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ABSTRACT
In this paper, a duality between wiretap and state-dependent
channels with non-causal channel state information at the
transmitter is established. First, a common achievable scheme
is described for a certain class of state-dependent and wiretap
channels. Further, state-dependent and wiretap channels for
which this scheme is capacity (resp. secrecy capacity) achiev-
ing are identified. These channels are said to be dual. This
duality is used to establish the secrecy capacity of certain
state-dependent wiretap channels with non-causal channel
state information at the transmitter. Interestingly, combatting
the eavesdropper or combatting the lack of state information
at the receiver turn out to be two non-concurrent tasks.

1. INTRODUCTION

The wiretap channel (WTC) model was introduced by Wyner
in [1]. Yet simple, the WTC captures the essential tradeoff
between the point-to-point information rate between a legit-
imate transmitter-receiver pair and the normalized equivoca-
tion at a malicious receiver eavesdropping upon the former.
Provided that the eavesdropper is physically degraded with
respect to the legitimate receiver, Wyner reported the exis-
tence of at least one coding scheme able to simultaneously
satisfy two tasks. First, reliably transmitting information be-
tween the transmitter and the legitimate receiver; and second,
guaranteeing that the normalized equivocation at the eaves-
dropper is arbitrarily close to the normalized entropy of the
message index. That is, guaranteeing that the information
leakage is arbitrarily close to zero. These two tasks can be si-
multaneously fulfilled at least in the asymptotic block-length
regime using a random binning technique that takes advantage
of the degraded signal observation at the eavesdropper with
respect to the legitimate receiver. Wyner fully characterized
the rate-equivocation region of the WTC. Csiszár and Körner
then fully described the rate-equivocation rate region of the
broadcast channel with confidential messages in [2], when the
eavesdropper is not necessarily physically degraded with re-
spect to the legitimate receiver. Liang and Poor obtained sim-
ilar results for the multiple-access channel with confidential
messages [3].

The state-dependent channel (SDC), introduced by Shan-
non in [4], is a time-varying point-to-point channel. There-
fore, several scenarios can be foreseen with respect to the
channel state information (CSI): CSI not available at the
transmitter and the receiver (no CSI); CSI available at both
the transmitter and the receiver (full CSI); CSI available
either at the transmitter or the receiver (CSI-T and CSI-R,
respectively). In any of these four cases, the channel capac-
ity might be different, which highlights the critical impact
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of CSI. Moreover, in each case, CSI can be causally or non-
causally available. In [4], Shannon considered three cases: no
CSI, causal CSI-T, and full CSI. Non-causal CSI was intro-
duced later by Kuznetsov and Tsybakov [5] and generalized
to discrete memoryless channels by Gelfand and Pinsker [6].
Interestingly, when CSI-T is available non-causally, the cod-
ing scheme used to achieve the channel capacity also consists
of a binning technique.

In this paper, the links between these two models are in-
vestigated. In particular, it is shown that for a certain class of
SDC and WTC pairs, there exists a common coding scheme
for which any achievable rate for the SDC is achievable for the
WTC and vice-versa. In this case the SDC’s capacity equals
the secrecy capacity of the WTC and the two channels are
said to be dual.

The remainder of this paper unfolds as follows. Section 2
and Section 3 detail respectively the SDC and the WTC
models. Section 4 describes the main results and Section 5
presents the corresponding proofs. Section 6 concludes this
work.

Notation: Throughout this paper, random variables are
denoted by an uppercase letter, e.g. X . The realizations
of a random variable are denoted by a lowercase letter, e.g.
x. The set of events is denoted by a calligraphic uppercase
letter, e.g. X . In general, the probability distribution of the
random variable X is denoted by PX , and belongs to the set
of possible distributions PX , denoted by 4(X ). Whenever a
second random variable Y is involved, PX Y and PY |X de-
note respectively the joint probability distribution of (X,Y )
and the conditional probability distribution of Y given X . In
case the random variable is an n-length vector, it is denoted
by a boldface uppercase letter, e.g. X = (X1, X2, ..., Xn),
and the realizations are denoted by a boldface lowercase let-
ter, e.g. x = (x1, x2, ..., xn) ∈ Xn. The set of n-length
typical sequences X is denoted by T (n)

ε (X). The expected
value of the random variable X according to the distribution
PX is denoted by EX [·]. Given a discrete memoryless SDC
denoted by KS = (S,X ,Y, PS , PY |X S), its corresponding
capacity is denoted by Cab(KS), where (a, b) ∈ {0, 1}2,
and a = 1 (resp. b = 1) indicates the availability of
non-causal CSI at the transmitter (resp. the receiver). Al-
ternatively, a = 0 (resp. b = 0) indicates the absence of
CSI at the transmitter (resp. the receiver). Given a discrete
memoryless WTC denoted by KW = (X ,Y,Z, PY Z|X),
its secrecy capacity is denoted by Cs(KW ). Given a dis-
crete memoryless state-dependent degraded WTC, denoted
by KSW = (S,X ,Y,Z, PS , PY |X SPZ|Y ), its secrecy ca-
pacity when CSI-T is non-causally available is denoted by
C10,s(KSW ). Finally, logarithms are taken to the base 2.
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Fig. 1. State-dependent channel with non causal CSI-T, at
channel use t.

2. STATE-DEPENDENT CHANNEL

A discrete memoryless state-dependent channel, denoted by
KS = (S,X ,Y, PS , PY |X S), describes a point-to-point
communication in which the channel output Y depends on
the channel input X and a state variable S. More specifically,
at a given channel use t, the channel state st ∈ S is a real-
ization of the random variable S. Hence, given the channel
input xt ∈ X and a state st, the channel output distribution
is governed by the transition probability PY |X=xt,S=st , see
Fig.1.

Given a data transmission rate R > 0 and a block-length
of n channel uses, the transmitter aims to send a message in-
dex W ∈ W , with W = {1, 2, . . . , 2nR}. This work ex-
clusively focuses on the case of non-causal CSI-T, i.e., at the
beginning of the transmission, the realization of the n-length
state-sequence S = (S1, S2, . . . , Sn) is known at the trans-
mitter. The receiver is fully ignorant of the vector S.

The encoder is defined by a deterministic function f (n) :
W × Sn → Xn, which maps each pair (W,S) into an n-
length codeword X = (X1, X2, . . . , Xn), i.e.

X = f (n) (W,S) . (1)

The decoder is described by the function φ(n) : Yn →W
which, at the end of the transmission, outputs an estimate Ŵ
of W using the received channel output vector Y ∈ Yn. That
is,

Ŵ = φ(n) (Y ) . (2)

The decoding error probability, denoted by P (n)
e , is

P (n)
e = Pr

î
φ(n)(Y ) 6= W

ó
. (3)

In the following the sets S,X , and Y are assumed to be finite.
Within this context, an achievable rate is defined as follows.
Definition 1 (Achievable Rate for an SDC) A rateR is said
to be achievable for an SDC with non-causal CSI-T if for any
ε > 0 and for sufficiently large n, there exists a set of message
indicesW = {1, 2, ..., 2nR}, an encoding function f (n), and
a decoding function φ(n) such that P (n)

e ≤ ε.
Lemma 1 characterizes the capacity of the SDC with non-

causal CSI-T, obtained by Gelfand and Pinsker in [6].

Lemma 1 (Capacity of an SDC [6, Theorem 1]) Given an
SDC denoted by KS = (S,X ,Y, PS , PY |X S), the following
holds

C10(KS) = max
PUX|S

[I(U ;Y )− I(U ;S)] , (4)

where U is an auxiliary random variable satisfying |U| ≤
min (|X ||S|, |Y|+ |S| − 1) and PUSX(u, s, x) factorizes as
PUSX(u, s, x) = PS(s)PUX|S(u, x|s).
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Fig. 2. Wiretap channel at channel use t.

Given an input distribution PUX|S , the set of achievable rates
is denoted by RSDC(PUX|S). R̄SDC denotes the union of
RSDC(PUX|S) over all input distributions in4(U × X ).

3. WIRETAP CHANNEL

Consider the discrete memoryless WTC in Fig. 2. This chan-
nel is fully described by the tuple KW = (X ,Y,Z, QY Z|X).
At channel use t, given an input xt, the outputs Yt and Zt are
governed by the joint distribution QY Z|X=xt

. The output Yt
is observed by the legitimate receiver whereas the output Zt
is observed by the malicious receiver. In the following, the in-
put and output alphabetsX ,Y , andZ are assumed to be finite.
For the ease of presentation, this analysis is restricted to the
case of physically degraded WTCs, i.e., the transition proba-
bility of the channel factorizes as QY Z|X = QY |XQZ|Y .

Given a transmission rate R ≥ 0 and a block-length n,
the aim of the transmitter is to reliably send a message index
W ∈ W = {1, 2, . . . , 2nR} to the legitimate receiver while
keeping it secret with respect to the malicious receiver. The
secrecy is measured in terms of the normalized leakage at the
eavesdropper, i.e., 1

nI(W ;Z1, Z2, . . . , Zn).
The encoder is described by a function g(n) :W ×Vn →

Xn, where the set Vn contains random n-length vectors fol-
lowing the distribution QV (V ) =

∏n
t=1QV (vt). Hence,

given the message index W and the random vector V , the
corresponding codeword X is generated according to

X = g(n)(W,V ). (5)

The decoder is described by a function ψ(n) : Yn → W that
maps each channel output Y into an estimate of the message

Ŵ = ψ(n) (Y ) . (6)

The probability of error is defined as

P (n)
e = Pr

î
ψ(n)(Y ) 6= W

ó
, (7)

and a secrecy rate is achievable if it complies with the follow-
ing definition:

Definition 2 (Achievable Secrecy Rate for a WTC) A rate
R is said to be achievable for the WTC if for any ε > 0, δ > 0
and for sufficiently large n, there exists a set of message
indices W = {1, 2, ..., 2nR}, an encoding function g(n),
and a decoding function ψ(n) such that P (n)

e ≤ ε, and
1
nI(W ;Z) ≤ δ.

The maximum secrecy rate is referred to as the secrecy
capacity. The following lemma fully characterizes the se-
crecy capacity of a degraded WTC of the form KW =
(X ,Y,Z, QY |XQZ|Y ).



Lemma 2 (Secrecy Capacity of a WTC [1]) Given a WTC
denoted by KW = (X ,Y,Z, QY |XQZ|Y ), the following
holds:

Cs(KW ) =max
QV X

[I(X;Y )− I(X;Z)] . (8)

Given an input distribution QV X , the set of achievable
rates is denoted byRWTC(QV X). R̄WTC denotes the union
ofRWTC(QV X) over all input distributions in4(V × X ).

4. MAIN RESULTS

The main results of this paper establishes a duality between
WTCs and SDCs. More specifically, it is shown that there
are pairs of WTC and SDC with non-causal CSI-T for which
the secrecy capacity of the former equals the capacity of the
latter. Moreover, a secrecy capacity achieving scheme for the
SDC is also a capacity achieving scheme for the WTC and
vice versa.

As pointed out in [6], the capacity of the SDC KS =
(S,X ,Y, PS , PY |X S) with non-causal CSI-T decreases as
the auxiliary random variable U in (4) and the state variable S
become more correlated. Interestingly, a similar phenomenon
occurs in the wiretap channel KW = (X ,Y,Z, QY |XQZ|Y ).
More specifically, when the channel output Z becomes more
correlated with the channel input X , the secrecy capacity de-
creases. In the SDC, a binning technique is used to guaran-
tee reliable communication, given that the CSI sequence S is
unknown at the receiver. On the other hand, in the WTC, a
binning technique is used to ensure both reliable and secret
communication, given that full CSI is available. Under the
condition that the amount of information shared between U
and S in the SDC equals the amount of information shared
between X and Z in the WTC, the same binning scheme can
be used for both channels. Theorem 1 establishes that under
certain conditions, a capacity achieving scheme for the SDC
KS achieves a fraction of the secrecy capacity of the WTC
KW .

Theorem 1 Let KS = (S,X ,Y, PS , PY |X S) be any SDC.
Fix any input distribution PX satisfying

PUX|S(ux|s) = PU |S(u|s)1{x=θ(u,s)}, (9)

where U is an auxiliary random variable such that

|U| ≤ min (|X ||S|, |Y|+ |S| − 1) , (10)

and θ : U × S → X is a deterministic bijective mapping.
Then, for any WTC KW = (X ,Y,Z, QY |XQZ|Y ) with input
distribution QV X satisfying

I(X;Z) = I(U ;S), (11a)
and I(X;Y ) ≥ I(U ;Y ), (11b)

it holds that

RSDC(PUX|S) ⊆ RWTC(QV X). (12)

Proof: The proof is detailed in section 5.1.
Theorem 2 establishes that under certain conditions, a se-

crecy capacity achieving scheme for the WTC KW achieves
a fraction of the capacity of the SDC KS .

Theorem 2 Let KW = (X ,Y,Z, QY |XQZ|Y ) be any WTC.
Fix a discrete finite set V and any input distribution QV X .
Then, for any SDC KS = (S,X ,Y, PS , PY |X S) with input
distribution PX satisfying (9)-(11a), and

I(U ;Y ) ≥ I(X;Y ), (13)

it holds that

RWTC(QV X) ⊆ RSDC(PUX|S). (14)

Proof: The proof follows the same steps as that of
Theorem 1, except that the first and second parts are switched.

Theorem 3 establishes that under certain conditions, the
capacity of the SDC KS coincides with the secrecy capacity
of the WTC KW .

Theorem 3 Let KW = (X ,Y,Z, QY |XQZ|Y ) be a WTC,
and KS = (S,X ,Y, PS , PY |X S) be an SDC satisfying (9)-
(11a), and

I(U ;Y ) = I(X;Y ), (15)

for the capacity achieving input distribution PUX|S and the
secrecy capacity achieving input distribution QV X . Then,

R̄WTC = R̄SDC . (16)

Proof: Theorem 3 is a direct consequence of Theo-
rem 1 and Theorem 2. Since (9)-(11a) and (15) are verified for
the (secrecy) capacity achieving distributions, (12) and (14)
yield (16). Note that it also follows that

C10(KS) = Cs(KW ). (17)

The pairs of SDCs and WTCs for which Theorem 3 holds
are said to be dual. For such a pair, the capacity achiev-
ing scheme for the SDC and the secrecy capacity achieving
scheme for the WTC are the same. It follows that the encoders
of the SDC and the WTC are exchangeable and guarantee the
same achievable rates for both channels. Theorem 3 finds a
straightforward application in determining the secrecy capac-
ity of a special class of state-dependent wiretap channels.

Proposition 1 Let KS = (S,X ,Y, PS , PY |X S) be any
SDC, and KW = (X ,Y,Z, QY |XQZ|Y ) be a WTC satisfy-
ing (9) - (11a) and (15) for their (secrecy) capacity achieving
input distributions. Then, the secrecy capacity of the state-
dependent WTC KSW = (S,X ,Y,Z, PS , PY |X SQZ|Y )
with non-causal CSI-T is

Cs(KW )
(a)
= C10(KS)

(b)
= C10,s(KSW ). (18)

Note that this result crucially depends on the fact that the
eavesdropper is ignorant of the CSI.

5. PROOFS

5.1. Proof of Theorem 1
The proof unfolds as follows. In the first part, a capacity
achieving scheme for the SDC with non-causal CSI-T is de-
scribed. In the second part, the same scheme is proved to
achieve a fraction of the secrecy capacity of the WTC.



First part: Consider the SDC KS = (S,X ,Y, PS , PY |X S)
and the following coding scheme.
Codebook generation: Consider the random variables
(U, S,X) ∈ U × S × X with a fixed joint distribution
PUSX(u, s, x) = PS(s)PU |S(u|s)PX|US(x|u, s), with U
satisfying |U| ≤ min (|X ||S|, |Y|+ |S| − 1) and

PX|US(x|s, u) = 1{x=θ(u,s)}, (19)

where
θ : U × S → X (20)

is a fixed deterministic bijective function. Fix a non-negative
pair (R̄, R) ∈ R2, with R̄ ≥ R. For a given CSI vec-
tor s = (s1, s2, . . . , sn) ∈ Sn and for each message
w ∈ {1, 2, . . . , 2nR}, generate a set (sub-codebook) of
2n(R̄−R) i.i.d. vectors u(w,m) = (u1(w,m), u2(w,m), . . . ,
un(w,m)), with m ∈ {1, 2, . . . , 2n(R̄−R)}, following the
distribution PU |S defined as

PU |S(u|s) =
n∏
i=1

PU |S(ui|si). (21)

Encoding: To send the message index w knowing the CSI
vector s, the encoder chooses the sequence u(w,m) with the
greatest m satisfying

(u(w,m), s) ∈ T (n)
ε (U, S). (22)

If such a jointly typical sequence does not exist, the encoder
chooses m = 1. Note that this selection rule yields a binning
structure in the codebook. At each channel use t, the encoder
uses the function θ defined in (20) to generate the channel
input xt = θ(ut(w,m), st), i.e.,

x=(θ(u1(w,m), s1),θ(u2(w,m), s2), . . . ,θ(un(w,m), sn)).

The encoding function in (1) is therefore defined as

f (n)(w, s) = (θ(u1(w,m), s1), . . . , θ(un(w,m), sn)). (23)

Decoding: At the end of the transmission, the receiver out-
puts the estimation ŵ of w if there is a unique pair (ŵ, m̂)

satisfying
(
u(ŵ, m̂),y

)
∈ T (n)

ε (U, Y ), with m̂ ∈ {1, 2, . . . ,
2n(R̄−R)}. Otherwise, the decoder outputs an error.
Probability of error analysis: An error might occur at the
encoder or the decoder. Consider the following event ob-
served at the encoder:

Aw,m : (u(w,m), s) ∈ T (n)
ε (U, S). (24)

Given the CSI vector s at the encoder, the event Aw,m holds
true if the indicesw andm induce a codeword u(w,m) that is
jointly typical with s. Consider the following event observed
at the decoder:

Bw,m : (u(w,m),y) ∈ T (n)
ε (U, Y ). (25)

Given the channel output sequence y at the decoder, the event
Bw,m holds true if the indices w and m induce a codeword
u(w,m) which is jointly typical with y. Assume that the
message index w = 1 is transmitted. Hence, by symmetry of
the random coding argument, it holds that

Pr
î
Ŵ 6= W

ó
= Pr

î
Ŵ 6= W |W = 1

ó
. (26)

More specifically, an error occurs if one of the following
events holds true:
(a) None of the indices m satisfies that (u(1,m), s) ∈
T (n)
ε (U, S) at the encoder;

(b) Given that there exists at least an index m that satisfies
(u(1,m), s) ∈ T (n)

ε (U, S) at the encoder, the codeword
u(1,m) does not satisfy (u(1,m),y) ∈ T (n)

ε (U, Y ) at the
decoder;
(c) Given that there exists at least an index m that satisfies
(u(1,m), s) ∈ T (n)

ε (U, S) at the encoder, there exist sev-
eral codewords u(w′,m), with w′ ∈ W \ {1}, that satisfy
(u(w′,m),y) ∈ T (n)

ε (U, Y ) at the decoder.
Hence, from Boole’s inequality, the following holds

P (n)
e =

PS(s) Pr

ñ
2n(R̄−R)⋂
m=1

Ac1,m ∪
2n(R̄−R)⋃
m=1

Ç(
A1,m ∩Bc1,m

)
∪

2nR⋃
w=2

Bw,m

åô
≤

2n(R̄−R)∏
m=1

Pr[Ac1,m] +

2n(R̄−R)∑
m=1

Ç
Pr[A1,m ∩Bc1,m] +

2nR∑
w=1

Pr[Bw,m]

å
≤
Ä
1− 2−n(I(U ;S)+δ)

ä2n(R̄−R)

+ ε+ 2nR̄2−n(I(U ;Y )+δ)

≤exp(−2n(R̄−R+I(U ;S)+δ)) + ε+ 2nR̄2−n(I(U ;Y )+δ). (27)

It follows that the probability of error P (n)
e can be made ar-

bitrarily small if

R̄−R≥ I(U ;S), (28a)
and R̄≤ I(U ;Y ). (28b)

Thus,

R ≤ R̄− I(U ;S) ≤ I(U ;Y )− I(U ;S). (29)

This completes the description of the coding scheme for the
SDC. Now, the same encoder will be plugged in the WTC for
the second part of the proof.
Second part: Consider the WTCKW = (X ,Y,Z, QY Z|X=
QY |XQZ|Y ). Note that this channel model is not state-
dependent. Here, the CSI vector S is replaced by a lo-
cal source of randomness represented by an n-length ran-
dom vector V ∈ Sn, distributed according to PS(v) =∏n
i=1 PS(vi). Hence, to transmit the message index w ∈ W ,

the transmitter uses the encoding function in (23) such that,
x = f (n)(w,v). In the following, each vector v is identified
by an index m ∈ {1, 2, . . . , 2n(R̄−R)}, and thus the local ran-
dom vector can be denoted by v(m) to emphasize the index
associated to each vector v.
The remainder of the proof shows that using the coding
scheme previously described allows to satisfy both the relia-
bility constraint and the security constraint in the WTC.
Decoding: At the end of the n channel uses the legitimate
receiver estimates the index pair (ŵ, m̂) based on the received
channel output vector y. The decoder outputs (ŵ, m̂) if it is
the unique pair satisfyingÄ

f (n)(ŵ,v(m̂)),y
ä
∈ T (n)

ε (X,Y ). (30)

Probability of error analysis: The probability of error anal-
ysis focuses on an upper-bound of the probability of error, de-
fined in (7). Consider a third (virtual) receiver that observes



the transmitted message w as well as the channel output Z.
Given w, the virtual receiver estimates m. An estimate m̄ is
a feasible estimation of m at the virtual receiver if it is the
unique pair satisfyingÄ

f (n)(w,v(m̄)), z
ä
∈ T (n)

ε (X,Z). (31)

Assume without loss of generality that the index pair (w,m)=

(1, 1) is transmitted. Note that the probability of error P (n)
e

is upper-bounded by

P (n)′

e =Pr
î
(Ŵ , M̂) 6= (1, 1) ∨ M̄ 6= 1|W = 1,M = 1

ó
.(32)

For each (w,m) ∈ {1, 2, . . . , 2nR} × {1, 2, . . . , 2n(R̄−R)},
consider the events

Cm:
Ä
f (n)(1,v(m)), z

ä
∈ T (n)

ε (X,Z), (33)

Dw,m:
Ä
f (n)(w,v(m)),y

ä
∈ T (n)

ε (X,Y ). (34)

An error might occur if one of the following event holds true:
(a) The codeword x = f (n)(1,v(1)) does not satisfy
(f (n)(1,v(1)), z) ∈ T (n)

ε (X,Z) at the virtual decoder;
(b) There exists at least onem′ ∈ {2, . . . , 2n(R̄−R)}, yielding
the codeword x = (f (n)(1,v(m′)) that satisfies
(f (n)(1,v(m′)),y) ∈ T (n)

ε (X,Z) at the virtual decoder;
(c) The codeword x = f (n)(1,v(1)) does not satisfy
(f (n)(1,v(1)),y) ∈ T (n)

ε (X,Y ) at the legitimate decoder;
(d) There exists at least one w′ ∈ W \ {1} or one m′ ∈
{2, 3, . . . , 2n(R̄−R)}, yielding the codeword x = f (n)(w′,

v(m′)) that satisfies (f (n)(w′,v(m′)),y) ∈ T (n)
ε (X,Y ) at

the legitimate decoder.
Hence, from Boole’s inequality, the following holds:

P (n)′

e = Pr

Cc1 ∪Dc
1,1 ∪

2n(R̄−R)⋃
m=2

Ñ
Cm ∪

2nR⋃
w=2

Dw,m

é
≤ 2ε+

2n(R̄−R)∑
m=1

Ñ
Pr [Cm] +

2nR∑
w=1

Pr [Dw,m]

é
≤ 2ε+ 2n(R̄−R−I(X;Z)+δ) + 2n(R−I(X;Y )+δ). (35)

Therefore, P (n)′

e can be made arbitrarily small if

R̄−R≤ I(X;Z), (36a)
and, R̄≤ I(X;Y ). (36b)

Consider now the leakage 1
nI(W ;Z) at the eavesdropper:

1

n
I(W ;Z)

≤ 1

n
I(U ,V ;Z)− 1

n
I(V ;Z)

=
1

n
I(X;Z)− 1

n
I(U ;V )− 1

n
I(Z;V |U) +

1

n
I(U ;V |Z)

=
1

n
I(X;Z)− 1

n
I(U ;V ) +

1

n
I(U ;Z) +

1

n
I(U ;V |Z)

− 1

n
I(U ,V ;Z) (37a)

=
1

n
I(X;Z)− 1

n
(R̄−R). (37b)

A sufficient condition to minimize the leakage is

I(X;Z)− (R̄−R) ≤ δ, δ > 0. (38)

Hence, to ensure reliable and secret communications, (36a)
and (38) must be simultaneously satisfied. For instance, let R
and R̄ satisfy

R̄−R = I(X;Z). (39)

Plugging (39) into (36b) yields

R≤ I(X;Y )− I(X;Z). (40)

Finally, from (11), any rate R satisfying (29) also satisfies
(40), and is therefore an achievable rate for both channels.
This yields (12) and completes the proof.

5.2. Proof of Proposition 1

First, note that since KS and KW satisfy (9) - (11a) and (15)
for the (secrecy) capacity achieving distributions, equality (a)
in (18) follows by applying Theorem 3. Note also that KSW
consists in appending the eavesdropper’s channel considered
in the WTC KW to the channel KS . Therefore, it holds that

C10,s(KSW )≤ C10(KS). (41)

Equality (b) is established in the remainder of the proof. Con-
sider the coding scheme presented in the proof of Theorem
1. It has already been shown in Section 5.1 that this scheme
guarantees an arbitrarily low probability of error for any rate
R ≤ C10(KS). Thus, it remains to show that this scheme also
guarantees an arbitrarily small leakage at the eavesdropper for
a rate R up to C10(KS). Note that

I(W ;Z)≤ I(U, S;Z)− I(S;Z)
(a)
= I(X;Z)− I(U ;S)
(b)
= 0, (42)

where (a) follows the same steps as (37a), and (b) is due
to (11a). Thus, because of the assumption (11a), it follows
that the leakage is guaranteed to be arbitrarily small for any
achievable rate R. Therefore, this scheme guarantees both an
arbitrarily small probability of error and an arbitrarily small
leakage for rate R up to C10(KS), which yields equality (b)
in (18). This completes the proof.

6. CONCLUSION

A duality between WTCs and SDCs has been established in
this paper. It has been shown that under certain conditions,
achievable rates in the state-dependent channels with non-
causal channel state information at the transmitter are achiev-
able for wiretap channels with the same coding scheme and
vice-versa. The proof is based on typicality arguments to
show that the code construction described in [6] allows to
satisfy the reliability constraint and the secrecy constraint in
some wiretap channels. Moreover, it follows from this result
that appending an eavesdropper satisfying the duality condi-
tion to a state-dependent channel has no impact on the (se-
crecy) capacity.
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