
HAL Id: hal-01281717
https://hal.archives-ouvertes.fr/hal-01281717v6

Submitted on 23 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Does Channel-Output Feedback Enlarge the
Capacity Region of the Interference Channel?

Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie Gorce

To cite this version:
Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie Gorce. When Does Channel-Output
Feedback Enlarge the Capacity Region of the Interference Channel?. [Research Report] RR-8862,
INRIA Grenoble - Rhône-Alpes. 2016, pp.34. �hal-01281717v6�

https://hal.archives-ouvertes.fr/hal-01281717v6
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

62
--

FR
+E

N
G

RESEARCH
REPORT
N° 8862
March 2016

Project-Team Socrate

When Does
Channel-Output
Feedback Enlarge the
Capacity Region of the
Interference Channel?
Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie Gorce





RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

When Does Channel-Output Feedback Enlarge
the Capacity Region of the Interference

Channel?

Victor Quintero, Samir M. Perlaza, Iñaki Esnaola, Jean-Marie
Gorce

Project-Team Socrate

Research Report n° 8862 — March 2016 — 31 pages

Abstract: In this research report, the benefits of channel-output feedback in the Gaussian
interference channel (G-IC) are studied under the effect of additive Gaussian noise. Using a linear
deterministic (LD) model, the signal to noise ratios (SNRs) in the feedback links beyond which
feedback plays a significant role in terms of increasing the individual rates or the sum-rate are
approximated. The relevance of this work lies on the fact that it identifies the feedback SNRs
for which in any G-IC one of the following statements is true: (a) Feedback does not enlarge
the capacity region; (b) Feedback enlarges the capacity region and the sum-rate is higher than the
largest sum-rate without feedback; and (c) Feedback enlarges the capacity region but no significant
improvement is observed in the sum-rate.
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Quand est-ce que la rétro-alimentation améliore la region de
capacité du canal à interférences?

Résumé : Dans ce rapport, l’impact du bruit additif sur les liens de rétro-alimentation dans le
canal Gaussien à interférences est étudié en utilisant des approximations linéaires déterministes.
Sous ces hypothèses, la valeur exacte du rapport signal à bruit (RSB) sur le lien de rétro-
alimentation, au-delà de laquelle l’approximation linéaire déterministe de la région de capacité
est améliorée, est caractérisée en fonction des RSB et des rapports interférences sur bruit (RIB).
En général, trois scénarios peuvent être observés selon les valeurs exactes des RSB sur les liens
directs et des RIBs: (a) L’utilisation de la rétro-alimentation est inutile pour améliorer la région
de capacité; (b) L’utilisation de la rétro-alimentation améliore la région de capacité et la somme
des taux de transmission; et (c) L’utilisation de la rétro-alimentation améliore la région de
capacité mais la somme des taux de transmission n’est pas ameliorée.

Mots-clés : canal à interférences, rétroalimentation dégradée, Région de Capacité.
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1 Introduction
The two-user Gaussian interference channel (G-IC) is the simplest channel model that captures
the impairments brought by mutual interference into point-to-point communications subject
to additive Gaussian noise. The interference channel (IC), in its most general form, was first
proposed by Claude E. Shannon in [1]. The G-IC is a particular case that has been studied
by several authors, see for instance [2–12] and references therein. However, despite this active
research, the capacity region of the G-IC is characterized only in some special cases [3]. In
general, the capacity region is not known exactly and only approximations to within a constant
number of bits per channel-use per user are known [8].

On the other hand, channel-output feedback, which consists in letting a transmitter observe
the channel-output at its intended receiver, was one of the first models for studying two-way
point-to-point communications [13]. A G-IC with channel-output feedback is a model in which
the backward direction (from receivers to transmitters) is exclusively used to let the transmitters
observe the channel-output at the receivers with the goal of increasing the information rate or
the reliability in the forward direction (from transmitters to receivers). Note that the backward
direction may also be an IC since the point-to-point feedback links might be subject to mutual
interference. There are several special cases of channel-output feedback in the G-IC. First,
the case in which the observation of the channel-output from the intended receiver is noiseless
corresponds to perfect channel-output feedback (POF) [14]. Second, the case in which such
observation is noisy corresponds to noisy channel-output feedback (NOF) [15, 16]. Third, the
case in which such observation is a linear combination of the channel-outputs from both receivers
subject to additive noise corresponds to wireless channel-output feedback (WOF) [17]. The most
general formulation is referred to as general channel-output feedback (GOF) [18–21]. Other
types of feedback, including a channel-output processing, e.g., signal decoding, are known as
rate-limited feedback (RLF) [22].

This work focuses in the case of G-IC with NOF (G-IC-NOF). One of the main motivations to
focus on the G-IC-NOF stems from the recent findings regarding the impact of additive noise in
the feedback links. In particular, in [15] and [16], it is shown that additive noise in the feedback
links can dramatically change the number of generalized degrees of freedom (G-DoF) of the G-IC.
In particular, one of the main benefits of feedback is that the number of G-DoF with perfect
feedback increases monotonically with the interference to noise ratio (INR) in the very strong
interference regime. However, in the presence of additive Gaussian noise in the feedback links,
the number of G-DoF is bounded [15,16].

From the discussion above a relevant question arises: “When does channel-output feedback
enlarge the capacity region of the G-IC?” This paper provides the answer when feedback links
are impaired by noise and free of mutual interference, i.e., G-IC-NOF. The desired answer is of the
form: “Implementing channel-output feedback in transmitter-receiver i enlarges the capacity region
if the feedback SNR is bigger than SNR∗i ”, with i ∈ {1, 2} and fixed SNRs and INRs in the forward
G-IC. Note that the description of the capacity region of the G-IC-NOF in [16] does not provide
an answer of the form mentioned above. An answer in the desired form requires some calculations
that, despite the conceptual simplicity of this analysis, are long and tedious. More specifically,
the value SNR∗i is obtained by comparing the capacity region of the linear deterministic IC
(LD-IC) in [8] and the capacity region of the LD-IC with noisy channel-output feedback (LD-IC-
NOF) in [16] to identify the feedback parameters that ensure strict inclusion of the former into
the latter. After, using the fact that the capacity region of the LD-IC-NOF approximates the
capacity region of the G-IC-NOF, an approximation of SNR∗i is obtained. Solving this problem
leads to a handful of equally relevant byproducts to determine whether or not implementing
feedback in one of the transmitter-receiver pairs increases any of the individual rates or the sum-

RR n° 8862
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Figure 1: Gaussian interference channel with noisy channel-output feedback at channel use n.

rate. That is, answers to the following questions: When does feedback in transmitter-receiver i
allow achieving a rate R1, such that for at least one R2, all rate pairs (R′1, R2) achievable without
feedback satisfy R1 > R′1? ; When does feedback in transmitter-receiver i allow achieving a rate
R2, such that for at least one R1, all rate pairs (R1, R

′
2) achievable without feedback satisfies

R2 > R′2? ; or When does feedback in transmitter-receiver i allow achieving a higher sum-rate
than the maximum sum-rate achievable without feedback?, with i ∈ {1, 2} and fixed SNRs and
INRs in the forward G-IC.

The answers to the questions above provide a lot of engineering insights about the benefits of
feedback in the G-IC. For instance, all the cases in which feedback, even perfect channel-output
feedback, is useless for increasing an individual rate or the sum-rate are identified. Similarly,
this work provides guidelines for choosing in which of the point-to-point links feedback should
be implemented for increasing either an individual rate or the sum-rate. Interestingly, in some
cases, implementing feedback in only one of the transmitter-receiver pairs, despite the additive
noise, turns out to be as beneficial as perfect channel-output feedback in both links.

2 Channel Models

2.1 Gaussian Interference Channels
Consider the two-user G-IC-NOF depicted in Figure 1. Transmitter i, with i ∈ {1, 2}, com-
municates with receiver i subject to the interference produced by transmitter j, with j ∈
{1, 2}\{i}. There are two independent and uniformly distributed messages, Wi ∈ Wi, with
Wi = {1, 2, . . . , 2NRi}, where N denotes the fixed block-length in channel uses and Ri is the
transmission rate in bits per channel use. At each block, transmitter i sends the codeword
Xi = (Xi,1, Xi,2, . . . , Xi,N )

T ∈ Ci ⊆ XN
i , where Xi and Ci are respectively the channel-input al-

phabet and the codebook of transmitter i.
The channel coefficient from transmitter i to receiver i is denoted by

−→
h ii, the channel co-

efficient from transmitter j to receiver i is denoted by hij ; and the channel coefficient from
channel-output i to transmitter i is denoted by

←−
h ii. All channel coefficients are assumed to be

non-negative real numbers. At a given channel use n ∈ {1, 2, . . . , N}, the channel output at

RR n° 8862
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receiver i is denoted by
−→
Y i,n. During channel use n, the input-output relation of the channel

model is given by
−→
Y i,n=

−→
h iiXi,n + hijXj,n +

−→
Z i,n, (1)

where
−→
Z i,n is a real Gaussian random variable with zero mean and unit variance that represents

the noise at the input of receiver i. Let d > 0 be the finite feedback delay measured in channel
uses. At the end of channel use n, transmitter i observes

←−
Y i,n, which consists of a scaled and

noisy version of
−→
Y i,n−d. More specifically,

←−
Y i,n=

®←−
Z i,n for n∈ {1,2, . . . , d}
←−
h ii
−→
Y i,n−d+

←−
Z i,n, for n∈ {d+1,d+2, . . . ,N},

(2)

where
←−
Z i,n is a real Gaussian random variable with zero mean and unit variance that represents

the noise in the feedback link of transmitter-receiver pair i. The random variables
−→
Z i,n and←−

Z i,n are independent and identically distributed. In the following, without loss of generality,
the feedback delay is assumed to be one channel use, i.e., d = 1. The encoder of transmitter i
is defined by a set of deterministic functions f (1)i , f

(2)
i , . . . , f

(N)
i , with f (1)i :Wi → Xi and for all

n ∈ {2, 3, . . . , N}, f (n)i :Wi ×Rn−1 → Xi, such that

Xi,1=f
(1)
i (Wi) , (3a)

and for all n ∈ {2, 3, . . . , N},

Xi,n=f
(n)
i

Ä
Wi,
←−
Y i,1,

←−
Y i,2, . . . ,

←−
Y i,n−1

ä
. (3b)

The components of the input vector Xi are real numbers subject to an average power con-
straint:

1

N

N∑

n=1

E
(
X2

i,n

)
≤ 1, (4)

where the expectation is taken over the joint distribution of the message indicesW1, W2, and the
noise terms, i.e.,

−→
Z 1,
−→
Z 2,
←−
Z 1, and

←−
Z 2. The dependence of Xi,n on W1, W2, and the previously

observed noise realizations is due to the effect of feedback as shown in (2) and (3).
Hence, the decoder of receiver i is defined by a deterministic function ψi : RN

i →Wi. At

the end of the communication, receiver i uses the vector
(−→
Y i,1,

−→
Y i,2, . . .,

−→
Y i,N

)T
to obtain an

estimate of the message index:

Ŵi=ψi

Ä−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N

ä
, (5)

where Ŵi is an estimate of the message index. The decoding error probability in the two-user
G-IC-NOF, denoted by Pe(N), is given by

Pe(N)=max

(
Pr
Ä”W1 6= W1

ä
,Pr
Ä”W2 6= W2

ä)
. (6)

The definition of an achievable rate pair (R1, R2) ∈ R2
+ follows:

RR n° 8862
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Definition 1 (Achievable Rate Pairs) A rate pair (R1, R2) ∈ R2
+ is achievable if there exists

at least one pair of codebooks in XN
1 and in XN

2 with codewords of length N , the corresponding
encoding functions f (1)1 , f

(2)
1 , . . . , f

(N)
1 and f

(1)
2 , f

(2)
2 , . . . , f

(N)
2 , and the decoding functions ψ1

and ψ2, such that the decoding error probability can be made arbitrarily small by letting the
block-length N grow to infinity.

The set of all achievable information rate pairs (R1, R2) is known as the information capacity
region. The capacity region of a G-IC-NOF is described by six parameters:

−−→
SNRi, INRij and←−−

SNRi, with i ∈ {1, 2} and j ∈ {1, 2}\{i}, which are defined as follows:

−−→
SNRi=

−→
h 2

ii, (7)
INRij=h

2
ij , and (8)

←−−
SNRi=

←−
h 2

ii

Ä−→
h 2

ii + 2
−→
h iihij + h2ij + 1

ä
. (9)

Given fixed parameters
−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1, and

←−−
SNR2, the capacity region of

the G-IC-NOF is approximated to within a constant number of bits by Theorem 4 in [16].

2.2 Linear Deterministic Interference Channels
Consider the two-user LD-IC-NOF with parameters −→n 11, −→n 22, n12, n21, ←−n 11 and ←−n 22 depicted
in Fig. 2. Parameter −→n ii represents the number of bit-pipes between transmitter i and receiver
i; parameter nij represents the number of bit-pipes between transmitter j and receiver i; and
parameter←−n ii represents the number of bit-pipes between receiver i and transmitter i (feedback).

At transmitter i, the channel-input Xi,n during channel use n, with n ∈ {1, 2, . . . , N}, is a

q-dimensional binary vector Xi,n =
Ä
X

(1)
i,n , X

(2)
i,n , . . . , X

(q)
i,n

äT
, where

q = max (−→n 11,
−→n 22, n12, n21) , (10)

and N is the block-length. At receiver i, the channel-output
−→
Y i,n during channel use n is also a

q-dimensional binary vector
−→
Y i,n =

Ä−→
Y

(1)
i,n,
−→
Y

(2)
i,n, . . . ,

−→
Y

(q)
i,n

äT
. Let S be a q×q lower shift matrix

of the form:

S =




0 0 0 · · · 0
1 0 0 · · · 0

0 1 0 · · ·
...

...
. . . . . . . . . 0

0 · · · 0 1 0



. (11)

The input-output relation during channel use n is given by
−→
Y i,n=Sq−−→n iiXi,n + Sq−nijXj,n, (12)

and the feedback signal
←−
Y i,n available at transmitter i at the end of channel use n satisfies

←−
Y i,n=S(max(−→n ii,nij)−←−n ii)

+−→
Y i,n−d, (13)

where d is a finite delay, additions and multiplications are defined over the Galois Field of two
elements GF(2), and (·)+ is the positive part operator.

RR n° 8862
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Figure 2: Two-user linear deterministic interference channel with noisy channel-output feedback.
The bit-pipe line number 1 represents the most significant bit.

Without any loss of generality, the feedback delay is assumed to be equal to one channel
use. Let Wi be the set of message indices of transmitter i. Transmitter i sends the message
index Wi ∈ Wi by sending the codeword Xi = (Xi,1,Xi,2, . . . ,Xi,N ), which is a binary q ×N
matrix. The encoder of transmitter i can be modeled as a set of deterministic mappings f (1)i ,
f
(2)
i , . . . , f

(N)
i , with f (1)i :Wi → {0, 1}q and for all n ∈ {2, 3, . . . , N}, f (n)i :Wi×{0, 1}q×(n−1) →

{0, 1}q, such that

Xi,1=f
(1)
i

(
Wi

)
(14a)

and for all n ∈ {2, 3, . . . , N},

Xi,n=f
(n)
i

(
Wi,
←−
Y i,1,

←−
Y i,2, . . . ,

←−
Y i,n−1

)
. (14b)

The decoder of receiver i is defined by a deterministic function ψi : {0, 1}q×N →Wi. At the end
of the communication, receiver i uses the sequence

Ä−→
Y i,1,

−→
Y i,2, . . . ,

−→
Y i,N

ä
to obtain an estimate

Ŵi of the message indexWi. The decoding error probability in the two-user LD-IC-NOF, denoted
by Pe(N), is given by (6).

A rate pair (R1, R2) ∈ R2
+ is said to be achievable if it satisfies Definition 1. The set of all

achievable information rate pairs (R1, R2) is known as the information capacity region and it is
characterized by Theorem 1 in [16].

2.3 Connections between Linear Deterministic and Gaussian Interfer-
ence Channels

The capacity region of the G-IC-NOF with parameters
−−→
SNR1,

−−→
SNR2, INR12, INR21,

←−−
SNR1 and←−−

SNR2 can be approximated by the capacity region of an LD-IC-NOF with parameters −→n ii =

RR n° 8862
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b 12 log2(
−−→
SNRi)c; nij = b 12 log2(INRij)c;←−n ii = b 12 log2(

←−−
SNRi)c, with i ∈ {1, 2} and j ∈ {1, 2}\{i}.

For instance, in the case without feedback, the capacity region of any G-IC with parameters−−→
SNR1 > 1,

−−→
SNR2 > 1, INR12 > 1 and INR21 > 1 is within 18.6 bits per channel use per user

of the capacity of an LD-IC with parameters −→n 11 = b 12 log2(
−−→
SNR1)c, −→n 22 = b 12 log2(

−−→
SNR2)c,

−→n 12 = b 12 log2(
−−→
INR21)c, and −→n 21 = b 12 log2(

−−→
INR21)c (Theorem 2 in [23]). More specifically,

if the capacity region of the G-IC and LD-IC without feedback are denoted by CG and CLD,
respectively, the following holds:

CLD⊆CG + (5, 5), and (15a)
CG ⊆CLD + (13.6, 13.6). (15b)

In a more general setting, for instance in the case with noisy channel-output feedback, the LD-IC
is known to be a close approximation of the G-IC [16]. In Section 5, this approximation is used to
simplify the identification of the cases in which channel-output feedback, even subject to additive
noise, enlarges the capacity region of the G-IC.

3 Main Results

3.1 Preliminaries
Let αi ∈ Q, with i ∈ {1, 2} and j ∈ {1, 2} \ {i} be defined as

αi =
nij
−→n ii

. (16)

For each transmitter-receiver pair i, there exist five possible interference regimes (IRs), as sug-
gested in [8]: the very weak IR (VWIR), i.e., αi 6 1

2 , the weak IR (WIR), i.e., 1
2 < αi 6 2

3 , the
moderate IR (MIR), i.e., 2

3 < αi < 1, the strong IR (SIR), i.e., 1 6 αi 6 2 and the very strong IR
(VSIR), i.e., αi > 2. The scenarios in which the desired signal is stronger than the interference
(αi < 1), namely the VWIR, the WIR, and the MIR, are referred to as the low-interference
regimes (LIRs). Conversely, the scenarios in which the desired signal is weaker than or equal to
the interference (αi > 1), namely the SIR and the VSIR, are referred to as the high-interference
regimes (HIRs).

The main results of this paper are presented using a set of events (Boolean variables) that
are determined by the parameters −→n 11,

−→n 22, n12, and n21. Given a fixed tuple (−→n 11, −→n 22, n12,
n21), the events are defined below:

E1 : α1 < 1 ∧ α2 < 1, (17)

E2,i : αi 6
1

2
∧ 1 6 αj 6 2, (18)

E3,i : αi 6
1

2
∧ αj > 2, (19)

E4,i :
1

2
< αi 6

2

3
∧ αj > 1, (20)

E5,i :
2

3
< αi < 1 ∧ αj > 1, (21)

E6,i :
1

2
< αi 6 1 ∧ αj > 1, (22)

E7,i : αi > 1 ∧ αj 6 1, (23)
E8,i : −→n ii > nji, (24)
E9 : −→n 11 +−→n 22 > n12 + n21, (25)

RR n° 8862
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E10,i : −→n ii +−→n jj > nij + 2nji, (26)
E11,i : −→n ii +−→n jj < nij . (27)

In the following, given an event, e.g. E8,i : −→n ii > nji, the notation ‹E8,i indicates −→n ii < nji;
the notation E8,i indicates −→n ii 6 nji (logical complement); and the notation Ě8,i indicates−→n ii > nji.

Combining the events (17)-(27), five main scenarios are identified:

S1,i: (E1 ∧ E8,i)∨(E2,i ∧ E8,i)∨(E3,i ∧ E8,i ∧ E9)∨(E4,i ∧ E8,i ∧ E9)∨(E5,i ∧ E8,i ∧ E9) , (28)

S2,i:
Ä
E3,i ∧ ‹E8,j ∧ E9

ä
∨
Ä
E6,i ∧ ‹E8,j ∧ E9

ä
∨
Ä‹E1 ∧ ‹E8,j

ä
, (29)

S3,i:
(
E1 ∧ E8,i

)
∨
(
E2,i ∧ E8,i

)
∨
(
E3,i ∧ Ě8,j ∧ E8,i

)
∨
(
E4,i ∧ Ě8,j ∧ E8,i

)

∨
(
E5,i ∧ Ě8,j ∧ E8,i

)
∨
(
E1 ∧ Ě8,j

)
∨ (E7,i) , (30)

S4 : E1 ∧ E8,1 ∧ E8,2 ∧ E10,1 ∧ E10,2, (31)
S5 : E1 ∧ E11,1 ∧ E11,2. (32)

For all i ∈ {1, 2}, the events S1,i, S2,i, S3,i, S4 and S5 exhibit the properties stated by the
following corollaries.

Corollary 1 For all (−→n 11,
−→n 22, n12, n21) ∈ N4, given a fixed i ∈ {1, 2}, only one of the events

S1,i, S2,i and S3,i is true.

Corollary 2 For all (−→n 11,
−→n 22, n12, n21) ∈ N4, when one of the events S4 or S5 holds true,

then the other necessarily holds false.

Note that Corollary 2 does not exclude the case in which both S4 and S5 are simultaneously
false.

Corollary 3 For all (−→n 11,
−→n 22, n12, n21) ∈ N4, when S4 holds true, then both S1,1 and S1,2

hold true; and when S5 holds true, then both S2,1 and S2,2 hold true.

3.2 Rate Improvement Metrics
Given a fixed tuple (−→n 11,

−→n 22, n12, n21), let C(←−n 11,
←−n 22) be the capacity region of an LD-IC with

noisy channel-output feedback with parameters ←−n 11 and ←−n 22. The maximum improvement of
the individual rates R1 and R2, denoted by ∆1(←−n 11,

←−n 22) and ∆2(←−n 11,
←−n 22), due to the effect

of channel-output feedback with respect to the case without feedback is

∆1(←−n 11,
←−n 22)= max

0<R2<R∗2

{
sup

(R1,R2)∈C(←−n 11,
←−n 22)

R1 − sup
(R†1,R2)∈C(0,0)

R†1

}
and (33)

∆2(←−n 11,
←−n 22)= max

0<R1<R∗1

{
sup

(R1,R2)∈C(←−n 11,
←−n 22)

R2 − sup
(R1,R

†
2)∈C(0,0)

R†2

}
, (34)

with

R∗1= sup
(r1,r2)∈C(0,0)

r1 and (35)

R∗2= sup
(r1,r2)∈C(0,0)

r2. (36)
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Note that for a fixed i ∈ {1, 2}, ∆i(
←−n 11,

←−n 22) > 0 if and only if it is possible to achieve a
rate pair (R1, R2) with channel-output feedback such that Ri is higher than the maximum rate
achievable by transmitter-receiver i without feedback when the rate of transmitter-receiver pair
j is fixed at Rj . In the following, given fixed parameters ←−n 11 and ←−n 22, the statement “the rate
Ri is improved by using feedback” is used to indicate that ∆i(

←−n 11,
←−n 22) > 0.

Alternatively, the maximum improvement of the sum-rate Σ(←−n 11,
←−n 22) with respect to the

case without feedback is

Σ(←−n 11,
←−n 22)= sup

(R1,R2)∈C(←−n 11,
←−n 22)

{
R1 +R2

}
− sup

(R†1,R
†
2)∈C(0,0)

{
R†1 +R†2

}
. (37)

Note that Σ(←−n 11,
←−n 22) > 0 if and only if there exists a rate pair with feedback whose sum

is higher than the maximum sum-rate achievable without feedback. In the following, given fixed
parameters ←−n 11 and ←−n 22, the statement “the sum-rate is improved by using feedback” is used to
imply that Σ(←−n 11,

←−n 22) > 0.
In the following, when feedback is exclusively used by transmitter-receiver pair i, i.e.,←−n ii > 0

and ←−n jj = 0, then the maximum improvement of the individual rate of transmitter-receiver k,
with k ∈ {1, 2}, and the maximum improvement of the sum-rate are denoted by ∆k(←−n ii) and
Σ(←−n ii), respectively. Hence, this notation ∆k(←−n ii) replaces either ∆k(←−n 11, 0) or ∆k(0,←−n 22),
when i = 1 or i = 2, respectively. The same holds for the notation Σ(←−n ii) that replaces Σ(←−n 11, 0)
or Σ(0,←−n 22), when i = 1 or i = 2, respectively.

3.3 Enlargement of the Capacity Region
Given fixed parameters (−→n 11,

−→n 22, n12, n21), i ∈ {1, 2}, and j ∈ {1, 2} \ {i}, the capacity region
of a two-user LD-IC, when feedback is available only at transmitter-receiver pair i, i.e., ←−n ii > 0
and ←−n jj = 0, is denoted by C (←−n ii) instead of C (←−n 11, 0) or C (0,←−n 22), when i = 1 or i = 2,
respectively. Following this notation, Theorem 1 identifies the exact values of ←−n ii for which the
strict inclusion C (0, 0) ⊂ C (←−n ii) holds for i ∈ {1, 2}.
Theorem 1 Let (−→n 11,

−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i}
and ←−n ∗ii ∈ N be fixed integers, with

←−n ∗ii =

®
max

Ä
nji, (

−→n ii − nij)+
ä

if S1,i = True
−→n jj + (−→n ii − nij)+ if S2,i = True.

(38)

Assume that S3,i = True. Then, for all ←−n ii ∈ N, C
(

0, 0
)

= C
(←−n ii

)
. Assume that either

S1,i = True or S2,i = True. Then, for all ←−n ii 6
←−n ∗ii, C

(
0, 0
)

= C
(←−n ii

)
and for all ←−n ii >

←−n ∗ii,
C
(

0, 0
)
⊂ C

(←−n ii

)
.

Proof: The proof of Theorem 1 is presented in Appendix A.
Theorem 1 shows that under event S3,i in (30), implementing feedback in transmitter-receiver

pair i, with any ←−n ii > 0 and ←−n jj = 0, does not enlarge the capacity region. Note that when
both E8,i and ‹E8,j hold false, then both S1,i and S2,i hold false, which implies that S3,i holds
true (Corollary 1). The following remark is a consequence of this observation.

Remark 1: A necessary but not sufficient condition for enlarging the capacity region by using
feedback in transmitter-receiver pair i is: there exists at least one transmitter able to send more
information bits to receiver i than to receiver j, i.e., −→n ii > nji (Event E8,i) or nij > −→n jj (Event‹E8,j).
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Alternatively, under events S1,i in (28) and S2,i in (29), the capacity region can be enlarged
when ←−n ii >

←−n ∗ii. It is important to highlight that in the cases in which feedback enlarges the
capacity region of the two-user LD-IC-NOF, that is, in events S1,1, S2,1, S1,2 or S2,2, for all
i ∈ {1, 2} and j ∈ {1, 2} \ {i}, the following is always true :

←−n ∗ii > (−→n ii − nij)+. (39)

Essentially, the inequality in (39) unveils a necessary but not sufficient condition to enlarge the
capacity region using channel-output feedback. This condition is that for at least one i ∈ {1, 2},
with j ∈ {1, 2} \ {i}, transmitter i decodes a subset of the information bits sent by transmitter
j at each channel use.

Another interesting observation is that the threshold ←−n ∗ii beyond which feedback is useful is
different under event S1,i in (28) and event S2,i in (29). In general when S1,i holds true, the
enlargement of the capacity region is due to the fact that feedback allows using interference as
side information [25]. Alternatively, when S2,i in (29) holds true, the enlargement of the capacity
region occurs as a consequence of the fact that some of the bits that cannot be transmitted directly
from transmitter j to receiver j, can arrive to receiver j via an alternative path: transmitter
j - receiver i - transmitter i - receiver j. Both scenarios, interference as side information and
alternative path, are extensively discussed in [14], [15], and [16].

3.4 Improvement of the Individual Rate Ri by Using Feedback in Link
i

Given fixed parameters (−→n 11,
−→n 22, n12, n21), and i ∈ {1, 2}, implementing channel-output feed-

back in transmitter-receiver pair i increases the individual rate Ri, i.e., ∆i(
←−n ii) > 0 for some

values of ←−n ii. Theorem 2 identifies the exact values of ←−n ii for which ∆i(
←−n ii) > 0.

Theorem 2 Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i}

and ←−n †ii ∈ N be fixed integers, with

←−n †ii = max
Ä
nji, (

−→n ii − nij)+
ä
. (40)

Assume that either S2,i = True or S3,i = True. Then, for all ←−n ii ∈ N, ∆i(
←−n ii) = 0. Assume

that S1,i = True. Then, when ←−n ii 6
←−n †ii, it holds that ∆i(

←−n ii) = 0; and when ←−n ii >
←−n †ii, it

holds that ∆i(
←−n ii) > 0.

Proof: The proof of Theorem 2 is presented in Appendix B.
Theorem 2 highlights that under events S2,i in (29) and S3,i in (30), the individual rate

Ri cannot be improved by using feedback in transmitter-receiver pair i, i.e., ∆i(
←−n ii) = 0.

Alternatively, under event S1,i in (28), the individual rate Ri can be improved, i.e., ∆i

(←−n ii

)
> 0,

whenever ←−n ii > max
Ä
nji, (

−→n ii − nij)+
ä
. Hence, given the definition of S1,i, the following

remark is relevant.
Remark 2: A necessary but not sufficient condition for ∆i

(←−n ii

)
> 0 is: the number of

bit-pipes from transmitter i to receiver i is higher than the number of bit-pipes from transmitter
i to receiver j, i.e., −→n ii > nji (Event E8,i)

3.5 Improvement of the Individual Rate Rj by Using Feedback in Link
i

Given fixed parameters (−→n 11,
−→n 22, n12, n21), i ∈ {1, 2}, and j ∈ {1, 2} \ {i}, implementing

channel-output feedback in transmitter-receiver pair i increases the individual rate Rj , i.e.,
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∆j(
←−n ii) > 0 for some values of ←−n ii. Theorem 3 identifies the exact values of ←−n ii for which

∆j(
←−n ii) > 0.

Theorem 3 Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i}

and ←−n ∗ii ∈ N given in (38), be fixed integers. Assume that S3,i = True. Then, for all ←−n ii ∈ N,
∆j(
←−n ii) = 0. Assume that either S1,i = True or S2,i = True. Then, when ←−n ii 6

←−n ∗ii, it holds
that ∆j(

←−n ii) = 0; and when ←−n ii >
←−n ∗ii, it holds that ∆j(

←−n ii) > 0.

Proof: The proof of Theorem 3 follows along the same lines of the proof of Theorem 2 in
Appendix B.

Theorem 3 shows that under event S3,i in (30), implementing feedback in transmitter-receiver
pair i does not bring any improvement on the rate Rj . This is in line with the results of Theorem
1. In contrast, under events S1,i in (28) and S2,i in (29), the individual rate Rj can be improved,
i.e., ∆j(

←−n ii) > 0 for all ←−n ii >
←−n ∗ii. From the definition of events S1,i and S2,i, the following

remark holds:
Remark 3: A necessary but not sufficient condition for ∆j

(←−n ii

)
> 0 is: there exists at least

one transmitter able to send more information bits to receiver i than to receiver j, i.e., −→n ii > nji
(Event E8,i) or nij > −→n jj (Event ‹E8,j).

It is important to highlight that under event S1,i, the threshold on ←−n ii for increasing the
individual rate Ri i.e., ←−n †ii, and Rj i.e., ←−n ∗ii, are identical, see Theorem 2 and Theorem 3. This
implies that in this case, the use of feedback in transmitter-receiver pair i, with←−n ii >

←−n †ii =←−n ∗ii,
benefits both transmitter-receiver pairs, i.e., ∆i(

←−n ii) > 0 and ∆j(
←−n ii) > 0. Under event S2,i,

using feedback in transmitter-receiver pair i, with ←−n ii >
←−n ∗ii, exclusively benefits transmitter-

receiver pair j, i.e., ∆i(
←−n ii) = 0 and ∆j(

←−n ii) > 0.

3.6 Improvement of the Sum-Rate
Given fixed parameters (−→n 11,

−→n 22, n12, n21), and i ∈ {1, 2}, implementing channel-output feed-
back in transmitter-receiver pair i increases the sum-rate, i.e., Σ(←−n ii) > 0 for some values of←−n ii. Theorem 4 identifies the exact values of ←−n ii for which Σ(←−n ii) > 0.

Theorem 4 Let (−→n 11,
−→n 22, n12, n21) ∈ N4 be a fixed tuple. Let also i ∈ {1, 2}, j ∈ {1, 2} \ {i}

and ←−n +
ii ∈ N be fixed integers, with

←−n +
ii =

®
max

Ä
nji, (

−→n ii − nij)+
ä

if S4 = True
−→n jj + (−→n ii − nij)+ if S5 = True.

(41)

Assume that S4 = False and S5 = False. Then, Σ(←−n ii) = 0 for all ←−n ii ∈ N. Assume that
S4 = True or S5 = True. Then, when←−n ii 6

←−n +
ii , it holds that Σ(←−n ii) = 0; and when←−n ii >

←−n +
ii ,

it holds that Σ(←−n ii) > 0.

Proof: The proof of Theorem 4 is presented in Appendix C.
Theorem 4 highlights a necessary but not sufficient condition for improving the sum-rate by
implementing feedback in transmitter-receiver pair i.

Remark 4: A necessary but not sufficient condition for observing Σ(←−n ii) > 0 is to satisfy
one of the following conditions: (a) both transmitter-receiver pairs are in LIR (Event E1); or (b)
both transmitter-receiver pairs are in HIR (Event E1).

Finally, it follows from Corollary 3 that when S4 or S5 holds true, with i ∈ {1, 2} and←−n ii >
←−n +

ii , aside from the fact that Σ(←−n ii) > 0, it also holds that ∆1(←−n ii) > 0 and ∆2(←−n ii) > 0.
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Figure 3: Capacity regions C(0, 0) (thick red line) and C(6, 0) (thin blue line), with −→n 11 = 7,−→n 22 = 7, n12 = 3, n21 = 5.

4 Examples
Example 1 Consider an LD-IC-NOF with parameters −→n 11 = 7, −→n 22 = 7, n12 = 3, and n21 = 5.

In Example 1, both S1,1 and S1,2 hold true. Hence, from Theorem 1, when ←−n 11 > 5 or←−n 22 > 3, there always exists an enlargement of the capacity region. More specifically, it follows
from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1, with←−n 11 > 5
or using feedback in transmitter-receiver pair 2, with ←−n 22 > 3, both individual rates can be
simultaneously improved, i.e., ∆1(←−n ii) > 0 and ∆2(←−n ii) > 0 with i = 1 or i = 2 respectively.
Alternatively, note that S4 holds true. Hence, it follows from Theorem 4 that using feedback
in transmitter-receiver pair 1, with ←−n 11 > 5 or using feedback in transmitter-receiver pair 2,
with ←−n 22 > 3, improves the sum-rate, i.e., Σ(←−n ii) > 0 with i = 1 or i = 2 respectively. These
conclusions are observed in Figure 3, for the case ←−n 11 = 6 and ←−n 22 = 0, where the capacity
regions C(0, 0) (thick red line) and C(6, 0) (thin blue line) are plotted. Note that, when←−n 11 = 6,
there always exist a rate pair (R′1, R

′
2) ∈ C (0, 0) and a rate pair (R1, R2) ∈ C(6, 0) \ C(0, 0)

such that R′1 < R1 and R′2 = R2 (Theorem 2). Simultaneously, there always exist a rate pair
(R′1, R

′
2) ∈ C (0, 0) and a rate pair (R1, R2) ∈ C(6, 0) \ C(0, 0) such that R′2 < R2 and R′1 = R1

(Theorem 3). Finally, note that for all rate pairs (R′1, R
′
2) ∈ C (0, 0) there always exists a rate

pair (R1, R2) ∈ C(6, 0), for which R1 +R2 > R′1 +R′2 (Theorem 4).

Example 2 Consider an LD-IC-NOF with parameters −→n 11 = 7, −→n 22 = 8, n12 = 6, and n21 = 5.

In Example 2, the events S1,1 and S1,2 hold true; and the events S4 and S5 hold false.
Hence, it follows from Theorem 4 that using feedback in either transmitter-receiver pair does not
improve the sum-rate, i.e., for all i ∈ {1, 2} and for all ←−n ii > 0, Σ(←−n ii) = 0. These conclusions
are observed in Figure 4, for the case ←−n 11 = 0 and ←−n 22 = 7, where the capacity regions C(0, 0)
(thick red line) and C(0, 7) (thin blue line) are plotted. From Example 2, it becomes evident that
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Figure 4: Capacity regions C(0, 0) (thick red line) and C(0, 7) (thin blue line), with −→n 11 = 7,−→n 22 = 8, n12 = 6, n21 = 5.

when S1,1 and S1,2 hold true, S4 and S5 do not necessarily hold true. That is, the improvements
on the individual rates, despite that they can be observed simultaneously, are not enough to
improve the sum-rate beyond what is already achievable without feedback.

Example 3 Consider an LD-IC-NOF with parameters −→n 11 = 5, −→n 22 = 1, n12 = 3, and n21 = 4.

In Example 3, both S2,1 in (29) and S3,2 in (30) hold true. Hence, it follows from Theorem 1
that the capacity region can be enlarged by using feedback in transmitter-receiver pair 1 when←−n 11 > 3, whereas using feedback in transmitter-receiver pair 2 is useless. More specifically, it
follows from Theorem 2 and Theorem 3 that using feedback in transmitter-receiver pair 1 does
not improve the individual rate R1 but R2, i.e., ∆1(←−n 11) = 0 and ∆2(←−n 11) > 0. Note also that
S4 and S5 hold false. Hence, it follows from Theorem 4 that using feedback in either transmitter-
receiver pair does not improve the sum-rate, i.e., Σ(←−n 11) = 0 and Σ(←−n 22) = 0. These conclusions
are observed in Figure 5, for the case ←−n 11 = 4 and ←−n 22 = 0, where the capacity regions C(0, 0)
(thick red line) and C(4, 0) (thin blue line) are plotted.

5 Implications on the Gaussian Interference Channel

Given a fixed tuple
Ä−−→
SNR1,

−−→
SNR2, INR12, INR21

ä
, let R(

←−−
SNR1,

←−−
SNR2) be the achievable re-

gion of the G-IC-NOF described by Theorem 2 in [16] with parameters
←−−
SNR1 and

←−−
SNR2; let

R(
←−−
SNR1,

←−−
SNR2) be the converse region of the G-IC-NOF described by Theorem 3 in [16] with

parameters
←−−
SNR1 and

←−−
SNR2; and let also C(←−−SNR1,

←−−
SNR2) be the capacity region of the G-IC-NOF

with parameters
←−−
SNR1 and

←−−
SNR2.

These regions satisfy the following inclusions:

R(
←−−
SNR1,

←−−
SNR2) ⊆ C(←−−SNR1,

←−−
SNR2) ⊆ R(

←−−
SNR1,

←−−
SNR2). (42)
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Figure 5: Capacity regions C(0, 0) (thick red line) and C(4, 0) (thin blue line), with −→n 11 = 5,−→n 22 = 1, n12 = 3, n21 = 4.

5.1 Improvement Metrics
In order to quantify the benefits of channel-output feedback in enlarging the achievable region
R(
←−−
SNR1,

←−−
SNR2) or the converse region R(

←−−
SNR1,

←−−
SNR2), consider the following improvement

metrics, which are similar to those defined in Sec. 3.2 for the LD-IC-NOF. The improvement
metrics on the individual rates are defined as

∆A
1 (
←−−
SNR1,

←−−
SNR2)= max

0<R2<R∗2

{
sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R1} − sup
(R†1,R2)∈R(0,0)

{R†1}
}
, (43)

∆A
2 (
←−−
SNR1,

←−−
SNR2)= max

0<R1<R∗1

{
sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R2} − sup
(R1,R

†
2)∈R(0,0)

{R†2}
}
, (44)

∆C
1 (
←−−
SNR1,

←−−
SNR2)= max

0<R2<R†2

{
sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R1} − sup
(R†1,R2)∈R(0,0)

{R†1}
}
, and (45)

∆C
2 (
←−−
SNR1,

←−−
SNR2)= max

0<R1<R†1

{
sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{R2} − sup
(R1,R

†
2)∈R(0,0)

{R†2}
}
, (46)

with

R∗1= sup
(r1,r2)∈R(0,0)

r1, (47)

R∗2= sup
(r1,r2)∈R(0,0)

r2, (48)

R†1= sup
(r1,r2)∈R(0,0)

r1, and (49)

R†2= sup
(r1,r2)∈R(0,0)

r2. (50)
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Alternatively, the maximum improvements of the sum-rate ΣA(
←−−
SNR1,

←−−
SNR2) and ΣC(

←−−
SNR1,

←−−
SNR2)

with respect to the case without feedback are

ΣA(
←−−
SNR1,

←−−
SNR2)= sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{
R1 +R2

}
− sup

(R†1,R
†
2)∈R(0,0)

{
R†1 +R†2

}
, and (51)

ΣC(
←−−
SNR1,

←−−
SNR2)= sup

(R1,R2)∈R(
←−−
SNR1,

←−−
SNR2)

{
R1 +R2

}
− sup

(R†1,R
†
2)∈R(0,0)

{
R†1 +R†2

}
. (52)

5.2 Approximate Thresholds on the Feedback SNRs
In Sec. 2.3, the connections between the LD-IC-NOF and the G-IC-NOF were discussed.
Using these connections, a G-IC with fixed parameters

Ä−−→
SNR1,

−−→
SNR2, INR12, INR21

ä
is ap-

proximated by an LD-IC with parameters −→n 11 = b 12 log2(
−−→
SNR1)c, −→n 22 = b 12 log2(

−−→
SNR2)c,

−→n 12 = b 12 log2(
−−→
INR21)c and −→n 21 = b 12 log2(

−−→
INR21)c. From this observation, the results from

Theorem 1 - Theorem 4 can used to determine the feedback SNR thresholds beyond which either
an individual rate or the sum-rate is improved in the original G-IC-NOF. The procedure con-
sists on using the equalities ←−n ii = b 12 log2

Ä←−−
SNRi

ä
c, with i ∈ {1, 2}. Hence, the corresponding

thresholds in the G-IC can be approximated by:
←−−
SNR∗i =22

←−n ∗ii (53a)
←−−
SNR†i =22

←−n †
ii and (53b)

←−−
SNR+

i =22
←−n+

ii . (53c)

When the corresponding LD-IC-NOF is such that its capacity region can be improved when←−n ii >
←−n ∗ii (Theorem 1), for a given i ∈ {1, 2}, it is expected that either the achievability or

converse regions of the original G-IC-NOF become larger when
←−−
SNRi >

←−−
SNR∗i . Similarly, when

the corresponding LD-IC-NOF is such that ∆i(
←−n ii) > 0 or ∆i(

←−n jj) > 0, it is expected to observe
an improvement on the individual rate Ri by either using feedback in transmitter-receiver pair
i, with

←−−
SNRi >

←−−
SNR†i or by using feedback in transmitter-receiver pair j, with

←−−
SNRj >

←−−
SNR∗j .

In the case of the sum-rate, when the corresponding LD-IC-NOF is such that Σ(←−n ii) > 0
using feedback in transmitter-receiver pair i, with ←−n ii >

←−n +
ii , (Theorem 4), it is expected to

observe an improvement on the sum-rate by using feedback in transmitter-receiver pair i, with←−−
SNRi >

←−−
SNR+

i . Finally, when no improvement in a given metric is observed in the LD-IC-NOF,
i.e., ∆1(←−n 11) = 0, ∆1(←−n 22) = 0, ∆2(←−n 11) = 0, ∆2(←−n 22) = 0, Σ(←−n 11) = 0, or Σ(←−n 22) = 0,
only a negligible improvement (if any) is observed in the corresponding metric of the G-IC-NOF.
For instance, when ∆1(←−n 11) = 0, it is expected that ∆C

1 (
←−−
SNR1, 0) < ε and ∆A

1 (
←−−
SNR1, 0) <

ε, with ε > 0 small. Similarly, when ∆2(←−n 11) = 0, it is expected that ∆C
2 (
←−−
SNR1, 0) < ε

and ∆A
2 (
←−−
SNR1, 0) < ε. Finally, when Σ(←−n 11) = 0, it is expected that ΣC(

←−−
SNR1, 0) < ε and

ΣA(
←−−
SNR1, 0) < ε.

5.3 Examples
The following examples highlight the relevance of the approximations in (53).

Example 4 Consider a G-IC with parameters
−−→
SNR1 = 44dB,

−−→
SNR2 = 44dB, INR12 = 20dB,

and INR21 = 33dB .
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Figure 6: Improvement metrics ∆A
i , ∆C

i , ΣA, and ΣC as functions of
←−−
SNR1 and

←−−
SNR2, with

i ∈ {1, 2}, for Example 5.

The linear deterministic approximation to the G-IC in Example 4 is the one presented in
Example 1. Hence, ←−n ∗11 = ←−n †11 = ←−n +

11 = 5 and ←−n ∗22 = ←−n †22 = ←−n +
22 = 3. This implies that
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Figure 7: Improvement metrics ∆A
i , ∆C

i , ΣA, and ΣC as functions of
←−−
SNR1 and

←−−
SNR2, with

i ∈ {1, 2}, for Example 4.
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←−−
SNR∗1 =

←−−
SNR†1 =

←−−
SNR+

1 = 30dB and
←−−
SNR∗2 =

←−−
SNR†2 =

←−−
SNR+

2 = 18dB.
Figure 7 shows that significant improvements on the metrics ∆A

i (
←−−
SNR1,

←−−
SNR2), ∆C

i (
←−−
SNR1,←−−

SNR2), ΣA(
←−−
SNR1,

←−−
SNR2) and ΣC(

←−−
SNR1,

←−−
SNR2) are obtained when the feedback SNRs are beyond

the corresponding thresholds. More importantly, negligible effects are observed when
←−−
SNR1 <←−−

SNR∗1 and
←−−
SNR2 <

←−−
SNR∗2.

Example 5 Consider a G-IC with parameters
−−→
SNR1 = 33dB,

−−→
SNR2 = 9dB, INR12 = 20dB, and

INR21 = 27dB.

The linear deterministic approximation to the G-IC in Example 5 is the one presented in
Example 3. Hence, ←−n ∗11 = 3, which implies that

←−−
SNR∗1 = 18dB. It follows from the LD-IC that

using feedback in transmitter-receiver pair 1 exclusively increases the individual rate R2. This is
observed in Figure 6c. Note that the improvement in the individual rate R2 for all

←−−
SNR1 <

←−−
SNR∗1

is negligible. Significant improvement is observed only beyond the threshold
←−−
SNR∗1.

Note also that using feedback in either transmitter-receiver pair does not improve the rate R1

in the LD-IC-NOF, i.e., ∆1(←−n 11) = ∆1(←−n 22) = 0. This is also verified in the G-IC-NOF by Fig-
ure 6a, Figure 6b, and Figure 6d, where ∆A

1

Ä
−100dB,

←−−
SNR2

ä
< 0.15 and ∆C

1

Ä
−100dB,

←−−
SNR2

ä
<

0.1.
Finally, note that using feedback in either transmitter-receiver pair does not increase the

sum-rate in the LD-IC-NOF, i.e., Σ(←−n 11) = Σ(←−n 22) = 0. This is also verified in the G-IC-NOF
by Figure 6e and Figure 6f, where ΣA

Ä←−−
SNR1,−100dB

ä
< 0.15, ΣC

Ä←−−
SNR1,−100dB

ä
< 0.05,

ΣA
Ä
−100dB,

←−−
SNR2

ä
< 0.15, and ΣC

Ä
−100dB,

←−−
SNR2

ä
< 0.05.

6 Generalized Degrees of Freedom
This section focuses on the analysis of the number of GDoF of the LD-IC-NOF for studying
the case in which feedback is simultaneously implemented in both transmitter-receiver pairs.
Moreover, the analysis is only performed for the symmetric case, i.e., −→n = −→n 11 = −→n 22, m =
n12 = n21, and ←−n = ←−n 11 = ←−n 22, with (−→n ,m,←−n ) ∈ N3. The results in Lemma 1 allow a more
general analysis of the GDoF, e.g., non-symmetric case. However, the symmetric case captures
some of the most important insights about how the capacity region is enlarged when feedback is
used in both transmitter-receiver pairs.

Essentially, given the parameters −→n ,m and←−n , with α = m−→n and β =
←−n−→n , the number of GDoF,

denoted by D(α, β), is the ratio between the symmetric capacity, i.e., Csym(−→n ,m,←−n ) = sup{R :
(R,R) ∈ C(−→n ,−→n ,m,m,←−n ,←−n )}, and the individual interference-free point-to-point capacity, i.e.,
−→n , when (−→n ,m,←−n )→ (∞,∞,∞) at constant ratios α = m−→n and β =

←−n−→n . More specifically, the
number of GDoF is

D(α, β) = lim−→n ,m,←−n→∞

Csym(−→n ,m,←−n )
−→n . (54)

Theorem 5 determines the number of GDoF for the two-user LD-IC-NOF.

Theorem 5 The number of GDoF for the two user symmetric LD-IC-NOF with parameters α
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Figure 8: Generalized Degrees of Freedom (GDoF) as a function of parameters α and β, with
0 6 α 6 3 and β ∈ { 35 , 45 , 65}, of the symmetric LD-IC-NOF. The plot without feedback is
obtained from [8] and the plot with perfect-output feedback is obtained from [14].

and β is given by

D(α, β)=min

(
max(1, α),max

Ä
1, β − (1− α)

+
ä
,

1

2

Ä
max(1, α) + (1− α)

+
ä
,

max
Ä
(1− α)

+
, α, 1− (max(1, α)− β)

+
ä
,

1

3

Å
max(1, α) + (1− α)

+
+ max

ÅÅ
1− α

ã+
, α, 1− (max (1, α)− β)

+
ã)

. (55)

Proof: The proof of Theorem 5 is presented in Appendix D.
The result in Theorem 5 can also be obtained from Theorem 1 in [15]. The following properties

are a direct consequence of Theorem 5.

Corollary 4 The number of GDoF for the two user symmetric LD-IC-NOF with parameters α
and β satisfies the following properties:

∀α ∈
ï
0,

2

3

ò
and β 6 1, max

Å
1

2
, β

ã
6 D(α, β) 6 1, (56a)

∀α ∈
ï
0,

2

3

ò
and β > 1, D(α, β) = 1− α

2
, (56b)

∀α ∈
Å

2

3
, 2

ò
and β ∈ [0,∞), D(α, 0) = D(α, β) = D(α,max(1, α)), (56c)

∀α ∈ (2,∞) and β > 1, 1 6 D(α, β) 6 min
(α

2
, β
)
, (56d)

∀α ∈ (2,∞) and β < 1, D(α, β) = 1. (56e)

Properties (56a) and (56b) highlight the fact that the existence of feedback links in the
symmetric LD-IC in the VWIR and WIR does not have any impact in the GDoF when β 6 1

2 ,
and the GDoF is equal to the case with perfect-output feedback when β > 1. Property (56c)
underlines that in the symmetric LD-IC in MIR and SIR, the number of GDoF is identical in
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both extreme cases: without feedback (β = 0) and with perfect-output feedback
(
β = max(1, α)

)
.

Finally, from (56d) and (56e), it follows that for observing an improvement in the GDoF of the
LD-IC-NOF in VSIR, the following condition must be met: β > 1. That is, the number of
bit-pipes in the feedback links must be strictly bigger than the number of bit-pipes in the direct
links.

Figure 8 shows the number of GDoF for the two user symmetric LD-IC-NOF for the case in
which 0 6 α 6 3 and β ∈ { 35 , 45 , 65}.

7 Conclusions
In this research report, for any 4-tuple (−→n 11,

−→n 22, n12, n21) ∈ N4, the exact values on the feedback
parameters ←−n 11 and ←−n 22 of the two-user LD-IC-NOF beyond which the capacity region can be
enlarged are characterized. That is, the exact values of ←−n 11 (resp. ←−n 22) for which C(0, 0) ⊂
C(←−n 11, 0)

(
resp. C(0, 0) ⊂ C(0,←−n 22)

)
holds with strict inclusion. Using these results from the LD

approximation, the SNRs in the feedback links beyond which feedback plays a significant role in
terms of increasing the individual rates or the sum-rate in the G-IC are identified. The relevance
of this work lies on the fact that it allows identifying a number of scenarios in any G-IC for
which one of the following statements is true: (a) Feedback does not enlarge the capacity region;
(b) Feedback enlarges the capacity region and the sum-rate is higher than the largest sum-rate
without feedback; and (c) Feedback enlarges the capacity region but no significant improvement
is observed in the sum-rate.
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Appendices
A Proof of Theorem 1: Enlargement of the Capacity Region

by Using Feedback in one Transmitter-Receiver Pair
The proof of Theorem 1 is obtained by comparing C(←−n 11, 0)

(
resp. C(0,←−n 22)

)
and C(0, 0), with

fixed parameters −→n 11, −→n 22, n12, and n21. More specifically, for each tuple
(−→n 11, −→n 22, n12,

n21
)
, the exact value ←−n ∗11 (resp ←−n ∗22) for which any ←−n 11 >

←−n ∗11 (resp ←−n 22 >
←−n ∗22) ensures

C(0, 0) ⊂ C(←−n 11, 0) (resp. C(0, 0) ⊂ C(0,←−n 22)) is calculated. This procedure is tedious and
repetitive, and thus, in this appendix only one combination of interference regimes is studied,
e.g., VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, that is,

α1 =
n12
−→n 11

6
1

2
and α2 =

n21
−→n 22

6
1

2
. (57)

Under conditions (57), it follows from Theorem 1 in [16] that C(0, 0) is the set of non-negative
rate pairs (R1, R2) that satisfy

R16
−→n 11 , θ1, (58a)

R26
−→n 22 , θ2, (58b)

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , θ3, (58c)
R1 +R26max (−→n 11 − n12, n21) + max (−→n 22 − n21, n12) , θ4, (58d)

2R1 +R26max (−→n 11, n21) +−→n 11 − n12 + max (−→n 22 − n21, n12) , θ5, (58e)
R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (n21,

−→n 11 − n12) , θ6. (58f)

Note that for all (−→n 11,
−→n 22, n12, n21,

←−n 22) ∈ N5 and ←−n 11 > max (−→n 11, n12), it follows that
C(←−n 11,

←−n 22) = C(max(−→n 11, n12),←−n 22). Hence, in the following, the analysis is restricted to the
following condition: ←−n 11 6 max (−→n 11, n12) . (59)

Under conditions (57) and (59), it follows from Theorem 1 in [16] that C(←−n 11, 0) is the set of
non-negative rate pairs (R1, R2) that satisfy

R16
−→n 11, (60a)

R26
−→n 22, (60b)

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , (60c)
R1 +R26max (−→n 11 − n12, n21,←−n 11) + max (−→n 22 − n21, n12) , θ7, (60d)

2R1 +R26max (−→n 11, n21) +−→n 11 − n12 + max (−→n 22 − n21, n12) , (60e)
R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (−→n 11 − n12, n21,←−n 11) , θ8. (60f)

When comparing C(0, 0) and C(←−n 11, 0), note that (58a), (58b), (58c), and (58e) are equivalent
to (60a), (60b), (60c), and (60e), respectively. Under these observations, the region C(←−n 11, 0) is
greater than the region C(0, 0) if at least one of the following conditions is true:

min(θ3, θ4, θ1 + θ2, θ5, θ6)<θ7<min(θ3, θ1 + θ2, θ5, θ8), (61a)
min(θ6, θ1 + 2θ2, θ2 + θ3, θ4 + θ2)<θ8<min (θ1 + 2θ2, θ2 + θ3, θ2 + θ7) . (61b)
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Condition (61a) implies that the active sum-rate bound in C(←−n 11, 0) is greater than the active
sum-rate bound in C(0, 0). Condition (61b) implies that the active weighted sum-rate bound on
R1 +2R2 in C(←−n 11, 0) is greater than the active weighted sum-rate bound on R1 +2R2 in C(0, 0).

To simplify the inequalities containing the operator max(·, ·) in (60) and (58), the following
4 cases are identified:

Case 1 :−→n 11 − n12 < n21 and −→n 22 − n21 < n12; (62)
Case 2 :−→n 11 − n12 < n21 and −→n 22 − n21 > n12; (63)
Case 3: −→n 11 − n12 >21 and −→n 22 − n21 < n12; and (64)
Case 4: −→n 11 − n12 > n21 and −→n 22 − n21 > n12. (65)

Case 1: Under assumptions (57) and (62), this case is not possible.
Case 2: Under assumptions (57) and (63), this case is possible.
Plugging (63) into (60) yields:

R1 +R26min (−→n 22 +−→n 11 − n12,max (−→n 11, n21) +−→n 22 − n21) , (66a)
R1 +R26max (n21,

←−n 11) +−→n 22 − n21, (66b)
R1 + 2R262−→n 22 − n21 + max (n21,

←−n 11) . (66c)

Plugging (63) into (58) yields:

R1 +R26
−→n 22, (67a)

R1 + 2R262−→n 22. (67b)

To simplify the inequalities containing the operator max(·, ·) in (66), the following 2 cases are
identified:

Case 2a :−→n 11 > n21; and (68)
Case 2b :−→n 11 6 n21. (69)

Case 2a: Plugging (68) into (66) yields:

R1 +R26
−→n 11 +−→n 22 − n21, (70a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (70b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (70c)

Comparing inequalities (70a) and (70b) with inequality (67a), it can be verified that min
(−→n 11 +

−→n 22 − n21, max
(
n21, ←−n 11

)
+ −→n 22 − n21

)
> −→n 22, i.e., condition (61a) holds, when ←−n 11 > n21.

Comparing inequalities (70c) and (67b), it can be verified that 2−→n 22 − n21 + max (n21,
←−n 11) >

2−→n 22, i.e., condition (61b) holds, when ←−n 11 > n21. Therefore, ←−n ∗11 = n21 under assumptions
(57), (59), (63), and (68).

Case 2b: Plugging (69) into (66) yields:

R1 +R26
−→n 22, (71a)

R1 +R26max (n21,
←−n 11) +−→n 22 − n21, (71b)

R1 + 2R262−→n 22 − n21 + max (n21,
←−n 11) . (71c)
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Comparing inequalities (71a) and (71b) with inequality (67a), it can be verified that min
(−→n 22,

max
(
n21, ←−n 11

)
+−→n 22−n21

)
= −→n 22, i.e., condition (61a) does not hold, for all ←−n 11 ∈ N. Com-

paring inequalities (71c) and (67b) it can be verified that 2−→n 22 − n21 + max (n21,
←−n 11) > 2−→n 22,

when ←−n 11 > n21, which implies that ←−n 11 > max (−→n 11, n12). However, under the assumptions
(57), (59), (63), and (69), the bounds (67b) and (71c) are not active. Hence, condition (61b) does
not hold. Therefore, for all ←−n 11 ∈ N, the capacity region cannot be enlarged under assumptions
(57), (59), (63), and (69).

Case 3: Under assumptions (57) and (64), this case is possible.
Plugging (64) into (60) yields:

R1 +R26min (max (−→n 22, n12) +−→n 11 − n12,−→n 11 +−→n 22 − n21) , (72a)
R1 +R26max (−→n 11 − n12,←−n 11) + n12, (72b)
R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 + max (−→n 11 − n12,←−n 11) . (72c)

Plugging (64) into (58) yields:

R1 +R26
−→n 11, (73a)

R1 + 2R26max (−→n 22, n12) +−→n 22 − n21 +−→n 11 − n12. (73b)

To simplify the inequalities containing the operator max(·, ·) in (72) and (73), the following 2
cases are identified:

Case 3a :−→n 22 > n12; and (74)
Case 3b :−→n 22 6 n12. (75)

Case 3a: Plugging (74) into (72) yields:

R1 +R26
−→n 22 +−→n 11 − n12, (76a)

R1 +R26max (−→n 11 − n12,←−n 11) + n12, (76b)
R1 + 2R262−→n 22 − n21 + max (−→n 11 − n12,←−n 11) . (76c)

Plugging (74) into (73) yields:

R1 +R26
−→n 11, (77a)

R1 + 2R262−→n 22 − n21 +−→n 11 − n12. (77b)

Comparing inequalities (76a) and (76b) with inequality (77a), it can be verified that min
(−→n 22 +

−→n 11−n12, max
(−→n 11−n12, ←−n 11

)
+n12

)
> −→n 11, i.e., condition (61a) holds, when ←−n 11 >

−→n 11−
n12. Comparing inequalities (76c) and (77b), it can be verified that 2−→n 22−n21+max

(−→n 11−n12,←−n 11

)
> 2−→n 22−n21 +−→n 11−n12, i.e., condition (61b) holds, when ←−n 11 >

−→n 11−n12. Therefore,←−n ∗11 = −→n 11 − n12 under assumptions (57), (59), (64), and (74).
Case 3b: Plugging (75) into (72) yields:

R1 +R26
−→n 11, (78a)

R1 +R26max (−→n 11 − n12,←−n 11) + n12, (78b)
R1 + 2R26n12 +−→n 22 − n21 + max (−→n 11 − n12,←−n 11) . (78c)
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Plugging (74) into (73) yields:

R1 +R26
−→n 11, (79a)

R1 + 2R26
−→n 22 − n21 +−→n 11. (79b)

Comparing inequalities (78a) and (78b) with inequality (79a), it can be verified that min
(−→n 11,

max
(−→n 11 − n12, ←−n 11

)
+ n12

)
= −→n 11, i.e., condition (61a) does not hold, for all ←−n 11 ∈ N.

Comparing inequalities (78c) and (79b), it can be verified that n12+−→n 22−n21+max
(−→n 11−n12,←−n 11

)
> −→n 22 − n21 + −→n 11, i.e., condition (61b) holds, when ←−n 11 > −→n 11 − n12. Therefore,←−n ∗11 = −→n 11 − n12 under conditions (57), (59), (64), and (75).

Case 4: Under conditions (57) and (65), this case is possible.
Plugging (65) into (60) yields:

R1 +R26min (−→n 22 +−→n 11 − n12,−→n 11 +−→n 22 − n21) , (80a)
R1 +R26max (−→n 11 − n12,←−n 11) +−→n 22 − n21, (80b)
R1 + 2R262−→n 22 − n21 + max (−→n 11 − n12,←−n 11) . (80c)

Plugging (65) into (58) yields:

R1 +R26
−→n 11 − n12 +−→n 22 − n21, (81a)

R1 + 2R262−→n 22 − n21 +−→n 11 − n12. (81b)

Comparing inequalities (80a) and (80b) with inequality (81a), it can be verified that min
(

min
(−→n 22

+−→n 11−n12, −→n 11 +−→n 22−n21
)
, max

(−→n 11−n12, ←−n 11

)
+−→n 22−n21

)
> −→n 11−n12 +−→n 22−n21,

i.e., condition (61a) holds, when ←−n 11 >
−→n 11 − n12. Comparing inequalities (80c) and (81b),

it can be verified that: 2−→n 22 − n21 + max
(−→n 11 − n12, ←−n 11

)
> 2−→n 22 − n21 + −→n 11 − n12, i.e.,

condition (61b) holds, when ←−n 11 >
−→n 11 − n12.

Therefore, ←−n ∗11 = −→n 11 − n12 under conditions (57), (59), and (65).
From all the observations above, when both transmitter-receiver pairs are in VWIR (event

E1 is True), it follows that when ←−n 11 >
←−n ∗11 and −→n 11 > n21 (event E8,1 is True) with with←−n ∗11 = max (−→n 11 − n12, n21), then C(0, 0) ⊂ C(←−n 11, 0). Otherwise C(0, 0) = C(←−n 11, 0). Note that

when events E1 and E8,1 hold simultaneously true, then the event S1,1 is true, which verifies the
statement of Theorem 1. The same procedure can be applied for all the other combinations of
interference regimes. This completes the proof.

B Proof of Theorem 2: Improvement of the Individual Rate
Ri by Using Feedback in Link i

The proof of Theorem 2 is obtained by comparing C(←−n 11, 0)
(
resp. C(0,←−n 22)

)
and C(0, 0), for all

possible parameters −→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22, n12, n21, and ←−n 22). More
specifically, for each tuple

(−→n 11, −→n 22, n12, n21
)
, the exact value ←−n †11 (resp ←−n †22) for which any

←−n 11 >
←−n †11 (resp ←−n 22 >

←−n †22) ensures an improvement on R1 (resp. R2) , i.e., ∆1(←−n 11, 0) > 0
(resp. ∆2(−→n 11, −→n 22, n12, n21, 0, ←−n 22) > 0), is calculated. This procedure is tedious and
repetitive, and thus, in this appendix only one combination of interference regimes is studied,
e.g., VWIR - VWIR.

Proof:
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Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (57) hold. Under
these conditions, the capacity regions C(0, 0) and C(←−n 11, 0) are given by (58) and (60), respec-
tively. When comparing C(0, 0) and C(←−n 11, 0), note that (58a), (58b), (58c), and (58e) are
equivalent to (60a), (60b), (60c), and (60e), respectively. In this case any improvement on R1 is
produced by an improvement on R1 + R2 (condition (61a)) or 2R1 + R2 (condition (61a)), and
thus, the proof of Theorem 2 in these particular interference regimes follows exactly the same
steps in Theorem 1. This completes the proof.

C Proof of Theorem 4: Improvement of the Sum-Rate Ca-
pacity by Using Feedback in one Transmitter-Receiver
Pair

The proof of Theorem 4 is obtained by comparing C(←−n 11, 0)
(
resp. C(0,←−n 22)

)
and C(0, 0), for

all possible parameters −→n 11, −→n 22, n12, n21, and ←−n 11 (resp. −→n 11, −→n 22, n12, n21, and ←−n 22).
More specifically, for each tuple

(−→n 11, −→n 22, n12, n21
)
, the exact value←−n +

11 (resp←−n +
22) for which

any ←−n 11 >
←−n +

11 (resp ←−n 22 >
←−n +

22) ensures an improvement on R1 + R2, i.e., Σ(←−n 11, 0) > 0
(resp. Σ(0,←−n 22) > 0), is calculated. This procedure is tedious and repetitive, and thus, in this
appendix only one combination of interference regimes is studied, e.g., VWIR - VWIR.

Proof:
Consider that both transmitter-receiver pairs are in VWIR, i.e., conditions (57) hold. Under

these conditions, the capacity regions C(0, 0) and C(←−n 11, 0) are given by (58) and (60), respec-
tively. When comparing C(0, 0) and C(←−n 11, 0), note that (58a), (58b), (58c), and (58e) are
equivalent to (60a), (60b), (60c), and (60e), respectively.

In this case, the proof is focused on any improvement on R1 +R2 (condition (61a)), and thus,
the proof of Theorem 4 in these particular interference regimes follows exactly the same steps in
Theorem 1.

From the analysis presented in Appendix A, it follows that:
Case 2a: condition (61a) holds true, when ←−n 11 > n21 under assumptions (57), (59), (63),

and (68).
Case 2b: condition (61a) does not hold true, under assumptions (57), (63), and (69).
Case 3a: condition (61a) holds true, when ←−n 11 >

−→n 11 − n12 under assumptions (57), (59),
(64), and (74).

Case 3b: condition (61a) does not hold true, when←−n 11 >
−→n 11−n12 under assumptions (57),

(59), (64), and (75).
Case 4: condition (61a) holds true, when ←−n 11 >

−→n 11 − n12 under assumptions (57), (59),
and (65).

From all the observations above, when both transmitter-receiver pairs are in VWIR (event
E1 is True), it follows that when ←−n 11 >

←−n +
11,
−→n 11 > n21 (event E8,1 is True), −→n 22 > n12 (event

E8,2 is True), −→n 11 +−→n 22 > n12 + 2n21 (event E10,1 is True), and −→n 11 +−→n 22 > n21 + 2n12 (event
E10,2 is True) with ←−n +

11 = max (−→n 11 − n12, n21), then Σ(←−n 11, 0) > 0. Otherwise Σ(←−n 11, 0) = 0.
Note that when events E1, E8,1, E8,2, E10,1, and E10,2 hold simultaneously true, then the event
S4 is true, which verifies the statement of Theorem 4. The same procedure can be applied for
all the other combinations of interference regimes. This completes the proof.

D Proof of Theorem 5: Generalized Degrees of Freedom
This appendix provides a proof to Theorem 5 for the two user LD-IC-NOF.
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Proof:
Lemma 1 fully characterizes the set C(−→n 11, −→n 22, n12, n21, ←−n 11, ←−n 22).

Lemma 1 (Theorem 1 in [16]) The capacity region C(−→n 11,
−→n 22, n12, n21,

←−n 11,
←−n 22) of the

two-user LD-IC-NOF is the set of non-negative rate pairs (R1, R2) that satisfy ∀i ∈ {1, 2} and
j ∈ {1, 2} \ {i}:

Ri 6min (max (−→n ii, nji) ,max (−→n ii, nij)) , (82a)

Ri 6min
Ä
max (−→n ii, nji) ,max

Ä−→n ii,
←−n jj − (−→n jj − nji)+

ää
, (82b)

R1 +R2 6min
Ä
max (−→n 22, n12) + (−→n 11 − n12)

+
,max (−→n 11, n21) + (−→n 22 − n21)

+
ä
, (82c)

R1 +R2 6max
(

(−→n 11 − n12)
+
, n21,

−→n 11 − (max (−→n 11, n12)−←−n 11)
+
)

+ max
(

(−→n 22 − n21)
+
, n12,

−→n 22 − (max (−→n 22, n21)−←−n 22)
+
)
, (82d)

2Ri +Rj6max (−→n ii, nji) + (−→n ii − nij)+

+ max
(

(−→n jj − nji)+ , nij ,−→n jj − (max (−→n jj , nji)−←−n jj)
+
)
. (82e)

Under symmetric conditions i.e., −→n = −→n 11 = −→n 22, m = n12 = n21 and ←−n = ←−n 11 = ←−n 22,
from (82a) and (82b) with i = 1 and j = 2, it follows that:

R1 6 min
Ä
max (−→n ,m) ,max

Ä−→n ,←−n − (−→n −m)
+
ää

, a1; (83)

from (82c) and (82d), it follows that:

R1 +R26min
(

max (−→n ,m) + (−→n −m)
+
, 2 max

(
(−→n −m)

+
,m,−→n − (max (−→n ,m)−←−n )

+
))

,a2; (84)

and from (82e) with i = 1 and j = 2, it follows that:

2R1 +R26max (−→n ,m) + (−→n −m)
+

+ max
(

(−→n −m)
+
,m,−→n − (max (−→n ,m)−←−n )

+
)
, a3

(85)

The symmetric sum-capacity, Csym(−→n ,m,←−n ) = sup{R : (R,R) ∈ C(−→n ,−→n ,m,m,←−n ,←−n )}, can
be obtained from (83), (84) and (85) as follows

Csym=min
(
a1,

a2
2
,
a3
3

)

=min

(
max (−→n ,m) ,max

Ä−→n ,←−n − (−→n −m)
+
ä
,

1

2

Ä
max (−→n ,m) + (−→n −m)

+
ä
,

max
(

(−→n −m)
+
,m,−→n − (max (−→n ,m)−←−n )

+
)
,

1

3

(
max (−→n ,m) + (−→n −m)

+

max
(

(−→n −m)
+
,m,−→n − (max (−→n ,m)−←−n )

+
)))

. (86)
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Plugging (86) into (54) yields

Dsym(α, β)=min

(
max (1, α) ,max

Ä
1, β − (1− α)

+
ä
,

1

2

Ä
max (1, α) + (1− α)

+
ä
,

max
(

(1− α)
+
, α, 1− (max (1, α)− β)

+
)
,

1

3

(
max (1, α) + (1− α)

+

+ max
(

(1− α)
+
, α, 1− (max (1, α)− β)

+
)))

. (87)

where α = m−→n and β =
←−n−→n and this completes the proof.
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