
HAL Id: hal-01377152
https://hal.inria.fr/hal-01377152

Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing a correct and tight rounding error bound
using rounding-to-nearest

Sylvie Boldo

To cite this version:
Sylvie Boldo. Computing a correct and tight rounding error bound using rounding-to-nearest. 9th In-
ternational Workshop on Numerical Software Verification, Jul 2016, Toronto, Canada. �hal-01377152�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49330866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01377152
https://hal.archives-ouvertes.fr

Computing a correct and tight rounding
error bound using rounding-to-nearest

Sylvie Boldo?

Inria, Université Paris-Saclay, F-91893 Palaiseau
LRI, CNRS & Univ. Paris-Sud, F-91405 Orsay

Email: sylvie.boldo@inria.fr

Abstract. When a floating-point computation is done, it is most of the
time incorrect. The rounding error can be bounded by folklore formulas,
such as ε|x| or ε|◦(x)|. This gets more complicated when underflow is
taken into account as an absolute term must be considered. Now, let
us compute this error bound in practice. A common method is to use
a directed rounding in order to be sure to get an over-approximation
of this error bound. This article describes an algorithm that computes a
correct bound using only rounding to nearest, therefore without requiring
a costly change of the rounding mode. This is formally proved using the
Coq formal proof assistant to increase the trust in this algorithm.

1 Introduction

Floating-point (FP) arithmetic is the way computers deal with computations
on real numbers. It is clearly defined [5,6], but it is not perfect. In particular,
FP numbers have a finite precision, therefore even a single computation may be
incorrect when the result does not fit in a FP number. This error is called a
rounding error, and a part of the computer arithmetic literature tries to improve
or bound these errors on some given algorithms.

The most common model for bounding this rounding error is the standard
model [4] where

◦(x) = x(1 + δ) with |δ| ≤ u

with ◦ being the rounding to nearest and u being the machine epsilon, therefore
2−p when p is the number of bits of the FP mantissa.

This model has two main drawbacks. The first one is that it does not take
underflow into account. For example in binary64, if you round 3× 2−1075, you
get the FP number 2×2−1074, which gives a huge relative error of 33 % compared
to the input, but a small absolute error.

The second drawback is when this error bound needs to be computed. That
is the case for example when considering midpoint-radius interval arithmetic [7].
Indeed, computing ◦ (2−p × ◦(x)) may not be an overestimation of the error

? This work was supported by the FastRelax (ANR-14-CE25-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylvie.boldo@inria.fr

bound. For example, let us consider x = 2−1022+2−1074

2 . Then ◦(x) = 2−1023 and
the error is 2−1075. But ◦ (2−p × ◦(x)) = ◦

(
2−53 × 2−1023

)
= ◦

(
2−1076

)
= 0,

which is not an overestimation of 2−1075.

This article aims at providing a correct algorithm that computes a bound
on the error of a FP operation. As we also want this algorithm to be fast, we
wish to avoid changing the rounding mode, as it breaks the pipeline. We will
therefore only consider rounding to nearest, both for the operation considered,
and for our algorithm. Moreover, we want to prevent tests as they also break
the pipeline.

More than a pen-and-paper proof, this work gives a high guarantee of its
correctness and gives precise hypotheses on the needed precision and underflow
threshold. We will rely on the Coq proof assistant. From the formal methods
point of view, we will base our proof on the Flocq library [2]. Flocq is a for-
malization in Coq that offers a multi-radix and multi-precision formalization for
various floating- and fixed-point formats (including FP with or without gradual
underflow) with a comprehensive library of theorems. Its usability and practi-
cality have been established against test-cases [1]. The corresponding Coq file is
named Error bound fp.v and is available in the example directory of Flocq1,
available in the current git version, and in the next released versions > 2.5.1.

Notations We denote by ◦ the rounding to nearest, ties to even in radix 2. We
denote by ◦[expr] the rounding of the expression into brackets, where all the
operations are considered to be rounded operations. For example, ◦[3 × x + y]
denotes ◦(◦(3× x) + y). The smallest subnormal number is denoted by 2Ei and
the number of bits of the mantissa is p > 0. For basic knowledge about FP
arithmetic (roundings, subnormal, error bounds), we refer the reader to [3,6].

2 Theorem

Theorem 1. Let x be a real number. Assume that Ei ≤ −p. Then

|◦(x)− x| ≤ ◦
[
2−p × |◦(x)|+ 2Ei

]
.

The assumption is very light: Ei ≤ −p only means that 2−p is in the format.
It holds in all IEEE formats: for example in binary64, p = 53 and Ei = −1074
and in binary32, p = 24 and Ei = −149.

1 http://flocq.gforge.inria.fr/.

http://flocq.gforge.inria.fr/

Proof The first step is to prove that 2−p and 2Ei are in the format, therefore
not rounded. This is trivial as long as Ei ≤ −p.

Then, the error bound we are used to is |◦(x)− x| ≤ 2−p × |◦(x)|+ 2Ei−1 or
max

(
2−p × |◦(x)|, 2Ei−1

)
. The first formula looks like our the theorem, rounding

excepted. The other difference is the 2Ei instead of 2Ei−1. Let us prove that the
roundings do not endanger the result.

Let t = ◦
[
2−p × |◦(x)|+ 2Ei

]
. Then, we split the proof into 4 cases, depend-

ing on the value of |x|.

1. Assume x = 0. Then ◦(x) = 0, and |◦(x) − x| = 0, while t = ◦
(
0 + 2Ei

)
=

2Ei . So the result holds.
2. Assume 0 < |x| < 2Ei+p. Then x has exponent Ei and |◦(x)−x| ≤ 1

2ulp(x) =
2Ei−1. Moreover, t = ◦

[
2−p × |◦(x)|+ 2Ei

]
≥ ◦

(
2Ei

)
= 2Ei . So the result

holds.
3. Assume 2Ei+2p−1 ≤ |x|. Then 2−p × |◦(x)| ≥ 2Ei+p−1 and is normal. There-

fore, the multiplication by 2−p is correct and does not create any rounding er-
ror. Then |◦(x)−x| ≤ 2−p×|◦(x)| = ◦ [2−p × |◦(x)|] ≤ ◦

[
2−p × |◦(x)|+ 2Ei

]
by monotony of the rounding.

4. Assume 2Ei+p ≤ |x| < 2Ei+2p−1. This is the most complex case, as all
roundings may go wrong. First |◦(x)−x| ≤ 2−p×|◦(x)|. Let y be 2−p×|◦(x)|.
Then y < 2Ei+p−1 and is therefore in the subnormal range. As |◦(x)−x| ≤ y,
what is left to prove is that y ≤ ◦

(
◦(y) + 2Ei

)
. As y is small, ◦(y) is a

positive FP number in the subnormal range, therefore ◦(y) + 2Ei is also in
the FP format and ◦

(
◦(y) + 2Ei

)
= ◦(y) + 2Ei . What is left to prove is then

y ≤ ◦(y) + 2Ei . Finally, as y is in the subnormal range, |◦(y) − y| ≤ 2Ei−1.
So y ≤ ◦(y) + 2Ei−1 and the result holds.

2

This pen-and-paper proof exactly corresponds to the Coq proof (as it was
written from it). The itemized cases corresponding to the interval values of x
become several lemmas in the Coq proof for the sake of readability.

3 Tightness of the bound

The next question is how tight is the proved bound. In particular, is it much
coarser than the usual bound? The answer is no and a graphical explanation is
given in Figure 3.

When |x| is small, then the optimal bound is 2Ei−1. As this bound is not
a FP number, our algorithm returns the best possible bound, that is to say
2Ei . When |x| is big enough, meaning greater than 2Ei+2p (that is 2−968 in
binary64), we have the optimal bound, meaning 2−p × |◦(x)|. In this case, the
2Ei is indeed negligible and is neglected as we use rounding to nearest (and not
rounding towards +∞). In the middle, meaning between 2Ei+p−1 and 2Ei+2p,
we have a slight overestimation compared to the usual bound. Note that this
overestimation is bounded by 2Ei .

|x|

Error bounds

max
(
2−p × |◦(x)| , 2Ei−1

)
◦
[
2−p × |◦(x)|+ 2Ei

]

2Ei 2Ei+1 2Ei+p−1

2Ei+p
2Ei+2p−1

2Ei+2p

2Ei−1

2Ei

2Ei+1

2Ei+p−1

2Ei+p

Fig. 1. Drawings comparing the error bounds of ◦(x)

4 Conclusion

We have formally proven that the following algorithm using only the rounding-to
nearest mode:

fabs(x)*0x1.p-53+0x1.p-1074

gives a correct tight bound on the rounding error of x in rounding-to-nearest
binary64. Note that overflow cannot happen here as all values involved are
strictly smaller than the input x.

As for efficiency, random tests have shown it is quite efficient, as it involves
neither tests, nor rounding change (2 flops plus the memory accesses). Never-
theless, on some architectures, subnormal numbers are trapped and handled in
software, and are therefore much slower than normal FP operations. In this case,
computing x*0x1.p-53+0x1.p-1022 might be a better idea. Indeed, the previ-

ous theorem implies that ◦
[
2−p × |◦(x)|+ 2Ei+p−1

]
is also an overestimation of

the rounding error. And as 2Ei+p−1 is the smallest normal number, this algo-
rithm does not involve any subnormal number if x is not one and will be faster
in most cases, at the price of a worse bound. A use of the processor max function
may also prevent the use of operation on subnormal numbers, which is known
to be quite costly.

A perspective is to be able to compute an error bound on a given rounding,
using only this given rounding. The formula will probably need to be modified,
for example suppressing the addition when rounding towards +∞, negating twice
the values when using rounding towards −∞. But this needs to be worked out
in depth and formally proved to get correct algorithms.

A harder perspective is to deal with radix 10. Then the multiplication should
not be by 2−p, but by 5× 10−p, and this multiplication is not always exact with
big numbers, as was the case here with radix 2. The provided algorithm does
therefore not hold in radix 10.

References

1. Sylvie Boldo. Deductive Formal Verification: How To Make Your Floating-Point
Programs Behave. Thèse d’habilitation, Université Paris-Sud, October 2014.

2. Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving floating-
point algorithms in Coq. In Elisardo Antelo, David Hough, and Paolo Ienne, ed-
itors, 20th IEEE Symposium on Computer Arithmetic, pages 243–252, Tübingen,
Germany, 2011.

3. David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5–48, March 1991.

4. Nicholas J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.
Second edition.

5. Microprocessor Standards Committee. IEEE Standard for Floating-Point Arith-
metic. IEEE Std. 754-2008, pages 1–58, August 2008.

6. Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jean-
nerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, and
Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser, 2010.

7. Siegfried M. Rump. Fast and parallel interval arithmetic. BIT Numerical Mathe-
matics, 39(3):534–554, 1999.

	Computing a correct and tight rounding error bound using rounding-to-nearest

