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HIGHLY REDUCED MODEL OF THE CARDIAC FUNCTION FOR FAST SIMULATION

Marc-Michel Rohé, Roch Molléro, Maxime Sermesant and Xavier Pennec

Inria Sophia-Antipolis, Asclepios Research Group, Sophia-Antipolis, France

ABSTRACT

In this article we present a drastic dimension reduction
method to link the biophysical parameters of an electrome-
chanical model of the heart with a compact representation
of cardiac motion. Our approach relies on a projection of
the displacement fields along the whole cardiac motion to
the space of reduced-polyaffine transformations. Using these
transformations, not only we describe the motion using a very
small number of parameters but we show that each of these
parameters has a physiological meaning. Moreover, using a
PLS regression on a learning set made of a large number of
simulations, we are able to find which of the input parameters
of the model most impact the motion and what are the main
relations mapping the polyaffine representation to the param-
eters of the model. We illustrate the potential of this method
for building a direct and very fast model characterized by a
highly reduced number of parameters.

1. INTRODUCTION

Modelling of the heart had an increasing interest in the recent
years as it provides a way to better assess the cardiac function
and predict its evolution. In order to estimate subject-specific
model parameters, cardiac motion is often used, as it can be
extracted from medical images. However, given the complex
dynamics of cardiac motion, its analysis and its link with the
underlying physical parameters of the cardiac tissue are diffi-
cult to achieve. This complexity of the model is due to differ-
ent factors: the number of input parameters, the complexity of
the cardiac motion - represented by 3D-vector fields defined
for a temporal discretization of the cycle - and the non-linear
relationship between the input and output. In this article, we
introduce a new method to reduce a cardiac motion model to
very few parameters by reducing the dimension of the output
motion and estimating the main modes of variation linking
biophysical parameters and cardiac motion.

A cardiac biophysical model can be described as a func-
tion f which maps a geometry S (discretely represented by a
segmented mesh: a finite set of points in R3) and a set of input
parameters Θ = (θi)i=1,...,Q to the simulation of the motion
of this geometry through the cardiac cycleM = (St)0<t<1:

M = (St)0<t<1 = f(S0, θ1, ..., θi, ..., θM ). (1)

In order to reduce such model, we first need to be able
to express the cardiac motionM = (St)0<t<1 by a reduced
number of parameters M = (mj)j=1,...,N . To do so, we use
a polyaffine projection [1] which we further develop by ex-
pressing the parameters on a basis adapted to the heart geom-
etry and his motion [2]. In this new frame we only project on
the 6 (instead of 12 for standard affine) most relevant param-
eters. We show that, not only the parameters of this reduced-
polyaffine projection gives a very good approximation of the
whole cardiac motion, but also that each of these parameters
is physiologically interpretable. We then learn the relation
between both the reduced-polyaffine parameters M and the
input parameters Θ of the model with a Partial Least Square
(PLS) regression. We build a direct forward model using only
a highly reduced number of parameters and show for 100 test
simulations that we are able to reconstruct the motion directly
using our surrogate model given by the the first modes of the
PLS regression that is very close to the full model computa-
tion while being way faster to compute.

Such approach is a hybrid method between recently de-
veloped hyper-reduced models, looking for a lower dimen-
sional representation of the spatial state variables [3] and the
meta-models, looking for correlations between input and out-
put of models [4]. One important difference is that we explic-
itly define the first dimension reduction in the spatial domain
in order to have meaningful parameters, related to regional
deformations. These parameters define transformations that
are independent of the spatial frame and position chosen and
therefore can be extended as such for any new geometry.

2. REDUCED-POLYAFFINE PROJECTION FOR
COMPACT CARDIAC MOTION REPRESENTATION

In this section, we propose a method to project a given cardiac
motionM to a subspace of finite dimension in which it will
be represented by a set of parameters M = (mj)j=1,...,N :

π :M→M = (m1, ...,mj , ...,mN ).

We suppose we have a cardiac motion represented on a
temporal discretization of the cycle by T displacements fields
(D̃t)t=1,...,T mapping each point of the initial mesh S0 to the
corresponding point of the mesh St at frame t. Instead of
looking at displacements fields, we choose to represent the
cardiac motion by stationary velocity fields (SVF) such that
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Table 1. Polyaffine projection for a cardiac motion. (Left) figure: error of the projection versus absolute displacement. (Right)
figures: diagonal parameters over time of the polyaffine matrix for each of the region of the left ventricle from which we can
recognize (resp. from left to right) the radial, longitudinal and circumferential strains.

ṽt = log D̃t. As described in [5], working with SVF allows
us to perform vectorial statistics on diffeomorphisms, while
preserving the invertibility constraint, contrary to the Euclid-
ian statistics on displacement fields. Since the space of the
SVF is dense, we need to reduce the dimension by projection
onto a lower dimensional space. To do so, we will use the
polyaffine projection [1].

By defining K regions and associated smooth weights,
we describe locally affine deformations using few parameters
while still being globally invertible. The polyaffine transfor-
mation is the weighted sum of these locally affine transforma-
tions:

vpoly(x) =

K∑
k=1

ωi(x)Mix̃.

We use the standard American Heart Association (AHA) 17
regions for the left ventricle. We also define 10 additional re-
gions dividing the right ventricle in a similar way for a total
of K = 27 regions. The weights ωi are normalized Gaus-
sian function around the barycentre of each region [1]. The
parameters of the optimal projection of a Stationary Velocity
Fields v onto the space of polyaffine transformations has an
analytical solution m = m̂ = Σ−1b [6] which minimizes in
the least-square sense:

C(m1, ...,mN ) =

∫
Ω

‖
∑
i

vpoly(x)− v(x)‖2dx.

In order to get interpretable parameters for each region, we
chose to express them in a local coordinate system adapted to
the geometry of the heart.

Calling R = (O, e1, e2, e3)
the original Cartesian coordinate
system, we define the local coor-
dinate of the region k as R′i =
(Ok, e1

k, e2
k, e3

k) where Ok is
the barycenter of the region (the
red point in the enclosed figure),
e1 the radial vector (green vec-
tor), e2 the longitudinal vector
(purple vector) and e3 the cir-
cumferential vector (blue vector).

We can express the 12 affine parameters of the 3× 4 ma-
trix Mi in this new frame. Doing so makes these parameters
independent of the global frame R on which we are looking
the motion. Therefore, these parameters are comparable be-
tween different geometries so that the study can be extended
to multiple patients. Furthermore, we propose a method to re-
duce further the representation of the motion by keeping only
the most important parameters out of the 12 parameters of the
affine matrix. As stated in [2], when expressed in the local
basis, the diagonal parameters of the rotation part R of the
affine matrix (representing the strain in the 3 directions: ra-
dial, longitudinal and circumferential) as well as the 3 trans-
lation parameters representing the displacements are the most
prominent in explaining the motion. Keeping only these 6 pa-
rameters leads to a reduction of half of the complexity of our
representation of the motion while keeping clinically signifi-
cant parameters.

We show the results of the polyaffine projection - keep-
ing 6 parameters per regions - for a whole cardiac motion in
Fig. 1. The projection has a mean absolute error below 1mm,
and we explain more than 80% of the original motion (in L2

norm of the velocity field with respect to the whole displace-
ment). Keeping all the 12 parameters would only slightly im-
prove the projection (mean bsolute error approx. 10% lower)
while increasing the complexity. Finally we see that the 3 di-
agonal parameters gives a good account of the 3 strains and
the curves are in accordance with clinical knowledge: posi-
tive radial strains (approx. 30 % at end-systole) and negative
longitudinal and circumferential strains (approx. −10% and
−15% at end-systole).

3. BIOPHYSICAL MODEL OF THE HEART
SIMULATION DATABASE

We use a cardiac mechanical model based on the Bestel-
Clement-Sorine (BCS) modeling [7]. This model describes
the heart as a Mooney Rivlin passive material, and model
the stress along the cardiac fibres according to microscopic
scale phenomena. Particularly, this model is compatible with
the laws of thermodynamics. It also integrates a circulation
model representing the 4 phases of the cardiac model, where
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Table 2. (Top) row: PLS regression with X = θ the predictor variable and Y = M the dependant variable. (Bottom) row:
X = M and Y = θ. (Left) figure: variance explained by the PLS regression with respect to the number of modes. (Right)
figure: VIP of each of the parameters.

the aortic pressure is modelled by a 4-parameter Windkessel
model. Finally, the electrophysiological pattern of activity
is simulated using an Eikonal model, describing the depo-
larization front propagation from the endocardial surface
to the whole myocardium. Fourteen parameters are used
by the model: (σ0, krs, katp, k0, α, µ,Es) active parame-
ters, (K, c1, c2) passive parameters and (Rp, τ, Zc, L) for the
valve model. We simulate S = 500 cardiac cycles whose
input parameters are drawn randomly according to a uniform
distribution within a range of parameters chosen as to obtain a
physiologically realistic behaviour (following the sensitivity
analysis of the model done in [8]). In total, each simulation
has therefore Q = 14 specific parameters Θ = θi=1,...,Q of
the model. On the other side, for each of these motions we
calculate the N = 6×K × T reduced-polyaffine parameters
M = (ml,k,t)l=1,...6,k=1,...K,t=1,..,T = (mj)j=1,...,N .

4. PARAMETERS MAPPING THROUGH PLS
REGRESSION

In this section, we are looking to link the polyaffine param-
eters M with the input parameters of the cardiac model Θ.
PLS regression finds the multidimensional direction in the X
(the predictors variables) space that explains the maximum
multidimensional variance direction in the Y space (the de-
pendant variables) [9]. It combines both features from the

PCA (the projection of Y and X into subspaces of high vari-
ance) and standard linear regression (by the search of linear
relations between the modes of X and Y ). With X the pa-
rameters of the polyaffine and Y the parameters of the model,
PLS returns the modes in the space of the polyaffines trans-
formation which have maximum variance and maximum co-
variance with the parameters of the model Y . It is more ro-
bust than standard regression when the space of X and Y is
highly-dimensional because of the embedded dimension re-
duction when looking for linear relations.

With our two sets of parameters Θ = θi and M = mj ,
we can either try to predict the parametersM from the param-
eters Θ and use this relation to build a highly reduced direct
model as we show in section 5, or we can estimate the relation
between the parameters Θ of the model from the polyaffine
parameters M of the motion to study the part of the motion
impacted the most by changes in the parameters of the model.
We therefore compute the PLS regression both with X = Θ
the predictor variable and Y = M the dependant variable and
with X = M and Y = Θ.

In Fig. 2, we show the variance explained by the PLS re-
gression with respect to the number of modes used. With only
5 modes, we can explain more than 90% of the polyaffine pa-
rameters variance using only 30% of the variance of the car-
diac model parameters. This shows that most of the impact
of the parameters of the model can be explained by only few
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Table 3. (Left) figure: mean absolute displacement of the motion and mean absolute error of the direct model. (Right) and
(Middle) figures: Left ventricular volume curve (mm3) defined by the direct model versus the full model for two extreme
simulated cases: one with high ejection fraction and one with low ejection fraction.

of the input variable and that 70% of the variance of the pa-
rameters of the model impacts the motion represented by the
polyaffine parameters by only 10%. On the other side, we do
not predict as well the parameters Y = Θ, which could be ex-
plained by issues of identifiability in the model (several sets
of input parameters leading to very close motions), a known
fact in complex cardiac motion models. But the parameters
we predict are highly correlated to actual change in the mo-
tion looking at the explained variance of X = M with only
few modes.

We also calculate the Variable Importance in the Projec-
tion (VIP) [10] for both of our regression with 5 modes. VIP
compares the variance explained by the modes of the PLS re-
gression for each of the variable in X . Variables with high
impact on the dependant variables will be well estimated by
the modes of X and have high VIP factor. The parameters
shown in red are the one that were considered as the most im-
portant for personalization in [8]. Our statistical analysis con-
firms these findings by quantifying the importance of each of
these parameters with the VIP. Finally, the analysis of the VIP
for the other way shows that radial strain and contraction are
the most important motion features to explain the parameters
of the model, which is physiologically expected.

5. DIRECT HIGHLY REDUCED CARDIAC
FUNCTION MODEL

In this section, we build a surrogate cardiac model using
the PLS modes of X and Y and the linear relation found
previously. Our reduced model can be expressed as a linear
function g approximating the function f from equation 1 and
expressed with only L parameters, the PLS modes, which
linearly map the Q inputs of the model Θ to the N polyaffine
parameters M. This surrogate model has two sources of error
compared to the full model. First, the subspace of polyaffine
transformations already gives an approximation of the full
motion as seen in Section 2, so that the projection of the
motion on this subspace is an approximation. Secondly, the
polyaffine parameters are estimated from the PLS modes and

are only approximating the optimal polyaffine parameters
given by the projection.

We perform 100 new test simulations and show in Fig. 3
how well our highly reduced model approximates the motion
given by the full model. The mean error of the points of the
mesh along motion stays below 2mm meaning that we ex-
plain more than 75% of the complete motion. The impact on
the volume curve of using an increasing number of modes
on top of just the mean parameters is shown for two sim-
ulations: one with high ejection fraction and one with low
ejection fraction. The first mode already approximates quite
well the volume curve for these two extreme cases, showing
that this mode is highly correlated with change in the ejection
fraction. We can infer that the most prominent variation of the
model is related to the ejection fraction (the ratio between the
min. volume and the max. volume) which is physiologically
expected as it is the most important characteristic to asses the
cardiac function efficiency. Adding additional modes to the
PLS regression improves the approximation of the reduced
model.

6. CONCLUSION

In this paper, we proposed an innovative methodology to re-
duce a whole biophysical cardiac model using polyaffine pro-
jection and PLS regression. While the initial model is very
complex (as a non-linear application from a large number of
parameters to the whole space of displacement fields) and
takes about 2− 3 hours to run on a quad-core 2.10GHz CPU,
we are able to explain it with good accuracy with only a cou-
ple of modes of a surrogate simplified model running in less
than 2 minutes, which still gives an accurate estimation of the
ejection fraction. Extension of this method to other inputs of
a cardiac function model such as electrophysiology might be
possible and give further insight into how each input compo-
nent impacts the model. The inverse relation found by the
PLS regression (between the motion and the model param-
eters) could also be used to tackle the inverse problem and
efficiently personalize the model.
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