measurement mT+1,
reestimates the optimal sequence up to T +K+1, and so on.

4. EXPERIMENTAL EVALUATION

4.1. Protocol

We evaluated our position mapping and motion control al-
gorithms for the localization of a speech source in the smart



home at Inria Nancy. A Turtlebot equipped with a Kinect is
placed at a fixed initial pose. A speech signal is emitted by a
small loudspeaker at the same height and at a given distance
and angle from the robot. Two different distances (1.2 and
2.4 m) and three angles (45◦, 90◦ and 135◦) are tested.

The room is discretized into a grid with 5 cm resolution.
At each iteration, the robot moves to a new position at 30 cm
distance and obtains one AoA estimate using HARK [1]. The
robot orientation is constrained by the direction of movement
from one position to the next. The actual robot pose after
movement is measured with a Sokuiki laser. The source posi-
tion is eventually estimated as the point with maximum prob-
ability in the grid. We implemented the proposed algorithms
in C++ and interfaced them with HARK and the robot actua-
tors using ROS.

4.2. Results

Fig. 2 illustrates one test case. After a first measurement, the
optimal strategy is not to move towards the estimated source
position, which addresses front-back confusion only, but to
move in a position slightly aside of it, which makes it possi-
ble to estimate the source distance too. The robot eventually
passes by the source and moves around it. A similar trajectory
was followed in the other test cases.

Table 1 compares the proposed motion control strategy
with a random motion strategy, where the next position is
chosen randomly among all positions at 30 cm distance. The
proposed strategy achieves consistently smaller localization
error, down to 0.07 m after 8 to 12 measurements, compared
to 0.19 to 0.29 m for the random strategy.

Distance (m) 1.2 2.4
Motion random proposed random proposed
2 poses 0.45 0.33 0.91 0.71
4 poses 0.36 0.25 0.77 0.49
6 poses 0.27 0.13 0.62 0.32
8 poses 0.19 0.07 0.48 0.19
10 poses N/A N/A 0.36 0.13
12 poses N/A N/A 0.29 0.07

Table 1. Average localization error (m) as a function of the
initial distance to the source and the number of robot poses.

5. CONCLUSION

We proposed a motion control strategy for audio source lo-
calization by a mobile robot based on discrete grid mapping
with a forward sensor model and on the estimation of the grid
entropy resulting from each possible movement. We showed
that the optimal motion reduces the average localization er-
ror up to a factor of 4 compared to random motion. Future
work will focus on the design of a simultaneous localization
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Fig. 2. Top: Source location probability after a first measure-
ment at position p1 (θ1 = 0). Middle: Expected entropy at
the next position p2 (θ2 = 0). Bottom: Complete robot tra-
jectory. Initial and successive robot positions are shown as
red squares, and the true source position as a green circle.

and mapping (SLAM) algorithm applicable when the robot
pose is unknown, on the handling of moving or intermittent
sources, and on audiovisual integration.
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