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Abstract

This paper addresses the two problems of flow and density reconstruction

in Road Transportation Networks with heterogeneous information sources and

cost effective sensor placement. Following a standard modeling approach, the

network is partitioned in cells, whose vehicle densities change dynamically in

time according to first order conservation laws. The first problem is to estimate

flow and the density of vehicles using as sources of information standard fixed

sensors, precise but expensive, and Floating Car Data, less precise due to low

penetration rates, but already available on most of main roads. A data fusion

algorithm is proposed to merge the two sources of information to estimate the

network state. The second problem is to place sensors by trading off between

cost and performance. A relaxation of the problem, based on the concept of

Virtual Variances, is proposed and solved using convex optimization tools. The

efficiency of the designed strategies is shown on a regular grid and in the real

world scenario of Rocade Sud in Grenoble, France, a ring road 10.5 km long.

Keywords

Road Transportation systems, Dynamical flow network, Density reconstruc-

tion, Floating Car Data, Optimal Sensor Placement.

5



1. Introduction

The last decades have witnessed a considerable increase of traffic volumes,
especially due to urbanisation in big metropolis, which was not matched by a
comparable extension of road infrastructures. As a consequence, crucial free-
ways, highways and arterial roads have been steered to a state of near saturation,
and experience on daily basis periods of congested traffic (Papageorgiou et al.,
2007). In turn, congestion causes increased travel times and stop-and-go phe-
nomena, leading to decreased safety, economical losses, and environmental and
psychological hazards in terms of pollution and road rage (Bilbao-Ubillos, 2008).
Increasing road capacity by extending road infrastructures, such as construction
of new arterial roads, has been the standard way to cope with congestion prob-
lems, but it is infeasible when existing roads lie on built-in areas. Intelligent
Transportation Systems (ITSs), on the contrary, are expected to provide robust
techniques for real-time monitoring, prediction and actuation of traffic networks,
and to better integrate with road and rail public transportation, by leveraging
recent technological and theoretical advancements in distributed computation
and communication.

(Please place Figure 1 about here.)
The present paper investigates the two interconnected problems of sensor

network design and estimation in traffic networks. As illustrated in Fig. 1, we
propose three procedures to address the problems of Optimal Sensor Placement,
and of Traffic Reconstruction, via the two modules of Fundamental Diagram
calibration and Density and Flow Estimation.

Standard devices to obtain information on the state of the network are fixed
sensors such as induction loops and magnetometers. Placed over a section of
road, they provide rich information on the vehicles that cross such a section
over a pre-fixed period of time: 1) their number, or flow, 2) their average speed,
and 3) their average density, or more precisely their occupancy (see Section 2).
Current technology allows for very precise measurements, with relative errors
of measured quantities against ground truth often being below 1 ∼ 2%. How-
ever, deployment and maintenance of a sensing network requires considerable
investment and manpower, and consequently sensing networks are usually de-
signed to be as sparse as possible. In this paper we formulate and provide a
solution to the Optimal Sensor Placement problem, that is, positioning sensors
on the cells of the network given partial information on the system and in such
a way to trade off between performance and cost. To this aim, we assume that
traffic managers know the splitting ratios of the network, namely, the turning
percentages at each road intersection, an information that can be obtained via
standard surveys using optical count or radar sensors.

Optimal Sensor Placement is a ubiquitous problem that has received a high
degree of attention in several communities due to its importance for network
design. In Transportation Systems, it is of interest both in the dual-problem
of best placement of hubs for cost-efficient transportation of goods and peo-
ple (Shahabi and Unnikrishnan, 2014) and Origin-Destination coverage (Ehlert
et al., 2006; Hu and Liou, 2014; Antoniou et al., 2016). In these works, and dif-
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ferently from the present paper, the problem is cast as a mixed integer problem
which corresponds to determining the minimal set of locations from which the
flows on the whole network can be determined, and sensor measurements are as-
sumed to be perfect. Finally, recent contributions focused on Origin-Destination
flows and travel time estimation from an information theoretical point of view
and under several possible cost functions (Zhou and List, 2010; Xing et al.,
2013), and on probabilistic approaches to the sensor placement problem that
take into account sensors failures and other random events Fei et al. (2013);
Danczyk et al. (2016).

Once the sensing network has been designed an implemented, flow and den-
sity measurements are available. Sensors are not, however, the only source of
information that we exploit. In fact, the recent spread of wireless devices al-
lows sensing and communication capabilities unforeseeable up to few years ago.
Limiting the attention to traffic applications, vehicles equipped with position-
ing devices (such as GPS) and able to communicate with an ITS monitoring
system can act as a probes in the traffic and provide Floating Car Data (FCD),
namely, information on the vehicles’ positions and speeds. The collected data
can be used to estimate the speed in the network, thus offering a second source
of information. Due to privacy reasons, single vehicles traces are usually not
directly used, but rather aggregated as average speed of vehicles in segments
of road. Advanced methodologies ensure fine spatial partitions of the network,
with segments as short as 250 meters (INRIX, 2014). Compared to fixed sen-
sors, a service based on this technology can only make use of information coming
from her customers, which are a fraction of the total vehicles on the road (the
penetration rate of the system). This implies that speed measurements are less
precise and flow measurement are unavailable. On the other side, since it ex-
ploits existing communication systems it is relatively inexpensive and, more
important, already covers all major traffic networks.

Fixed sensor measurements and Floating Car Data provide rich informa-
tion that we employ to address the problem of estimating road usage in terms
of density and flow of vehicles in a traffic network. The latter are commonly
considered a good representation of the state of the system, providing more
information than average speed alone. In particular, they are of crucial impor-
tance for 1) forecasting travel time and traffic evolution, along with historical
data; 2) informing in real-time drivers about the state of the network through
navigation systems; 3) providing public authorities with statistical data to mon-
itor the state of the network and predict dangerous scenarios; 4) computing and
actuating control actions through traffic lights, ramp metering and speed limits,
or, in the future, lane change and semi-autonomous routing and navigation (Pa-
pageorgiou et al., 2003, 1991; Pisarski and Canudas de Wit, 2012; Como et al.,
2013).

Traffic models for analysis and control synthesis date back to the first half
of the 20th century. The most celebrated macroscopic model is the PDE based
Lighthill-Whitham and Richards (LWR) model (Lighthill and Whitham, 1955),
which, based on fluid kinematics, is able to reproduce crucial phenomena such
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as traffic shock waves. Discretization of the LWR-PDE is not straightforward
but stable numerical schemes have been proposed, the most well known be-
ing the Cell Transmission Model (CTM) (Daganzo, 1994, 1995). Huge efforts
have been put in the last 15 years to calibrate the CTM (Muñoz et al., 2006)
and to unveil its system-theoretical properties (Morbidi et al., 2014). Fusion
of flow, density and speed measurements has also been addressed, even though
mostly considering single vehicles traces. Approaches range from signal pro-
cessing techniques such as the generalized Treiber-Helbing filter (van Lint and
Hoogendoorn, 2010), nonlinear versions of the Kalman filter in the context of
Lagrangian sensing (Work et al., 2010), stochastic versions of the three-detector
model (Deng et al., 2013), and Extended Kalman Filter Nantes et al. (2016).
Alternative approaches do not rely on discretization of the LWR-PDE model
and allow to cast problems of estimation and control as convex problems (Li
et al., 2014). Finally, an extremely recent contribution (Wright and Horowitz,
2016) addresses the density estimation problem from a point of view very similar
to ours and making use of particle filtering strategies.

In the first part of this paper we propose an algorithm that aims to recon-
struct the traffic density and flow by fusing fixed sensors measurements and
Floating Car Data. We employ a macroscopic model, partitioning the network
in cells and assigning to each cell a density of vehicles. The latter evolves dy-
namically according to a first order mass-conservation law, similarly to the Cell
Transmission Model. We inherit from the CTM the assumption that the inflow
in a cell is a fixed linear combination of the outflows of the preceding cells. Dif-
ferently from CTM, however, inflows and outflows in all the cells are estimated
on the basis of the available flow measurements only. In addition, using the
concept of Fundamental Diagram and the speed measurements, we compute
an instantaneous (namely, only based on the latest available measurements)
pseudo-measurement of the density. These quantities are then the inputs for
the density observer. As an intermediate step, we propose a gradient descent
method to calibrate the Fundamental Diagram which can be run offline and
only requires fixed sensor measurements.

In the second part of the paper we address the problem of Optimal Sensor
Placement, namely, the problem of finding the best location where to physically
place sensors. This is based on trading off between two contrasting objectives:
the first, to maximize the performance of state reconstruction; the second, to
minimize the total economic cost of the network. The performance of the state
reconstruction is usually related to the ability to properly estimate the density
of vehicles in the roads. Unfortunately, nonlinearity and complexity of traffic
systems make it hard to evaluate the performance of nonlinear observers. In
order to simplify the setting, we consider the related problem of reconstruction
of flows in a static setting. In particular, we consider as performance metric
the error covariance of the Best Linear Unbiased Estimator of the cumulative
flows in the network over a long period of time under a simple linear measure-
ment model. The resulting cost has an analytical formulation and can be easily
studied. The rationale of such a choice is the following: In the proposed den-
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sity estimation algorithm availability of speed measurements via FCD makes
the density estimation directly dependent on the quality of flows estimation.
As such, sensor placement for optimal flow reconstruction is also expected to
yield good performance for density estimation. The Optimal Sensor Placement
problem can be then seen as trading off between the performance of such a
flow estimator, and a cost that depends on the dimension of the sensing net-
work. Since this is a combinatorial problem, we relax it using a method that we
call Virtual Variance algorithm, based on the idea to associate to each sensor
a virtual variance which is large when the sensor is not relevant for good re-
construction of the flow vector. The only input that the algorithm needs is the
matrix of splitting ratios, that prescribes how vehicles split at each junction, and
the nominal noise variance of each sensor. Furthermore, we discuss in detail two
extensions of the proposed algorithm dealing with important scenarios. In the
first, Optimal Sensor Placement with geographical constraints, we address the
scenario in which sensors cannot be placed in a subset of cells of the network.
In the second, Optimal Sensor Placement with Number of Sensors constraints,
we deal with the case in which the maximum number of sensors is pre-specified,
for example due to budget limitations.

To summarize, the contributions of this paper are the following: 1) we for-
mulate the problem and we design an easily implementable approach to data
fusion of fixed sensors measurements and Floating Car Data; 2) we propose a
gradient descent calibration algorithm of the underlying macroscopic model; 3)
we formulate the problem of Optimal Sensor Placement in terms of positions
of sensors in a network when sensors are noisy and we provide an approximate
solution using the concept of Virtual Variances; 4) we show the prowess of the
devised Optimal Placement procedure on a regular grid, for which we offer a
comparison between the solution found with our approach and the true opti-
mal placement, found by exhaustive search; 5) we illustrate the performance of
the Optimal Placement procedure and of the Reconstruction algorithm through
extensive numerical experiments in the real-world scenario of Grenoble Traffic
Lab (GTL) (Canudas de Wit et al., 2015), a sensing network deployed along
the freeway “Rocade Sud” in Grenoble, France, with FCD provided by INRIX,
one of the most well known traffic solutions companies.

The remainder of the paper is organized as follows: after setting up the
notation, Section 2 describes the model for a Road Transportation Network.
Section 3 formulates the problem of flow and density reconstruction and de-
scribes the proposed nonlinear observer, while the problem of optimal sensor
placement is formulated and a solution based on the heuristic Virtual Variance
algorithm is presented in Section 4. Finally, Section 5 illustrates the solutions
on a regular grid and on the real world scenario of the freeway Rocade Sud
in Grenoble, and Section 6 draws the conclusions and provides several future
research directions.

1.1. Notation

The symbol RA (RA+) for a finite set A denotes the set of real vectors (real
positive vectors) indexed by elements of A. For x ∈ Rn, x ≥ 0 is meant
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component-wise. The identity matrix of suitable dimensions is denoted I, and
|A| is the cardinality of the set A. The symbol E denotes the expected value.

A graph G is a pair (V, E) where V is called the set of nodes and E the set
of edges. For an edge e ∈ E , t(e) ∈ V and h(e) ∈ V are the tail note and the
head node of e, so that e = (t(e), h(e)). Denote by E+

e := {j ∈ E : h(e) = t(j)}
and E−e := {j ∈ E : h(j) = t(e)} the set of edges that follow or precede e,
respectively. A path of length n ≥ 2 is a sequence of edges e1, . . . , en such that
ei+1 ∈ E+

ei for all i = 1, . . . , n− 1. A path of length 1 is a path made of a single
link. The matrix L ∈ RV×V is a sublaplacian of G if Lej > 0 only if (e, j) ∈ E ,
e 6= j, and

∑
j Lej ≤ 0.

Table 1 presents the notation that will be used throughout the paper.
(Please place Table 1 about here.)

2. Road Transportation System Model

We adopt a macroscopic approach by partitioning the lanes of the roads in
a traffic network in cells. Cells that lie on the same section of a road and on
different lanes are said to be parallel one each other (see Figure 2) We interpret
each cell as an edge e ∈ E in a graph G = (V, E), which models the whole
network. In such a graph, nodes v ∈ V represent intersections between cells, for
example, junctions at which roads intersect. Long roads might be partitioned
into shorter segments, and are thus represented as a series of consecutive cells.
Among the set of cells E , we denote by Ri and Ro the set of onramps and
offramps, respectively. In this paper, we shall call onramp (offramp) any gate,
be it a real ramp, a connector, a secondary road, etc, which lets vehicles enter
into (exit from) the network.

(Please place Figure 2 about here.)
We make the following connectivity assumption, which formalizes the mild

requirement that any cell can be reached from an onramp and that vehicles from
any cell can exit from the network.

Assumption 1. For any cell e in E, there is at least one onramp j ∈ Ri and
one offramp k ∈ Ro such that e is an edge of a path from j to k.

Time is discrete and slotted in intervals of duration T > 0. On each cell
e ∈ E , denote by ρe(t) the density of vehicles, in number of vehicles per km2,
at time t, and let ρ(t) = [ρe(t)]e∈E , which we call the state of the network.
The density of vehicles in a cell changes dynamically in time according to the
following mass-conservation first-order model

ρe(t+ 1) = ρe(t) +
1

`e
(f in
e (t)− fout

e (t)), ∀e ∈ E (1)

2While we employ SI units for simplicity and for coherence with the data in the Grenoble
Traffic Lab, the presentation of our results would obviously be unchanged if other systems of
measurements, such as the imperial system, were used.
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where `e is the length of cell e, and f in
e (t) and fout

e (t) are the inflow and the
outflow at cell e during the t-th time slot. As such, f in

e (t) and fout
e (t) represent

a number of vehicles, not, as more common, a number of vehicles per unit of
time, e.g., per hour.

To relate inflows and outflows we resort to the standard concept of splitting
ratios. Indeed, denote by Rek ≥ 0 the fraction of vehicles that turn into cell k
when they exit from cell e, which is the splitting ratio of e towards k. Clearly,
Rek = 0 if e and k are not consecutive, and

∑
k Rek = 1, if e 6∈ Ro. Such a

cell change might correspond to continuing on the same lane, lane change in
the same road, or taking a different road, as exemplified in Figure 2. From this
moment on, we make the following assumption.

Assumption 2. The set of splitting ratios {Rej}(e,j)∈E×E is known.

Splitting ratios establish the relation f in
e (t) =

∑
j∈E Rjef

out
j (t), for all t ≥ 0

and for any cell e 6∈ Ri, while f in
e (t) = λe(t) for e ∈ Ri, where λe(t) is an

exogenous external inflow. We set for sake of convenience λe(t) = 0 for e 6∈ Ri.
By stacking inflows and outflows into vectors f in(t) and fout(t), respectively,
we can rewrite the previous relation in matrix form as

f in(t) = RT fout(t) + λ(t) (2)

where the matrix R = [Rej ]e∈E,j∈E\Ri is the matrix of splitting ratios. In the
present paper it is assumed that the matrix of splitting ratios is fixed, pre-
determined, and known. Its calibration, closely related to the estimation of
Origin-Destination pairs, can be performed on single-lane freeways with on-
ramps and offramps by taking ratios of flows on main line and ramps (Muñoz
et al., 2006). We plan to extend this setting to networks by casting the problem
as an optimization problem in future research.

2.1. On modelling of cell flows

Macroscopic models such as the CTM postulate that the flow fout
e (t) that

exits from cell e at time t is a deterministic function of the densities in the cells
around e. In the simplest case, where e and j are two consecutive cells and
E+
e = {j} and E−j = {e}, then in the CTM

fout
e (t) = min{de(ρe(t)), sj(ρj(t))}

where de(ρe(t)) and sj(ρj(t)) are the demand of cell e and the supply of cell j,
and represent the maximum outflow from e and the maximum inflow into cell
j, respectively. The resulting system is a Godunov scheme for discretization of
the LWR-PDE model, and can be extended to the network case in various ways
(Daganzo, 1995; Lovisari et al., 2015; Coogan and Arcak, 2014). While these
models reproduce important phenomena that must be taken into account when
modelling and controlling traffic networks, such as the movement of shockwaves,
each of them can only partially represent traffic dynamics in networks.
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For this reason, we will avoid to explicitly model the relation between flows
and density, and we will limit to the standard

fout
e = ρeve,∀e ∈ E (3)

namely that the volume that exits from a cell in a period is proportional to the
density of the vehicles in the cell, and to their speed. Again, we leave unmodelled
the relation between these two quantities, because, as we will make clear in the
following, we assume to have a direct measurement of the average speed in each
cell (in the form of Floating Car Data). In conclusion, we consider from now on
the dynamics of the real system to be dictated by Eqs. (1)-(3), where ve, e ∈ E ,
is an unmodelled quantity which depends on the local state of the network.

While in the model of our network we do not use an explicit relation between
flows and densities, we shall use it for data fusion and estimation purposes. In
particular, we write

ϕe = ϕe(ρe),∀e ∈ E (4)

where ϕe is the flow of vehicles at the sensor locations, which we shall always
assume to be at the end of the cell. The graph of the function ϕe(·), which is the
Fundamental Diagram on cell e, is a concave function with ϕ(0) = ϕ(ρjam) = 0,
where ρjam is the jam density, at which vehicles are too close one each other
to move. The value of ρjam varies from 150 to 300 vehicles per km, and is
approximately related to average vehicle length by the formula ρjam = 1/`ave,
where `ave is measured in km.

In this paper, and consistently with (1), we make the steady assumption
that ϕe measures the flow of vehicles through a certain section of road per
sampling time T , as opposed to standard choices such as flow per minute or per
hour. This is done without loss of generality, as the two functions only only
by a multiplicative constant, and solely for sake of notation and to simplify
the discussion in the numerical section, where all relevant variables will be
normalized to the Grenoble Traffic Lab sampling time T = 15 seconds.

2.2. Available measurements

In this paper we consider two heterogeneous sources of information: flow
and density measurements from sensors, and Floating Car Data.

2.2.1. Flow and density measurements

Standard measurement devices for traffic are loop detectors or magnetome-
ters, radar traffic detectors, or video detection systems. They are positioned at
fixed and predefined positions in the network, monitor a section of road, and
are able to detect and assign a timestamp to the event “a vehicle crossed the
section”. Information is then aggregated in time slots. For sake of simplicity
and without loss of generality, we assume that such time slots correspond to the
time discretization of the system (1). As such, measurements of the following
two quantities are available at every time slot of duration T :
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• Flow of vehicles ϕe(t), by counting the number of vehicles crossing the
section during the t-th time slot;

• Density of vehicles ρe(t) over the section. The quantity that is actually
measured by the aforementioned devices is the occupancy of vehicles oe(t),
defined as the percentage of time any vehicle was standing over the section
in the t-th time slot. Since occupancy is approximately related to the
density of vehicles by ρe ≈ oe

100`ave
, where `ave is the average length of

a vehicle in km, we assume from now on that density can be directly
measured.

Measurements are unavoidably noisy, with sources of noise ranging from
temporary inability to detect changes of the magnetic field, too fast or too slow
vehicles, blurred videos, etc. We adopt a simple additive noise model

ϕme (t) = ϕe(t) + ωϕe (t), e ∈ Em
ρme (t) = ρe(t) + ωρe (t), e ∈ Em (5)

where ϕme (t) and ρme (t) are flow and density measurements at time t, and ωϕe (t)
and ωρe (t) are measurement errors whose stochastic properties depend on the
performance of the sensor as well as on road and weather conditions, and Em ⊆ E
is the set of cells equipped with sensors. Due to installation and maintenance
costs, usually |Em| << |E|.

Remark 1. It should be mentioned that measurement systems based on magne-
tometers can be used to measure the average speed of vehicles crossing the section
they monitor, in addition to flow and density, simply by deploying them in pairs
monitoring sections that are at a fixed and known distance. The two consecu-
tive instants at which the same vehicle crosses the two sections provides then a
measurement of its speed. This type of installation is however not standard and
more expensive due to additional hardware and software. For this reason, and
to show that our approach does not need this additional information, we shall
assume that no speed measurement from static sensors is available.

2.2.2. Speed measurements

As already mentioned, recent technological advancements provide public and
private companies with speed measurements in the form of Floating Car Data
(FCD). In this paper we assume that the traffic network is partitioned in seg-
ments, let S be the set of all segments, and that aggregate speed measurements
are available on each segment s ∈ S. In particular, such an aggregate informa-
tion is the average speed of the vehicles on each segment, where averaging is
required for privacy reasons. While some classes of vehicles, such as taxi and
buses, can indeed be traced, we do not employ this additional information, and
leave the possibility to use it as future research. Notice that segment partition-
ing is, in general, different from cell partitioning, since the former depends on
communication and sensing capabilities, while the latter on modeling choices.
In this paper we assume that FCD segments are coarser than cells, so that each
segment usually consists of several cells, as in Figure 3.
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(Please place Figure 3 about here.)
Floating Car Data are less expensive and require less maintenance effort with

respect to fixed sensors since they exploit existing communication architectures.
For the same reason, they are already accessible almost everywhere once a data
collecting mechanism is deployed. Despite such advantages, FCD also have
drawbacks. Aside from the already mentioned possibly low penetration rate,
information provided via FCD is usually averaged over a relatively long period
of time. As an example, within the Grenoble Traffic Lab fixed sensors yield
flow and density (and speed) measurements every T = 15 seconds. The FCD
provided by INRIX are instead aggregated per minute, with standard practice
ranging between 5 and 10 minutes. A comparison between sensors speed mea-
surements from the GTL and FCD is provided in Figure 4, in which we plot
FCD measurement and average of GTL measurements for slow and fast lanes
at location Taillat on the Rocade Sud in Grenoble from 07:00:00 to 11:00:00 on
April 24th, 2014 (see Paragraph 5.1.2 for details), both sampled at a rate of one
measurement every 15 seconds (left panel) and averaged with a 5 minutes rate
(right panel). The left plots clearly illustrates the difference between the high
measurement rate of sensors and the effect of temporal averaging of FCD, the
latter yielding a smoother signal. Such a phenomenon is much less apparent in
the right plot, where the sampling time is the same. As a further comparison,
we plot both speed measurements for all the cells on the main line at 09:00:00
on Figure 5, showing again that on average the measurements are in agreement.
In fact, the average difference between sensor and FCD speed measurement is
me = −5.8, with standard deviation se = 13.5, whereas the average speed on
the Rocade is 82 km/h (according to FCD data).

(Please place Figure 4 about here.)
(Please place Figure 5 about here.)
We provide now a more formal description of the FCD speed measurements.

We partition time into intervals of duration N time slots (NT seconds), that
is, into FCD acquisition intervals [0, N − 1], [N, 2N − 1], . . . . At the beginning
of each interval, namely at time t = N, 2N, 3N, . . . , new aggregate data are
available in the form of the average speed during the whole last interval and
over each segment (which, recall, can consist of several cells). For a segment
s ∈ S, we denote such aggregate datum by vms (k), where k refers to the k-th
FCD acquisition interval. These speed measurements are kept for the whole
subsequent FCD acquisition interval (namely, for N time slots), when they are
again updated. During the first interval, namely, for t = [0, N − 1], no data are
available, and hence the speed measurement can be set to an arbitrary value.
In this paper we set it to the freeflow speed, which is a reasonable choice if the
first FCD acquisition interval falls during night time, when traffic is very low.
In formulae, the speed measurement on cell e at time t is

vme (t) =

{
vff
e , t ∈ [0, N − 1]

vms(e)(k), t ∈ [kN, (k + 1)N − 1]
(6)
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where

• vff
e > 0 is the freeflow speed on cell e, namely, the speed of vehicles in low

density regime.

• vms(e)(k), the aggregate datum, is given by

vms(e)(k) =
1

N |s(e)|
∑

j∈s(e),τ∈It

vj(τ) + ωms(e)(k)

where s(e) denotes the segment of which e is one of the cells (see Figure 3),
ωms(e)(k) is a measurement error whose stochastic properties depend on the
performance of the sensor as well as on road and weather conditions, and
It = {τ : b tN c − 1 ≤ τ

N < b tN c}.

(Please place Figure 6 about here.)

3. Flow and Density Reconstruction

The first problem we address in this paper is Flow and Density Reconstruc-
tion on the basis of heterogeneous sources of information. Our aim is to build
an observer for the densities of vehicles in all cells of the network given static
sensor measurements and Floating Car Data.

We start by observing that Eqs. (1)-(2) cannot be directly used to observe
the system except for the ideal scenario in which ideal measurements of the
outflows fout

e (t), for all e ∈ E and for all times t ≥ 0, and of the initial conditions
of the system, are available. Such a naive observer would however be very
sensitive to noise, as notice that while errors in the initial conditions correspond
to offsets during the evolution of the system, noises in the flow measurements
are integrated by the system’s dynamics, thus possibly producing unbounded
and/or unrealistic results. Since real systems are never error free, Eqs. (1)-(2)
cannot be directly used to observe the system.

We address this difficulty by considering the following standard Luenberger-
like observer

ρ̂(t+ 1) = ρ̂(t) + L−1(f̂ in(t)− ˆfout(t)) + Γ(ρ̃(t)− ρ̂(t)) (7)

where

• ρ̂(t) is the stacked vector of {ρ̂e(t)}e∈E , the density estimates on cells e ∈ E
at time t;

• f̂ in(t) and f̂out(t) are the stacked vectors of {f̂ in
e (t)}e∈E and {f̂out

e (t)}e∈E ,
the inflow and outflow estimates on cells e ∈ E at time t. Inflow and
outflow estimates are to-be-designed functions of the flow measurements
ϕm(t) = [ϕme (t)]e∈Em , as detailed in the next section;
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• ρ̃(t) is the stacked vector of {ρ̃e(t)}e∈E , which are density pseudo-measures
on cells e ∈ E at time t. Density pseudo-measures are functions of both
flow measurements and speed measurements ϕm(t), vm(t) = [vme (t)]e∈E ,
as detailed in the next section;

• Γ is a tunable gain trading off between flow and density pseudo-measure;

• L is the diagonal matrix of cell lengths, with Lee = `e for all e ∈ E .

We are interested in the following:

Problem 1 (Flow and Density Reconstruction using Heterogeneous Sources):
Design the maps

f̂ in = {f̂ in
e }e∈E : RE

m

+ → RE

f̂out = {f̂out
e }e∈E : RE

m

+ → RE

ρ̃ = {ρ̃e}e∈E : RE
m

+ × RE+ → RE

to minimize the absolute errors with respect to real flows and densities

aρ(t, e) = |ρ̂e(t)− ρe(t)|

aϕ(t, e) =
∣∣∣ ˆfout

e(t)− fout
e (t)

∣∣∣ (8)

3.1. A nonlinear observer for traffic networks

In this subsection we describe the proposed solution to Problem 1. It consists
in an offline calibration procedure and an online filtering step.

3.1.1. Offline calibration

This paragraph is devoted to providing a solution for calibrating the Fun-
damental Diagram. We employ a gradient descent strategy, similarly to (Qu
et al., 2015), for which we do not require a CTM formulation as in (Munoz
et al., 2004).

Recall that the Fundamental Diagram is the graph of the function ϕe(·) that
is the flow of vehicles at the point where sensors are placed on cell e and whose
argument is the density of vehicles on cell e. As such, it can be only estimated
on cells e ∈ Em, where measurements of flow and density are available. For a
cell j ∈ E \ Em, we assume that the Fundamental Diagram can be estimated
by extending by linear interpolation the parameters on the cells in Em that are
close to j, with coefficients that depend on the mutual distance between the
cells and on the type of road j belongs to.

The profile of Fundamental Diagram that we consider in the present paper
is the following

ϕe(ρ) =

{
vff
e ρ, ρ ≤ ρce
aeρ

2 + beρ+ ce, ρce < ρ ≤ ρjam

where
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• ρce is the critical density. It partitions the set of densities [0, ρjam] into the
freeflow low-density region [0, ρce), in which the mutual influence of vehicles
is small, from the high-density congested region (ρce, ρ

jam
e ], in which speed

decreases with density due to interaction of close vehicles;

• ρjam, the jam density, is assumed to be known a priori;

• vff
e > 0 is the freeflow speed on cell e; the value Ce = vff

e ρ
c
e is the capacity

of the section or road, namely, the maximum number of vehicles that can
flow through it during a period T ;

• we assume that the Fundamental Diagram congested region is a quadratic
function of the density. The following relations among the parameters ae,
be and ce hold for consistency

ae (ρce)
2

+ beρ
c
e + ce = vff

e ρ
c
e

ae
(
ρjam
e

)2
+ beρ

jam
e + ce = 0

ae ≥ 0

Remark 2. Recall that we defined ϕe(·) to be the flow of vehicles through a
section during a sample time T . As such, the units of the speed vff

e are km/T .

Remark 3. A standard choice for the Fundamental Diagram is the a triangular
Fundamental Diagram, for which in the congested region

ϕe(ρe) = ωe(ρ
jam
e − ρe)

where ωe is the wave speed at section e. Clearly, our model recovers the latter
with ae = 0, be = −ωe, and ce = ωeρ

jam
e . The choice of a quadratic Fundamental

Diagram in congestion regime has been driven by the empirical observation,
based on data on our experimental setting, that the triangular diagram tends to
overestimate the flow in congestion, as it will be shown in Section 5. For this
reason, we call it linear-quadratic Fundemental Diagram.

An alternative appealing solution which fits our data is the inverted-λ fun-
damental diagram (Hall et al., 1986). However, the number of parameters to be
estimated is higher in the latter case, and the resulting model is more complex
as it involves hysteresis.

Since it is well known that deterministic Fundamental Diagrams are in any
case only a rough approximation of the relation between flow and density, we
chose the quadratic profile because it is simple to calibrate and to use.

We describe now the procedure for the calibration of the Fundamental Di-
agram. Let e ∈ Em and let {(ρme,k, ϕme,k)}k∈K, K = {1, . . . ,K}, the set of K
density and flow measurements used as learning set and obtained via the fixed
sensor on cell e. For sake of notation, and since all variables refer to cell e only,
let us write from now on ρmk and ϕmk instead of ρme,k and ϕme,k, and the same for
the parameters of the Fundamental Diagram.

The proposed calibration procedure requires two steps
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• Estimation of ρc and C = vffρc: the first step consists in estimating the
critical density and the capacity C of the cell. We consider the stan-
dard least square estimation, which results into the following non-linear
and non-convex minimization problem: given the set of measurements
{(ρmk , ϕmk )}k∈K, K = {1, . . . ,K}, solve

min(ρc,C) V(ρc,C) = 1
2

∑K
k=1(ϕk − ϕ(ρc,C)(ρk))2

s.t. 0 < ρc < ρjam

C > 0

ϕ(ρc,C)(x) =

{
C
ρcx, x ≤ ρc
C(ρjam−x)
ρjam−ρc , x > ρc

(9)

We aim to solve (9) by the following gradient descent with diminishing
stepsize algorithm

– Basic step: initialize ρc0, C0. A reasonable choice is ρc0 = 20, which
corresponds to the vehicles influencing one each other when the av-
erage distance among them is less than 50 meters, and C0 = vlimit

e ρc0,
where vlimit

e is the speed limit on cell e normalized by the sampling
time T ;

– n-th step: let (ρcn, Cn) descend along the gradient of the cost, namely

ρcn+1 = ρcn −
δ

n
∇ρcV(ρc,C)

Cn+1 = Cn −
δ

n
∇CV(ρc,C)

with

∇ρcV(ρc,C) =
∑

k∈IFF(ρcn)

(
ϕk − ϕ(ρcn−1,Cn−1)(ρk)

) Cn−1

(ρcn−1)2
ρk

−
∑

k∈IC(ρc)

(
ϕk − ϕ(ρcn−1,Cn−1)(ρk)

)
Cn−1

ρjam − ρk
(ρjam − ρcn−1)2

∇CV(ρc,C) = −
∑

k∈IFF(ρcn)

(
ϕk − ϕ(ρcn−1,Cn−1)(ρk)

) ρk
ρcn−1

−
∑

k∈IC(ρc)

(
ϕk − ϕ(ρcn−1,Cn−1)(ρk)

) ρjam − ρk
ρjam − ρcn−1

IFF(ρc) = {k ∈ K : 0 < ρk ≤ ρc}
IC(ρc) = {k ∈ K : ρk > ρc}

where the gradients ∇ρcV(ρc,C) and ∇CV(ρc,C) are computed at the
point (ρc, C) = (ρcn−1, Cn−1), and δ > 0 is a fixed initial step size. No-
tice that if ρcn = 0 then IFF(ρc) = ∅, and conversely when ρcn = ρjam
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then IC(ρc) = ∅, and thus the previous summations are always well
defined. Nonetheless, for numerical reasons, additional care should
be taken in order to avoid ρc < 0 or ρc > ρjam, for example projecting
at each step ρcn+1 into [0, ρjam] after the gradient update.

– Stopping criterion: stop if

∥∥∥∥[ρcnCn
]
−
[
ρcn−1

Cn−1

]∥∥∥∥ < ε for some small

threshold ε > 0.

• Calibration of the quadratic function in the congested region: the problem
of calibrating the quadratic function for the congested region is cast into
the quadratic problem: given the set of measurements {(ρmk , ϕmk )}k∈K,
K = {1, . . . ,K}, solve

min(a,b,c)

∑
k∈IC(ρc)(ϕk − (aρ2

k + bρk + c))2

s.t. a (ρc)
2

+ bρc + ce = C

a
(
ρjam

)2
+ bρjam + c = 0

a ≥ 0

(10)

The problem (10) is computationally very simple and can be solved using
off-the-shelf tools.

Notice that as side products of the previous procedure we can compute the
freeflow speed as vff = C/ρc and, in case a bilinear Fundamental Diagram is
also needed, the wave speed as ω = −C/(ρjam − ρc), for each cell.

Finally, we remark that, in principle, one could add in (9) an upper bound
on the capacity, for example Cmax = vlimitρc. Such an additional constraint
can be included in the cost, and hence in the gradient iterates, via a standard
barrier function. However, such a choice might be in practice too restrictive
(for example, drivers tend to exceed the speed limit). Furthermore, since the
algorithm aims to fit the (density, flow) pairs, it is to be expected that the
resulting capacity does not exceed the maximum measured flow, which can be
verified a posteriori. A capacity upper bound is therefore a modeling choice,
which for the aforementioned reasons has not been implemented in the present
paper.

3.1.2. Online density reconstruction algorithm

We assume from now on that Fundamental Diagrams have either been cali-
brated or extended on the whole network, and that the matrix of splitting ratios
has been pre-specified or estimated on the basis of field surveys.

We propose the following online algorithm for Density Reconstruction

• at the beginning of the t-th time slot, a centralized computation unit

– receives measurements {ϕme (t)}e∈Em ;
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– flow estimation: estimates the vector of outflows f̂out(t) by solving
the following minimization problem

minf̂out ||(I −RT )f̂out||2 + γ
∑
e∈Em(f̂out

e − ϕme (t))2

s.t. f̂out ≥ 0
(11)

Problem (11) aims to a) match outflows and measurements where
available, by penalizing the squared difference between the two, and
b) to balance outflows according to the splitting ratios. The lat-
ter term provides the estimate of flows on cells in which no mea-
surement is available, and is performed “as if” the network were at
steady state, which is a simplifying assumption due to absence of a
dynamical model for flows. The tunable parameter γ selects whether
more weight is given to matching estimated outflows and measure-
ments (high γ), or to estimate the flows as if the network were at
steady state (low γ). Once Problem (11) is solved, the vector of esti-
mate of the inflows is easily computed according to Eq. 2, by setting
f̂ in
e (t) =

∑
j∈E−e Rjef̂

out
e (t).

– receives the measurements {vme (t)}e∈E when available, or holds the
last speed measurements received;

– For each cell e, computes the two possible densities ρ1
e (freeflow) and

ρ2
e (congested) corresponding to flow f̂out

e (t) assuming that the local
flow ϕe = ϕe(ρe) is exactly determined by the Fundamental Diagram;

– For each cell e, computes the two velocities ve(ρ
1
e) =

f̂out
e

ρ1e
(freeflow)

and ve(ρ
2
e) =

f̂out
e

ρ2e
(congested);

– Selects
ρ̃e(t) = arg min

i=1,2
{|ve(ρie)− vme (t)|}

as a rough estimate of the density. This estimate is only based on the
actual measurements of flow and speed, and is generally very noisy,
especially when the cell is in congestion. Therefore, the algorithm
does not directly uses it;

– density estimation: for each cell e ∈ E , lets the density estimate
evolve according to the observer equation (7).

3.2. Observer dynamic analysis

This section is dedicated to the analysis of the estimation error dynamics
for the observer (7). Let e(t) = ρ(t)− ρ̂(t) ∈ RE be the estimation error at time
t. By (1) and (7), the error evolution is given by

e(t+ 1) = ρ(t) + L−1(f in(t)− fout(t))

− ρ̂(t)− L−1(f̂ in(t)− f̂out(t))− Γ(ρ̃(t)− ρ̂(t))

= (I − Γ)e(t)− L−1(RT − I)∆fout(t))− Γ∆ρ(t)

(12)
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where we defined

∆fout(t) := fout(t)− f̂out(t), ∆ρ(t) := ρ̃(t)− ρ(t)

the flow and density errors. The quantities ∆fout(t) and ∆ρ(t) can be inter-
preted as noises, but we observe that they 1) depend on the measured quantities,
and 2) do not follow a Gaussian distribution. For these reasons, a straightfor-
ward application of Kalman filter is not theoretically justified, and would not be
optimal in the minimum variance sense. One could resort to employing exten-
sions of Kalman filter based on system linearization, such as extended Kalman
filter, but such strategies would be more complex than the proposed linear esti-
mator, and their optimality would not be proved anyway. Finally, particle filters
might provide better performance than both our algorithm and the extended
Kalman filter, as they run in parallel a number of scenarios and iteratively se-
lect the most informative trajectories, but would be much more complex and
computationally requiring than the simple linear observer proposed.

We observe now that the error equation (12) is essentially a low pass filter of
the total noise signal n(t) = L−1(RT − I)∆fout(t)) + Γ∆ρ(t) with stability and
bandwidth dependent on the eigenvalues of Γ. Let in fact Λ = I − Γ. Stability,
a strictly necessary condition, requires that |λ| < 1 for any eigenvalue λ of Λ.
Within this range, eigenvalues of Λ close to 0 yield large bandwidth, hence a
faster filtering but a more noisy error, and viceversa eigenvalues close to 1 imply
small bandwidth, thus less influence of the total noise n(t) but slower decaying
rate of e(t) to zero (in absence of n(t)).

Further analysis can be carried on under different assumptions on the noise
terms ∆fout(t)) and ∆ρ(t). We shall consider for sake of simplicity the sce-
nario in which Γ = gI, so that stability requires g ∈ (0, 2). We first present a
deterministic analysis based on Lyapunov theory and the concept of ultimate
boundedness (Khalil, 2002). Assume that ||L−1(RT − I)∆fout(t))||∞ ≤ Mf

and ||∆ρ(t)||∞ ≤Mρ, namely, that the noise components of the error equation
are bounded. Notice that such Mf and Mρ are surely finite by definition of
∆fout(t) and ∆ρ. Let us consider the discrete time Lyapunov equation

(1− g)2p− p = −q =⇒ p =
q

g(2− g)

where q > 0, and the candidate Lyapunov function V (e) = p||e||2. Tedious but
straightforward computations3 yield

V (e(t+ 1))− V (e(t))

≤ q

(
−||e(t)||22 +

2(Mf + gMρ)|1− g|
√
N

g(2− g)
||e(t)||2 +

N(Mf + gMρ)2

g(2− g)

)

3Here we use that for x ∈ RN it holds true ||x||1 ≤
√
N ||x||2.
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We can now establish uniform boundedness. Since q > 0, the right hand side is a

concave parabola in ||e(t)||2 with roots (±1+|1−g|)(Mf+gMρ)
g(2−g) . As a consequence,

after possibly an initial transient, the error trajectory will be bounded within

the sphere of e(t) such that ||e(t)||2 ≤ r(g) := (1+|1−g|)(Mf+gMρ)
g(2−g) , since outside

such a sphere V (t), and hence by construction ||e(t)||2, cannot but decrease. A
reasonable tuning choice is to minimize the radius of such a sphere, namely to
minimize r(g) as a function of g. Straightforward computations yield that the
minimum radius is rmin = Mf +Mρ, obtained for gmin = 1. By this choice we
make the filter as fast as possible and the ultimate boundedness radius as small
as possible.

A second, probabilistic, analysis is based on a statistical description of
∆fout(t)) and ∆ρ(t). In particular, assume that ∆ρ(t) and ∆fout(t) are two
jointly independent and identically distributed stochastic processes with ∆f =
E(L−1(RT − I)∆fout(t))), σ2

f = E||L−1(RT − I)∆fout(t)) − ¯∆f(t)||2, ∆ρ =

E∆ρ(t), σ2
ρ = E||∆ρ(t)) − ¯∆ρ(t)||2. These values can be obtained numerically

as empirical average and empirical second order moment of ∆fout(t)) and ∆ρ(t).
We remark once again that these assumptions do not hold true in the framework
under analysis, where the two processes are not independent and where their
statistical properties depend in a complex way on the state of the system - this
is one of the reasons for which directly employing a Kalman filter strategy is not
justified. Nonetheless, they are instrumental for the tuning strategy presented
in this section. Let m(t) and σ2

e(t) be the expected value and the second mo-
ment of e(t), which evolve according to m(t+1) = (1−g)m(t)+∆f(t)+g∆ρ(t)
and σ2

e(t + 1) = (1 − g)2σ2
e(t) + σ2

f + g2σ2
ρ. Standard analysis establishes that

asymptotically m(t) → m̄(g) = ∆ρ(t) + ∆f(t)
g and σ2

e(t) → σ̄2
e(g) =

σ2
f+g2σ2

ρ

g(2−g) .

Tuning the gain g thus involves trading off between minimizing the expected
value of the error m̄e(g), for which the best choice is g∗m = 2 (the maximum
possible), and minimizing the error variance σ̄e(g), for which the best choice

can be found to be g∗σ =
−1+
√

1+4σ2
ρ/σ

2
f

2σ2
ρ/σ

2
f

.

The two analysis of the error dynamics proposed in this section are based
on simplifying assumptions, but provide qualitative insights on how to tune the
parameter g. Additional information can be derived from the actual implemen-
tation of the algorithms. In our numerical experiments, for example, we chose
a small g since we observed that the density estimation algorithm with g ≥ 1
was very noisy and would sometimes provide negative, and hence physically
inconsistent, density estimates.

4. Optimal Sensor Placement

The second problem we tackle in this paper is Optimal Sensor Placement,
namely, the problem of deciding the position of sensors yielding a good trade off
between performance and cost. Since assessing in a theoretical way the perfor-
mance of algorithms for density reconstruction is difficult due to the nonlinear
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nature of the system, we simplify the setting and limit our attention to esti-
mation of cumulative flows, namely, of the total outflows from the cells. The
resulting, static, problem is then considered as a proxy for the more complicated
problem built on the dynamic density model.

We start by deriving some properties of cumulative outflows, and we proceed
describing a simple linear model for cumulative flows estimation. This will help
us formalizing the Optimal Placement problem.

4.1. Linear flow constraints

Let fe :=
∑t1−1
k=t0

fout
e (k) be the cumulative outflow from cell e, namely,

the total flow through the cell over the period of time [t0, t1], and let f =[
f1 . . . f|E|

]T ∈ RE+ be the vector of cumulative outflows. By integrating the
system’s dynamics we have

`e(ρe(t1)− ρe(t0)) =
∑
j∈E

Rjefj − fe, e ∈ E \ Ri

Assume now that [t0, t1] is a period of time whose duration is high enough, and
that at both times t0 and t1 the number of vehicles in the network is low, for
example, assume that t0 and t1 correspond to two consecutive midnights. Then
the magnitude of the vector of differences of vehicles {`e(ρe(t1)− ρe(t0)}e∈E\Ri
is small if compared to the cumulative flows in the network, and the following
relation holds approximately

L̄f ≈ 0 , (13)

where L̄ ∈ RE\Ri×E , is the matrix obtained by removing from L = RT − I
the rows corresponding to onramps. This imposes a linear constraint on the
cumulative flows that we shall exploit in the next subsection.

4.2. Linear measurement model and the Optimal Sensor Placement problem

In this subsection we study the performance of a linear estimator of the
cumulative outflows and we show how to formulate the problem of Optimal
Sensor Placement.

Let Em ⊆ E be a set of cells in which sensors are placed. We assume the
following simple linear measurement model

y = HEmf + ωf (14)

where

• ys is the measurement of the s-th sensor, namely fe+ωfs if the s-th sensor
is located on cell e;

• HEm ∈ {0,+1}p×n, p = |Em|, [HEm ]se = 1 if the s-th sensor is located on
cell e, and [HEm ]se = 0 otherwise, so that HEm1 = 1 and 1THEm1 = p;
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• ωf is a random noise vector with zero mean and covariance matrix Σnom,
related to the measurement noise ωϕ described in the previous sections.
For sake of simplicity, we shall often assume that the components of the
noise, one for each sensor, are independent with same variance σ2

nom, so
that Σnom = σ2

nomI.

Let now n = |E| and r = rank{L̄}, and consider a matrix V ∈ Rn×r whose
columns are an orthonormal basis of the right kernel of L̄T , i.e., L̄TV = 0 and
V TV = I. From (13) we get (approximately) f = V z for some z ∈ Rr, so that
the measurement model can be rewritten as

y = HEmV z + ωf . (15)

Given y, consider a linear estimator of z, ẑ = Kzy + qz, where Kz ∈ Rr×p
and qz ∈ Rr. The Best (minimum variance) Linear Unbiased Estimator of z
corresponds to the solution to

minKz,qz E[(z − ẑ)(z − ẑ)T ]
s.t. E[z − ẑ] = 0

ẑ = Kzy + qz

(16)

We provide an equivalent formulation and a solution of (16) in Lemma 1
in Appendix. An immediate consequence of Lemma 1 is that the Best Linear
Unbiased Estimator (BLUE) of f is

f̂ = Kfy = V (V THT
EmΣ−1

nomHEmV )−1V THT
EmΣ−1

nomy

and its error covariance is

Vp(Em) = E[(f − f̂)(f − f̂)T ] = V (V THT
EmΣ−1

nomHEmV )−1V T .

The quantity Vp(Em) depends on a) the (right kernel of the) matrix of split-
ting ratios via the matrix V and the nominal variance of the noise ωf , two
parameters that are assigned, and b) on the locations of the sensors, which is
the set Em, via the matrix HEm . For this reason, we will take the magnitude of
Vp(Em), measured via its trace, as our metric to measure the performance of a
sensor network placed on the cells Em.

Clearly, with no additional constraints the optimal placement is to equip
every cell with sensors. This is straightforward as equipping all cells means
settingHE = I, and fromHT

E HE = I ≥ HT
EmHEm immediately descends Vp(E) ≤

Vp(Em), for any Em ⊆ E .
Each device has however a non-negligible purchase and maintenance cost,

which has to be considered when designing the sensor network. For sake of
simplicity, in this paper we make the simplifying assumption that the cost of a
network over its lifetime is proportional to its number of sensors via a coefficient
c > 0, so that the cost of deploying sensors on Em is c|Em|.

We thus consider the following
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Problem 2 (Optimal Sensor Placement): Let G = (V, E) be a traffic network
with splitting ratios R and cumulative flows noise variance σ2

nom. Find Em which
solves

minEm trace {Vp(Em)}+ c|Em| (17)

The optimal Êm, solution to (17), trades off between the network perfor-
mance, which is measured by the trace of the estimator error covariance, and
the total cost of the network. Clearly, the two have a contrasting effect on the
number of deployed sensors. It is however inherently combinatorial, the optimal
position of the sensor being in general hard to find and requiring an exhaustive
search among all the possibilities, which is intractable even for relatively small
network dimensions.

We approach the problem by proposing an heuristic that relaxes it into a
convex problem. Such a strategy is described after a brief discussion on the
minimum required number of sensors.

Remark 4. The choice of measuring the performance via the trace of the esti-
mator error covariance is one of several possible choices to scalarize the problem
of minimizing the minimum covariance itself. Another interesting choice is the
logarithm of the determinant of the estimator error covariance, proposed and
studied for example in (Zhou and List, 2010; Xing et al., 2013), which also
yields a convex optimization problem following the ideas proposed in the fol-
lowing sections. A further possibility is the || · ||2 norm of the covariance. A
comparison between these possible choices, in light of their geometrical interpre-
tations, is due in future research.

4.3. Minimum number of sensors

Before proposing our method for solving (17), we prove that there exists
a lower bound on the number of sensors |Em| in order the trace {Vp(Em)} to
be finite. As it will be proven, below such number, which corresponds to the
number of onramps of the system, the problem of reconstruction of flows admits
infinite solutions.

To this aim, relabel the cells in such a way that onramps are the first
1, . . . , |Ri| cells so that we can partition L̄ as

L̄ =
[
Lon Lnn

]
where Lnn models the mutual influence of flows on non-onramp cells, and Lon
models the influence of onramps on non-onramp cells.

It can be shown, and we provide a formal proof in Appendix, that the min-
imum number of sensors for the flow estimation problem to be solved is equal
to the number of onramps |Ri|.

We offer two interpretations on this fact:

• Ideal measurement scenario: assume p = |Em| ideal measurements at
sensors s(1), . . . , s(p) are available, ys(i) = fs(i), i = 1, . . . , p. Then a
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solution to the system of equations{
L̄f̂ = 0

f̂s(i) = fs(i), i = 1, . . . , p

is a candidate vector of cumulative flows. Then, if p ≥ |Ri| the system has
a unique solution which is the true vector of flows. Conversely, if p < |Ri|,
the system is undetermined;

• Noisy measurement scenario: assume p = |Em| noisy measurements at
sensors s(1), . . . , s(p) are available and assume to adopt the Best Lin-
ear Unbiased Estimator presented above to estimate the flows. If p =
|Em| < |Ri|, then rank

{
HT
EmHEm

}
< |Ri| = rank {V }, which implies

that rank
{
V THT

EmHEmV
}
< |Ri|. However, V THT

EmHEmV ∈ R|Ri|×|Ri|,
so the matrix is singular, and therefore the trace of the error covariance
is unbounded. Conversely, if p ≥ |Ri| then rank

{
V THT

EmHEmV
}

= |Ri|
and the trace of the error covariance is bounded.

4.4. Relaxation via Virtual Variances

The solution that we propose is based on the observation that cells that
are not endowed with sensors can be interpreted as cells in which sensors have
infinite noise variance. It turns out that an equivalent formulation of (17) is

minEm trace
{
V (V TΣV )−1V T

}
+ cσ2

nom1TΣ−11

s.t. Σee =

{
+∞, e 6∈ Em

σ2
nom, e ∈ Em

(18)

In this formulation

• the term HEm is the identity matrix, namely, all cells are endowed with a
sensor – except, some of them have infinite noise variance and thus provide
no information;

• the second term in the cost corresponds to c|Em| as

cσ2
nom1TΣ−11 = cσ2

nom

(∑
e∈Em

1

σ2
nom

)
= c

∑
e∈Em

1 = c|Em|

In other terms, (18) corresponds to assigning a virtual variance Σee = σ2
e

to each sensor, and decide for which it should be σ2
e = σ2

nom, the cells in
Em that actually provide information, and for which it should be σ2

e = +∞.
We call Σ the (diagonal) matrix of virtual variances, and we let the corre-
sponding trace of error covariance be denoted, with an abuse of notation,
Vp(Σ) = trace

{
V (V TΣV )−1V T

}
.

Our approach is then based on the intuitive idea that increasing the variance
on the sensors that are not crucial for the solution of (17) should not have a
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strong effect on the performance term Vp(Σ). More formally, we consider the
following relaxed version of the previous problem

minΣ∈Dn trace
{
V (V TΣ−1V )−1V T

}
+ cσ2

nom1TΣ−11
s.t. Σee ≥ σ2

nom,∀e ∈ E
(19)

where Dn is the set of diagonal matrices of dimension n.
We now slightly rewrite the cost. First of all, by the well known prop-

erty of trace trace {AB} = trace {BA}, and by V TV = I, it follows that
trace

{
V (V TΣ−1V )−1V T

}
= trace

{
(V TΣ−1V )−1

}
. Second, we perform the

change of variables Ω = Σ−1. In this way, we obtain the following problem

minΩ∈Dn trace
{

(V TΩV )−1
}

+ η1TΩ1
s.t. 0 ≤ Ω ≤ Σ−1

nom
(20)

where η is a tunable parameter. The choice η = cσ2
nom is a natural one due to

the previous discussion, but since η influences the relative weight of performance
(penalized for low η) and cost (penalized for high η) we leave it as an additional
degree of freedom. Notice, finally, that the term 1TΩ1 corresponds to the `1
norm of the inverse of the variances, a term which is commonly used term to
sparsify solutions of optimization problems.

The Virtual Variance algorithm proceeds as follows:

1. solve (20) and denote by Ω its solution;

2. compute Σ−1 = Ω

3. discard all cells whose virtual variance is above a fixed discard threshold
Td

As explained above, if the found solution provides high virtual variances at
locations where sensors are redundant then this is effectively a way to select the
most important cells where to place sensors.

However, this strategy does not, in general, provide good solutions to the
problem. Indeed, numerical simulations have shown that in the considered sce-
nario the solution of (20) can be often interpreted as endowing all cells of the
network with sensors with average virtual variance, rather than keeping it low
in some of them and high in others.

In order to enhance diversity between sensors, we enrich the cost of (20)
with a term that aims to penalize homogeneity. This is reminiscent of dissensus
(as opposed to consensus) strategies in multi agent networks, in which each
agent possesses a value and the goal of the network is to differentiate as much
as possible such values.

In this paper, we make the following simple choice. Let W ∈ Rn×n−1 be
an orthonormal base of the subspace orthogonal to 1, that is, W ∗1 = 0 and

W ∗W = I. We add to the cost in (20) a term that is proportional to e−1
TW∗Ω1.

Since the columns of W span the orthogonal to 1, W ∗Ω1 is high when the
element on the diagonal of Ω, which are gathered in the vector Ω1, are different
one with respect to the other, and is low otherwise.
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We propose the following optimization problem

minΩ∈Dn trace
{

(V TΩV )−1
}

+ η1TΩ1 + κe−1
TW∗Ω1

s.t. 0 ≤ Ω ≤ σ−2
nomI

(21)

While the optimization variable in the (21) is Ω, the real optimization variables
are clearly its diagonal entries. Observe that a) Ω is an affine function of its di-
agonal entries; b) V TΩV and 1TW ∗Ω1 are affine functions of Ω; c) trace

{
X−1

}
is convex in the matrix X (Boyd and Vandenberghe, 2004) and e−x is convex in
x; d) composition of convex and affine functions, and nonnegative sum of func-
tions, preserves convexity (Boyd and Vandenberghe, 2004). The cost function
of (21) is thus a convex function of the diagonal entries of Ω under the natural
requirement that the tunable parameters η, the total variance weight, and κ,
the discrepancy weight, are chosen to be nonnegative. Since the inequality con-
straints are clearly convex in the diagonal entries of Ω, we conclude that (21)
is a convex optimization problem having as optimization variables the diagonal
entries of Ω.

Tuning of the parameters η and κ appearing in the previous optimization
problem requires some careful selection so that the resulting virtual variances
are strongly separated (in order to easily discard cells not providing sufficient
information) while showing sufficiently good performance. We shall provide in
the following paragraphs examples of application of the previous optimization
problem for different sensor placement scenarios. We anticipate here that, by
trial and error, the first parameter we tuned was κ, set to the value 20. This
ensures that, as required, the virtual variances solution of (21) are distributed
in a strongly bimodal way, with low and high values being different by several
orders of magnitude. As a consequence, it is usually easy to distinguish among
the two groups and discard cells whose contribution to the performance metric
would be negligible. The parameter η was then chosen to show good perfor-
mance/cost trade off, or according to additional constraints such as the ones
described in the next paragraphs. In general, high η penalizes the number of
sensors, thus yielding to solutions with higher virtual variances at the expense
of poor performance.

We conclude this section observing that an important issue is sensitivity of
the Virtual Variance algorithm with respect to the only datum it requires, the
matrix of splitting ratios. We present in Appendix the results of a numerical
study suggesting that such a sensitivity might be low in some situations.

4.4.1. Optimal Sensor Placement with geographical or budget constraints

In this paragraph we discuss two variations of the previous procedure, which
address the additional problems of geographical constraints and of strict budget
limitation.

Optimal Sensor Placement with geographical constraints

The first scenario we address is concerned with the scenario in which a)
some cells cannot be equipped with sensors, for example for physical reasons,
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and/or b) there are subsets of cells for which either all cells are endowed with
sensors, or none are. An example of the latter constraints is a multi-lane road
which is modelled using parallel cells (on different lanes) and on which the traffic
manager can deploy induction loop. The former are buried underground and
are usually required to cover the whole carriageway. As such, if i and j are, for
example, two parallel cells on the two lanes on a certain section or road, then
either i and j are both equipped with a sensor (i.e., the induction loop), or not.

To include this type of constraints in the proposed procedure, let Eam ⊆ E ,
|Eam| = m, be the subset of available cells, and let HEam ∈ {0,+1}m×n be built
as in Subsection 4.2. Further, let S ⊆ PE be the set of subsets of E which must
be simultaneously equipped, or not, with sensors, where PE is the powerset, or
set of subsets, of E .

Then the following problem

minΩ∈Dk trace
{

(V THT
EamΩHEamV )−1

}
+ η1TΩ1 + κe−1

TW∗Ω1

s.t. 0 ≤ Ω ≤ σ−2
nomI

Ωii = Ωjj ,∀i, j ∈ σ, ∀σ ∈ S
(22)

is (21) once we constrain sensors to be placed on cells in Eam only and simul-
taneous sensor placement to happen according to the constraints specified by
the set S. Notice that the diagonal entries of the solution Ω are the inverse
of the virtual variances on the cells in Eam only. The matrix W is defined as
previously, but with suitable dimension (m×m−1). As in the general problem,
cells are chosen only if the corresponding virtual variance is below a certain
threshold, and clearly cells that are not in Eam cannot be chosen. Notice that
the constraint Ωii = Ωjj in (22), or the less requiring |Ωii − Ωjj | ≤ ε, for some
tunable parameter ε, are convex constraints, so (22) remains convex.

Remark 5. By the discussion in Subsection 4.3, the minimum number of sen-
sors is r = |Ri|. As such, if |Eem| < |Ri| the problem (22) is not well posed and
the solution will only have very high virtual variances. Clearly, such a solution
is not acceptable and should be discarded.

4.4.2. Optimal Sensor Placement with budget constraints

In this second scenario we discuss budget constraints in the form of con-
straints on the maximum number of chosen sensors, a very common requirement
in real-case applications.

We propose a solution based on the following iterative approach:

• Initialization: set η(0) and κ to some prespecified nonnegative values; tmax

to the maximum number of iterations; nmax to the maximum number of
sensors;

• t-th step

– The problem (21) is solved with η = η(t);

– Let n(t) be the number of sensors in the solution provided by the
Virtual Variance algorithm. Then
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∗ If n(t) ≤ nmax, or if t ≥ tmax, the procedure stops;

∗ Otherwise, set η(t + 1) = g(η(t)), where g is a monotonically
increasing increasing function, and the procedure iterates.

The rationale behind this procedure is that, as previously discussed, η penal-
izes a low total sum of the virtual variances. Therefore, by iteratively increasing
η the solution to (21) will tend to exhibit higher and higher virtual variances,
thus reducing the number of sensors.

Remark 6. Once again, and related to the discussion in Remark 5, the specified
maximum number of sensors cannot be be less than r = |Ri| by the results
presented in Section 4.3. If this is not the case, numerical experiments show that
the algorithm either simply iterates until the number of iterations reaches tmax,
or the found solution exhibits an extremely high trace

{
(V THT

EamΩHEamV )−1
}

- due to the fact that the internal matrix is (numerically) almost singular. As
in Remark 5, such a solution is not acceptable and should be discarded.

5. Numerical experiments

5.1. Numerical Experiments for the Optimal Sensor Placement

In this subsection we present the results of two numerical experiments. In
the first, we solve the problem of Optimal Sensor Placement in a small (but not
trivial) regular grid, in the second, we apply the procedure to the real-world
case of the Rocade Sud.

(Please place Figure 7 about here.)

5.1.1. Regular grid

Consider the regular grid composed of 25 cells shown in Figure 7. We want
to solve the problem (17) by (20) with parameters σ2

nom = 1, nominal sensor
variance, and c = 1, cost of a single sensor.

The network is small enough to run an exhaustive search to solve the problem
(17). In particular, for each h = 4, 5, 6, . . . , 21, we try all possible combinations
of h = |Em| sensors, thus finding the one that minimizes Vp(Em).

We also run our Virtual Variance algorithm with total variance weight η = 2
and discrepancy weight κ = 20. Further, we set the threshold on the virtual
variance for discarding a sensor to Td = 100.

We illustrate the results in Figures 7 and 8. In Figures 7 the 8 cells chosen
by the Virtual Variance algorithm are represented as a green dot marks, and
the best possible placement with 8 sensors (found by exhaustive search) as red
dot marks. It can be noticed that both procedures place most of sensors at the
boundaries of the network.

Figure 8 shows instead the total cost of the best placement obtained through
exhaustive search for h = 4, . . . , 21, and the total cost found by the Virtual
Variance algorithm with 8 sensors. By total cost we mean the sum of estimation
performance and network cost Vp(Em) + c|Em|, which, notice, is not the metric
that is used in the Virtual Variance algorithm. Nonetheless, it is appreciable
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that the Virtual Variance algorithm not only provides a solution whose number
of sensors is close to the global optimum (which is with 6 sensors), but also
that, using 8 sensors, the Virtual Variance algorithm places them almost in the
optimal way.

(Please place Figure 8 about here.)

5.1.2. Rocade Sud

Our second experimental setting is the Grenoble Traffic Lab (GTL), a net-
work of sensors deployed for monitoring and research purposes along the Ro-
cade Sud, a peri-urban 10.5 km long freeway connecting the two highways A41
(north-west) to A480 (south) in the town of Grenoble in the south of France, see
Figure 9. The network is composed of 135 magnetometers buried in the ground
on both lanes along the main line every 250 meters (on average), on each on-
ramp and offramp, and on three connectors from urban roads to three onramps,
for a total of 68 sensing locations. For our purposes, each sensing location will
correspond to one pair of sensors. For a detailed report on the GTL, we refer
to (Canudas de Wit et al., 2015). Furthermore, and for sake of simplicity, while
in the real network sensors are deployed in pairs, we shall assume from now on
that each sensing location has only one sensor (as we shall always discard sensor
speed measurements).

Figure 9 shows the position of each of the 22 sections of the main line in
which there are sensing locations on both slow and fast lanes (and usually a
ramp). In the same figure we also show a stylized representation of the freeway,
including ramps and queues, the positions of the 68 sensing locations, and the
distance between consecutive measurement sections along the main line.

We partition the Rocade in cells in such a way each cell includes one sensor,
so that in Figure 9 each numbered circle also corresponds to one cell.

Here, we do not consider onramps and offramp, limiting our attention to the
main line of the Rocade Sud. The reason for this choice is that the Rocade has
10 onramps along its main line, which, summed to the two cells in the very first
section of road, imply a minimum number of sensor of 12 by the discussion in
Subsection 4.3. While this number is not high on its own, numerical experiments
not reported in this paper have shown that good estimation performance require
a number of sensors which is too high in most realistic (i.e., non academical)
implementations.

The corresponding reduced graph representation, essentially made of several
groups of parallel edges, consists of 46 cells. We provide a stylized version of it
in Figure 10.

(Please place Figure 9 about here.)
The matrix of splitting ratios could be estimated from the data, but we

make here a simpler assumption and assume that vehicles split according to the
following rule: vehicles on slow lane cells remain on slow lane or turn into fast
lane with a 70%-30% rule, and analogously for vehicles on the fast lane. If the
next section has three parallel cells (cells 22-23-24 and cells 66-67-68), vehicles
spit uniformly in such three cells.
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We did not run an exhaustive search due to the relatively high dimension of
the network and the consequent relevant computational load. Our comparison
is instead with the locations of fixed loops installed by the Government Agency
Centre national d’information routiére (CNIR) (Centre national d’information
routiére (CNIR), 2014), which correspond to cells marked with a red dot in
Figure 10. We shall show that the latter are positioned in a way that is in good
accordance with the results of the Virtual Variance algorithm, even though our
procedure allows for a slightly better design.

We run the Virtual Variance algorithm in three scenarios: 1) unconstrained
scenario with total variance weight η = 0.2 and discrepancy weight κ = 20;
2) unconstrained scenario with η = 1 and κ = 20; 3) constrained scenario
with number of sensors at most 10, initial η = 0.2, and κ = 20. We assume
that σ2

nom = 1 and that the cost per sensor is c = 1. In all cases, sensors are
constrained either to be present in both lanes on a same section, or to be absent.

The results are summarized in Figure 10 and Table 2. The tables shows the
number of sensors in the solution computed via the Virtual Variance algorithm,
as well as the trace of the corresponding estimation error covariance Vp(Em)
and the total cost V (Em) = Vp(Em) + c|Em|. In Figure 10, cells found in the
unconstrained scenario with η = 0.2 are marked with a green dot. As can
be seen in Table 2, our algorithm requires one less sensors than the network
deployed by CNIR and in addition the trace of the error covariance is smaller.

In the constrained scenario and in the unconstrained scenario with high η
(which, as explained above, indirectly penalizes the number of sensors), the trace
of the error covariance Vp(Em) increases, as expected. Furthermore, the chosen
cells in the latter two cases are subsets of the cells chosen in the unconstrained
case: in particular, in the constrained scenario all cells are kept except 13, 14,
49 and 50, and in the unconstrained scenario with high η the algorithm further
discards cells 64 and 65.

(Please place Figure 10 about here.)
(Please place Table 2 about here.)

5.2. Density reconstruction - experimental results

We provide here numerical results of the implementation of the data fusion
algorithm for density reconstruction on data from the Rocade Sud.

On each sensing location and every T = 15 seconds, the system counts the
number ϕme of vehicles that crossed the location, their average speed vme , and
the average occupancy ome of the location. Since the latter is approximately
proportional to the density of vehicles, so we shall assume that sensors can
directly measure densities. In addition to fixed sensors, we use Floating Car
Data provided by INRIX. Following INRIX schema, the Rocade has been further
partitioned into FCD segments. One measurement of average speed is available
on each FCD segment every 1 minutes. FCD segments partition the whole main
line of the Rocade and include most onramps and offramps, but single lanes are
not distinguished along the main line. FCD segments are represented in Figure 9
as rectangles encircling several sensing locations/cells.
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For our experiments, we employ the sensor configuration obtained in the
previous section via the Virtual Variance algorithm with η = 0.2. In particular,
and in order to prove that the method shows good performance even with sparse
equipment, we only use the sensors on the main line, which are, for reference,
shown in light blue in Figure 9. Further, we don’t use any information on flow
or speed on the ramps.

Calibration of the Fundamental Diagram was performed via the algorithm
described in Paragraph 3.1.1 and using the data from the GTL sensor network
from April 10th, 2014, a working day (a Thu.) exhibiting very standard traffic
pattern:

• very limited night time traffic;

• a peak of congestion in the morning (8:00 - 10:00), triggered by vehicles
exiting towards the city from the Rocade at the offramp of Eybens (cells
37/38) and spilling back until Meylan (cells 2/3), and a second, smaller
peak of congestion triggered by vehicles entering in A480 at Rondeau (cells
66/67/68) but blocked by the high traffic on A480, and spilling back until
around Libération (cells 61/62);

• a third, smaller, congestion triggered around Eybens around 14:00-15:00;

• in general, medium/heavy but fluid traffic from 10:00 to 16:00

• a second peak of congestion in the afternoon, again triggered by congestion
at Rondeau at around 16:00, spilling back on the whole freeway in around
60 minutes, and lasting approximately two hours.

We considered an average vehicle length of `ave = 5 meters, close to the
value provided in (Treiber and Kersing, 2013). This yields a jam density value
of ρjam = 200 veh/km.

(Please place Figure 11 about here.)
As for the previous section, we consider the following simple rules to set the

matrix of splitting ratios

• let e be a fast lane cell. Then 70% of vehicles continue on the fast lane
cell and 30% turn into the slow lane cell; if in the following section there
are three parallel cells, vehicles split uniformly;

• let e be a slow lane cell. If among the following cells there is not an offramp,
then 70% of vehicles continue on the slow lane cell and 30% turn into the
fast lane cell; if in the following section there are three parallel cells,
vehicles split uniformly. Otherwise, 20% of the flow is directed towards
the offramp, and the rest splits as previously specified;

• if e is an onramp cell and j is the following slow ramp cell, then Rej = 1.

• if e is a queue cell and j is the following onramp cell, then Rej = 1.

In words, vehicles split according to a 70%-30% lane-change rule in the cells on
the main line, and at each offramp approximately 10% of vehicles exit from the
freeway.
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5.2.1. Implementation

To assess our method, we considered the whole month of April 2014 (ex-
cept April 13th, a Sun., for which FCD measurements were not provided). A
typical result of calibration of the Fundamental Diagram is illustrated in Fig-
ure 11, which shows in thick black the linear-quadratic Fundamental Diagram,
in dashed thick black the corresponding standard linear Fundamental Digram
in congestion regime, and as crosses the pairs (density, flow) measured on a
day different from that used for calibration, in this case April 24th, 2014. As
standard and well known, data in freeflow regime are in good accordance with
the linear part, while data in congested regime are much more scattered and
more difficult to fit. As it can be noticed, the standard bilinear Fundamental
Diagram overestimates the flows in congested regime (the dashed think line is on
average higher than the corresponding pairs (density, flow)), while the quadratic
curve seems to better capture the average flow-density relation. Nonetheless, it
is clear that the so found curve is only a very crude approximation of such a
relation, which might be better captured using a stochastic description (Jabari
and Liu, 2013). Investigation of the latter possibility will be the focus of future
research.

The proposed algorithm was implemented in Matlab on a non dedicated
commercial laptop with 2.1 GHz i7-4600U CPU and 8 GB RAM. Optimization
problems, required both in offline and online steps, were solved using standard
Matlab functions as well as the modelling and optimization system CVX (Grant
and Boyd, 2013, 2008). The time required for calibration of the Fundamental
Diagrams is between 30 and 40 seconds for each cell, while reconstruction of
all the samples for a whole day requires less 10 minutes, averaging 100 ms per
sample.

(Please place Figure 12 about here.)
(Please place Figure 13 about here.)
Typical results are reported in Figures 12-13. For validation purposes only,

density and flow measurements from all GTL fixed sensors are considered ground
truth. As such, the left panels show the evolution of the “true” measured density
and flow in all the cells on the main line, over the whole day, for each day. On
the x-axis, the 46 sensing locations along the main line (numbers correspond
to the labels in Figure 9), on the y-axis, the 5760 time slots over the whole
validation day (one slot every T = 15 seconds). The chosen colors range from
green (low density/flow) to yellow (medium/critical density/flow) to red (high
density/flow). In the right panels, we show, using the same legend, the results
of density and flow reconstruction. As it can be observed, the estimation algo-
rithm is able to represent the four congestion events described in the previous
section in a reasonably good way, given the limited amount of information em-
ployed; in particular, observe that the two small congestions at Rondeau during
the morning and at Eybens during early afternoon, when present, are both de-
tected. Notice that the resulting estimate remains good and reasonably close
to the real profile, despite the absence of flow measurements on ramps, which
in the real system have a strong impact on the traffic dynamics, especially in
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peak hours. We further observe that the observer is able to capture different
regimes in parallel cells. An example of such a phenomenon is the succession
of congested/non congested cells 28-29-32-33 at 16:00 (Saint-Martin-d’Héeres –
Saint-Martin-d’Héeres entrance), which correspond to slow/fast lanes.

(Please place Table 3 about here.)
(Please place Table 4 about here.)
The performance of the algorithm is quantitatively illustrated via the abso-

lute error between measured and estimated flows and densities (8). The results
are summarized in Table 3 and Table 4, which report the maximum absolute
error δ on the 75%, 90% and 95% of the pairs (cell, time slots), for all cells
on the main line and all samples during a day, for all the considered days, and
for both densities and flows. In Table 3 time slots correspond to the original
15 seconds time slots. In Table 4 we consider time slots of 5 minutes and we
average in time all quantities. For the original slots, the table shows an average
error of less than 11 veh/km for the 75% of pairs and less than 23 veh/km for
the 90% of the pairs. In 5% of the (cell, time) pairs the error is higher but
still less than around 35 veh/km. The magnitude of the errors is influenced by
the high sampling rate of the system, which, as it is well known, increases the
noise power. This is confirmed by a comparison with Table 4, for the averaged
system, which shows errors on average 40% less for flows and 25− 30% less for
densities.

We conclude with a comparison with an an oracle that knows

• the exact outflow fout
e (t) for every cell e and every sample time t (namely,

for each 15 seconds time slot);

• whether the cell is in freeflow or in congestion, for every cell e and every
sample time t.

The oracle then runs the same estimation algorithm as described above. Notice
that by exploiting its available information, the oracle is able to propagate
the flows in the network with zero error (i.e., ∆fout = 0) and always knows
whether a cell’s density is low (if the cell is in freeflow) or high (if the cell is
congested). Consequently, the only source of noise that affects the oracle is the
model uncertainty which is inherent in the Fundamental Diagram. The average
error obtained by the oracle is 5.8 for the 75% of the pairs (cell, time) and 12.5
for the 90% of the pairs, even with the high amount of additional (and precise)
information available to the oracle. Indeed, this confirms that estimation in
traffic systems is a difficult task, and that errors of absolute magnitude around
10-20 veh/km can be acceptable, as they capture the qualitative trend features
of the traffic system - such as low density, medium density, high density. On the
other side, estimate of flows are rather low, being less than 1 ∼ 2 vehicles for
the 75% of the pairs (cell, time), and less than 2 ∼ 3 for the 90% of the pairs.

The biggest difference between estimated and measured densities can be ob-
served at Eybens exit (cells 37-38), where the estimated flow constantly predicts
a higher density than the measured one. The explanation is straightforward:
Recall that we do not use ramp data in order to show the prowess of our method
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even employing a very small number of sensors. However, as mentioned in the
description of the data, the exit of Eybens is a critical point whose ramp is
selected by a high fraction of vehicles to exit the Rocade towards the town; in
addition, the corresponding cells belong to a long FCD segment running from
Saint-Martin-d’Hères (cells 32-33) to Eybens entrance (cells 41-42), which pro-
vides, during peak time, just one set of rather low speed measurements, which
do not distinguish between the stretch of road before Eybens exit (congested
and at low speed) against that after Eybens exit (uncongested and at high
speed). Due to the so obtained low speed measurement, the algorithm tends to
estimate a high number of vehicles along the whole segment, instead of two dif-
ferent regimes before and after the ramp. Analogously, we observe a mismatch
between measured and estimated flow in the first and last sections, which are
due to unobserved flows from onramp and to offramps. A second discrepancy
is the smoothness of the reconstructed density and flow, as compared with the
more scattered measurements. The latter is due to the high measurement rate,
which during stop-and-go phenomena results in measurements which rapidly
oscillate between stopped vehicles and low or medium speed. On the converse,
the optimization based flow reconstruction and the first order mass conserva-
tion law for densities have a low pass effect therefore producing smoother, more
regular patterns. Further research direction will investigate the possibility to de-
tect stop-and-go phenomena and reproduce, at least qualitatively, the resulting
irregular patterns.

6. Conclusions

This paper addressed the problems of fusion of heterogeneous sources of in-
formation for density estimation in Road Transportation Networks and optimal
sensor placement via a heuristic that we called Virtual Variance algorithm. A
gradient descent procedure for the calibration of the Fundamental Diagram is
also discussed. Efficacy of the proposed solutions is illustrated on a regular grid
and on the real world scenario of the Rocade Sud in Grenoble. Future research
directions include and are not limited to estimation of statistical properties of
measurement noises from real data and development of stochastic models for
the relation between flows, speed and densities, optimization of the observer’s
parameters for minimization of mean-square reconstruction error, calibration
of the matrix of splitting ratios, tuning of the weights in the Virtual Variance
algorithm, and extension of the optimal sensor placement strategy to maximize
density reconstruction performance.
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Appendix

An equivalent formulation for (16) and its solution
The following Lemma formulates a problem that is equivalent to (16). The

proof is straightforward.

Lemma 1. The solution (Kz, qz) to (16) is given by qz = 0 and Kz the solution
of

minKz KzΣnomK
′
z

s.t. KzHEmV = I
(23)

which is
Kz = (V THT

EmΣ−1
nomHEmV )−1V THT

EmΣ−1
nom ,

with error covariance

E[(z − ẑ)(z − ẑ)T ] = (V THT
EmΣ−1

nomHEmV )−1

Proof of minimum number of sensors
Recall that L̄ =

[
Lon Lnn

]
is the lower part of the matrix L = I−RT once

we relabel the cells in such a way that the onramps are the first |Ri| cells.
Define a dual graph Gd = (Vd, Ed) in which the roles of cells and junctions

are reversed, and in particular in which Vd = E \ Ri and (e, j) ∈ Ed if e 6= j
and [Lnn]ej 6= 0. Then it is easy to see that LTnn is a sublaplacian of Gd. The
following result is adapted from (Lovisari et al., 2014).

Lemma 2. Let G = (V, E) be a graph and J ∈ R|V|×|V| be a sublaplacian of G.
Then all the eigenvalues of J have negative real part except possibly eigenvalues
in 0. Moreover, if S is the set of nodes v for which

∑
u Jvu < 0, then J is

invertible if for every u there exists a directed path in G from u to a node v ∈ S.

In the case under analysis, we take J = LTnn and S to be the set of cells
directly following an onramp, namely S = {e ∈ E : ∃j ∈ Ri : Rje > 0}. Recall
that by assumption for every cell e 6∈ Ri there exists an origin j ∈ Ri and a
path from j to e, so there must also be a k ∈ S and a path from k to e (at most
being k = e), so the assumptions of Lemma 2 are satisfied. This establishes
that Lnn is invertible, and therefore that L̄ is a full row-rank matrix with rank
|E \ Ri|. Since the number of columns of L̄ is |E|, it follows that its kernel has
dimension r = |Ri|, and thus rank {V } = |Ri|.

(Please place Figure 14 about here.)
Sensitivity of the Virtual Variance algorithm with respect to splitting ratios

In this section we present numerical results suggesting that the sensitivity
of the Virtual Variance algorithm, namely, the sensitivity of sensor positioning
as a function of small variations in the splitting ratios, might be low in some
scenarios. We have considered the regular grid presented in Section 5.1.1 and
run 100 times the Virtual Variance algorithm with η = 2, each time adding zero
mean gaussian noise with variance σ = 0.1 to each nonzero entry of the nomi-
nal matrix of splitting ratios, and then renormalizing the latter to obtain again
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a row-stochastic matrix. The average of the 100 instances of the cost V (Em)
(namely, the estimator variance) is mcost = 6.93 with variance σcost = 0.28246.
The number of chosen cells varies between seven and nine. In Figure 14 we plot
the distribution of cell usage. The figure is to be interpreted as follows: Four
cells are essentially always used. Six cells are used between half and two-thirds
of the times. Four other cells are used sporadically, the rest are never used. This
suggests that there is a bulk of around ten cells that is particularly informa-
tive for this grid-like structure with splitting ratios specified in the manuscript.
Whether this is a generic feature of the Virtual Variance algorithm, or a con-
sequence of the very regular pattern of the chosen grid will be investigated in
future research.

References
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Figure 1: Flowchart of the paper’s contributions: Optimal Sensor Placement for sensor
network design, Offline Fundamental Diagram Calibration, and Online Density Estimation.
Curvy blocks represent information provided to the three procedures.
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Figure 2: Example of partitioning of a road in cells and of traffic splitting. Vehicles in cell e
can continue on the same lane on cell k, change lane on cell j, or exit the road it is travelling
on, for example taking an offramp starting on cell l, with splitting ratios Rej , Rek and Rel,
respectively, satisfying Rej +Rek +Rel = 1. Similarly for i. The graph topology is captured
by a graph where cells correspond to edges and nodes represent the intersection between cells.
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Figure 3: Roads are partitioned in cells and FCD segments. The depicted FCD segment (in
dot-dashed line) includes, among others, the three cells e, j and k, so that s(e) = s(j) = s(k).
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Figure 4: Comparison of speed measurements from sensors and Floating Car Data at location
Taillat on Grenoble Rocade Sud, 24/04/2014.
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Figure 5: Comparison of speed measurements from sensors and Floating Car Data for all cells
on the main line of the Grenoble Rocade Sud at 09:00, 24/04/2014.
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Figure 7: The regular grid network used in the numerical experiment. The green dots cor-
respond to the 8 cells selected by the Virtual Variance algorithm with η = 2 and κ = 20.
The red dots correspond to cells selected via exhaustive search when the number of possible
sensors is 8.
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for each number of sensors) and via virtual variance algorithm (circle).
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Graph notation and modeling parameters
V set of junctions E set of cells
Ri set of onramps Ro set of offramps
E−e set of cells preceding cell e E+

e set of cells following cell e
T sampling time t time index
`e length of e `ave average vehicular length
Rek splitting ratio from e to k L̄ non-onramp sublaplacian
λe inflow into onramp e vlimit

e speed limit on e
de(·) demand function on e se(·) supply function on e
ϕe Fundamental Diagram on e ρjam jam density
vff
e freeflow speed on e ρce critical density on e
Ce flow capacity on e ωe wave speed on e
Variables and measurements
ρe density on e oe occupancy on e
f in
e inflow in e fout

e outflow from e
ve speed on e fe cumulative outflow from e
ϕme flow measurement on e ρme density measurement on e
vms speed meas. on segment s vme speed measurement on e
ρ̂e density estimate on e ρ̃e density pseudo-meas. on e

f̂ in
e inflow estimate on e ˆfout

e outflow estimate on e
Algorithms parameters
Γ density observer gain γ data fitting parameter
Em cells equipped with sensors Vp(Em) performance of sensors in Em
c cost of a sensor Σee inverse of Virtual Variance on e
η total variance parameter κ homogeneity parameter

Table 1: List of symbols.

Scenario η
optimal

# sensors
Vp(Em) V (Em)

Fix 17 3.8161 20.8161
Unconstrained 0.2 14 3.6867 17.6867
Unconstrained 1 10 5.1732 15.1732
Constrained, # ≤ 12 0.32 12 4.4972 16.4972

Table 2: Results of the four considered scenarios.
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δ : aρ(t, e) ≤ δ δ : aϕ(t, e) ≤ δ
Max %(t, e): 75% 90% 95% 75% 90% 95%
14-04-01 -Tue. 10.4317 19.4079 32.1121 2.4901 3.9824 4.8838
14-04-02 -Wed. 10.058 16.8625 23.4218 2.504 4.0508 4.9457
14-04-03 -Thu. 14.214 39.0677 68.6383 2.401 3.8752 4.765
14-04-04 -Fri. 13.3274 35.6493 67.2034 2.5477 4.0648 4.9543
14-04-05 -Sat. 7.6795 11.6078 14.9678 2.5927 4.138 5.0691
14-04-06 -Sun. 5.6087 7.8254 9.5749 2.1949 3.5373 4.4432
14-04-07 -Mon. 8.8653 14.9656 21.5993 2.2046 3.6666 4.6213
14-04-08 -Tue. 9.4236 16.1212 24.1236 2.134 3.5462 4.4686
14-04-09 -Wed. 10.7057 21.1416 34.5579 2.1496 3.5922 4.5308
14-04-10 -Thu. 10.3578 21.7147 38.2241 2.1529 3.5922 4.5125
14-04-11 -Fri. 10.1152 19.0844 32.2754 1.8778 3.2413 4.1324
14-04-12 -Sat. 5.7334 8.4439 11.1728 2.1883 3.5934 4.5191
14-04-14 -Mon. 9.5789 18.4657 31.2646 2.1349 3.5506 4.5182
14-04-15 -Tue. 11.2095 18.9568 32.7132 2.0675 3.6966 4.6661
14-04-16 -Wed. 12.9045 28.6587 46.8904 2.2881 3.9458 4.9609
14-04-17 -Thu. 17.482 43.2213 62.2287 2.0069 3.5265 4.4383
14-04-18 -Fri. 14.8889 33.0979 48.2054 2.3525 4.0964 5.1424
14-04-19 -Sat. 6.3368 9.8998 12.8105 2.3955 3.9664 4.8847
14-04-20 -Sun. 5.1875 7.1362 8.7217 2.0231 3.2701 4.0776
14-04-21 -Mon. 5.4528 7.433 8.9298 2.1513 3.4238 4.2284
14-04-22 -Tue. 12.0275 26.3377 43.2225 2.2019 3.7727 4.7825
14-04-23 -Wed. 12.9473 32.5637 49.0958 2.0893 3.4793 4.4004
14-04-24 -Thu. 18.222 42.5245 59.2349 2.0391 3.3786 4.282
14-04-25 -Fri. 24.4905 49.1946 65.6698 2.0058 3.3379 4.244
14-04-26 -Sat. 6.0991 8.7496 10.8339 1.922 3.3109 4.1612
14-04-27 -Sun. 5.4655 7.4201 8.93 2.1341 3.3638 4.1301
14-04-28 -Mon. 13.8312 35.9539 57.5468 1.9 3.3551 4.2986
14-04-29 -Tue. 9.7221 17.4268 25.9634 2.2904 3.7966 4.714
14-04-30 -Wed. 12.736 29.0402 47.1253 2.2473 3.7883 4.7363
Average 10.8656 22.3439 34.3882 2.1961 3.6531 4.5694

Table 3: Quantitative measurement of the performance of the proposed algorithm. Maximum
magnitude of the absolute error on densities (left) and flows (right) on 75%, 90% and 95% of
the pairs (cell, time) between 07:00 and 19:00.
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δ : aρ(t, e) ≤ δ δ : aϕ(t, e) ≤ δ
Max %(t, e): 75% 90% 95% 75% 90% 95%
14-04-01 -Tue. 7.7399 14.6455 23.9397 1.6519 2.8907 3.6042
14-04-02 -Wed. 7.6856 13.4467 19.397 1.6426 2.9 3.7202
14-04-03 -Thu. 9.6351 24.9891 46.7688 1.6201 2.8768 3.5025
14-04-04 -Fri. 8.9069 23.5012 46.4841 1.6842 2.9369 3.6128
14-04-05 -Sat. 5.7186 9.5516 12.4627 1.7893 3.0004 3.6258
14-04-06 -Sun. 4.2724 6.0777 8.0227 1.6371 2.3554 2.9572
14-04-07 -Mon. 6.204 11.438 16.8194 1.2662 1.9248 2.5075
14-04-08 -Tue. 6.6256 12.2475 18.7567 1.1452 1.78 2.2611
14-04-09 -Wed. 7.5039 15.2545 27.0917 1.2161 1.8343 2.3119
14-04-10 -Thu. 7.0607 14.528 28.1098 1.14 1.808 2.3011
14-04-11 -Fri. 6.5122 14.6898 26.9997 1.192 1.8202 2.4124
14-04-12 -Sat. 4.1982 6.0592 8.0033 1.3212 1.9123 2.3261
14-04-14 -Mon. 6.6178 12.9569 23.4577 1.2233 1.8117 2.2992
14-04-15 -Tue. 8.2876 15.1747 26.9744 1.3578 2.2702 3.9263
14-04-16 -Wed. 9.1428 21.1292 36.7874 1.325 2.317 3.6409
14-04-17 -Thu. 11.6003 32.2321 50.8533 1.3217 2.1836 3.4486
14-04-18 -Fri. 10.3143 25.1777 38.3014 1.2932 2.3882 4.1402
14-04-19 -Sat. 4.6936 7.5892 11.6674 1.5063 2.2413 3.4459
14-04-20 -Sun. 4.0264 5.4524 6.7887 1.4632 1.969 2.4225
14-04-21 -Mon. 4.2807 5.822 7.1171 1.5684 2.0967 2.6073
14-04-22 -Tue. 8.4038 19.0648 35.9572 1.2548 1.9906 2.8319
14-04-23 -Wed. 8.3312 23.6232 40.2403 1.1912 1.8248 2.3789
14-04-24 -Thu. 10.1973 31.1337 45.6909 1.1822 1.8056 2.3106
14-04-25 -Fri. 14.1 37.9687 49.7985 1.1321 1.7656 2.3675
14-04-26 -Sat. 4.2046 6.0036 7.7334 1.3413 1.891 2.2467
14-04-27 -Sun. 4.3004 5.6931 6.7654 1.5965 2.0499 2.3881
14-04-28 -Mon. 9.0015 23.7898 43.682 1.2556 1.9867 2.834
14-04-29 -Tue. 6.8045 13.6265 20.584 1.2544 1.9524 2.7057
14-04-30 -Wed. 8.5286 21.3739 37.2919 1.2532 1.9506 2.7559
Average 7.4103 16.3531 26.6395 1.3754 2.1564 2.8929

Table 4: Quantitative measurement of the performance of the proposed algorithm. Maximum
magnitude of the absolute error on densities (left) and flows (right) on 75%, 90% and 95%
of the pairs (cell, time) between 07:00 and 19:00 downsampled and averaged at a rate of one
datum every 5 minutes.
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