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Abstract: We describe here the package subdivision solver for the mathematical software
SageMath. It provides a solver on real numbers for square systems of large dense polynomials.
By large polynomials we mean multivariate polynomials with large degrees, which coefficients
have large bit-size. While staying robust, symbolic approaches to solve systems of polynomials
see their performances dramatically affected by high degree and bit-size of input polynomials.
Available numeric approaches suffer from the cost of the evaluation of large polynomials and their
derivatives. Our solver is based on interval analysis and bisections of an initial compact domain of
R

n where solutions are sought. Evaluations on intervals with Horner scheme is performed by the
package fast polynomial for SageMath. The non-existence of a solution within a box is certified
by an evaluation scheme that uses a Taylor expansion at order 2, and existence and uniqueness of a
solution within a box is certified with krawczyk operator. The precision of the working arithmetic
is adapted on the fly during the subdivision process and we present a new heuristic criterion to
decide if the arithmetic precision has to be increased.

Key-words: Interval Arithmetic, Subdivision, Adaptive Multi-Precision, Real Solutions, Large
Dense Polynomials
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Un solveur par subdivision pour des systèmes de
polynômes denses de haut degré et grande bit-size

Résumé : Le présent rapport décrit le package subdivision solver pour SageMath, dédié
à la résolution réelle de systèmes bien posés (i.e. avec autant d’équations que d’inconnues) dont
les équations sont des polynômes denses de haut degrés et grande bit-size. Les approches de
résolution symboliques et numériques voient leur performances très affectées par l’augmentation
du degré et de la bit-size des polynômes. Les premières en raison du calcul exact sur des grands
nombres, les secondes à cause du coût des évaluations des fonctions et de leur dérivées. Le solveur
décrit ici est basé sur l’arithmétique par intervalles et s’appuie sur le package fast polynomial

pour SageMath qui permet l’évaluation rapide de polynômes sur des intervalles grâce entre autres
au schéma de Horner. Les solutions sont cherchées dans un domaine initial compact de R

n qui
est subdivisé jusqu’à pouvoir soit prouver l’absence de solutions grâce à un développement de
Taylor à l’ordre 2 soit prouver l’existence et l’unicité d’une solution en utilisant l’opérateur de
Krawczyk. La précision arithmétique avec laquelle les calculs sont réalisés est adaptée pendant
la résolution. On présente un nouveau critère, utilisé comme heuristique, pour décider s’il est
nécessaire d’accrôıtre la précision.

Mots-clés : Arithmétique par intervalles, subdivision, précision multiple adaptative, solutions
réelles, polynômes denses de haut degré et grande bit-size
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1 Introduction

subdivision solver is a solver for square systems of polynomial equations using exhaustive
search in an initial bounded real domain given as a box (i.e. a vector of intervals). It is
specifically designed to handle systems of large dense polynomials and uses adaptive multi-
precision arithmetic to stay robust to hard cases. subdivision solver is proposed as a package
for the mathematical software SageMath1. It is based on the package fast polynomial (see [5])
for SageMath that provides fast evaluation of polynomials on intervals and uses Horner forms.

The strategies that underlies the design of subdivision solver are:

• using as much as possible double precision interval arithmetic: in this case interval compu-
tations are supported by the boost2 interval library that is efficient. When the arithmetic
precision is increased, interval computations are supported by the Multi-Precision Floating-
point Interval library mpfi (see [8]) that allows arbitrary arithmetic precision.

• using partial derivatives at second order to obtain sharp interval evaluations; partial deriva-
tives are symbolically computed at the initialization of the solving.

• minimizing evaluations of polynomials and their derivatives that are costly.

The rest of this report is organized as follows. Sec. 2 gives some basics on interval analysis
and describes the main tools the solver uses. Sec. 3 presents three criteria that are used to decide
to increase arithmetic precision. The two first come from the state of the art, the third is new.
Sec. 4 describes the algorithms that we implemented. Sec. 5 proposes some numerical results.
The rest of the introduction overviews installation and usage of the package.

A short user manual

subdivision solver is a package for SageMath, and works with versions newer than 7.0. Its
sole dependency is the package fast polynomial3 for SageMath that provides fast evaluation
of polynomials on intervals and uses Horner forms. After it has been download, move to the
directory where it is and install it with sage fast polynomial-0.9.4.spkg. Then download
subdivision solver4 and install it with the command sage subdivision solver-0.0.1.spkg.
Thats it.

We give here an example of use of subdivision solver on randomly generated polynomials.

from subdivision_solver import subdivision_solver

Rr.<x1,x2> =ZZ[]

#pols of deg 100 with 1000 monomials

p1 = Rr.random_element(100, 1000)

p2 = Rr.random_element(100, 1000)

#set arithmetic precision

#53 is the number of bits of the mantissa

RIF = RealIntervalField(53)

X0 = [ [RIF(-1,1)], [RIF(-1,1)] ]

#initialise the solver

test = subdivision_solver([p1,p2],[x1,x2])

1http://www.sagemath.org
2http://www.boost.org/doc/libs/1_60_0/libs/numeric/interval/doc/interval.htm
3http://www.loria.fr/~moroz/software.html
4http://www.loria.fr/~rimbach/
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4 Rémi Imbach

#search solutions in X0

#do not explore boxes of width smaller than 1e-6

#do not increase arithmetic precision above 113

#print stats in color

status = test.solve(X0,1e-6,113,’stats_color’)

#get solutions in sage lists

sols = test.getSolutions()

#get isolating boxes with width smaller that 1e-10

sols = test.getSolutions(1e-10)

#get boxes that may contain solutions

unds = test.getUndetermined()

#get online help (only in console mode)

subdivision_solver?

Above instructions can be either copy-pasted in a sage console to be executed, or copy pasted
in a file myfile.sage and executed with the command sage myfile.sage.

The initializer of the class subdivision solver takes as arguments a list of polynomial and
the list of variables of the polynomial ring.

The method solve takes as first argument the domain where the real solutions are sought,
written as a column vector of RealIntervalField elements. Notice that the arithmetic precision
of the first element of the domain determines the initial precision. The arithmetic precision is at
least 53. When it is 53, bounds and intervals are double precision floating points, and operations
on intervals are directly transposed into operations on double with boost.

To solve the system given as input, the initial domain will be subdivided and/or contracted
into sub-domains; the second argument of the method solve is the minimum width of sub-domains
to be explored during the resolution. It can be zero, and in this case the process is not guaranteed
to terminate, in particular if the system admits a root with multiplicity.

When solving the system given in input, it can arise that arithmetic precision is not sufficient
when, for instance, subdividing a box does not help to decide where is a solution due to accumu-
lation of errors in interval computations. Such cases are detected, and the arithmetic precision is
increased to face it. The third argument of solve is an upper bound of the arithmetic precision
used to compute with intervals. Precision can be arbitrary large. mpfi is used when the precision
is larger than 53.

The last argument of the method solve is a string determining whether statistics of the
process are printed or not. Its value can be in { ’silent’, ’stats’, ’stats color’ }.

The output of solve is an integer with the following meaning:

0 Each solution lying in the interior of the initial domain has bean isolated in a box; isolating
boxes of solutions are obtained with getSolutions.

1 Only a subset of solutions have been isolated; boxes that may contain solutions are obtained
with getUndetermined but exploring these boxes will require a larger arithmetic precision
than initially allowed.

2 Only a subset of solutions have been isolated; boxes of width smaller than allowed and/or
requiring larger arithmetic precision where encountered.

Finally, giving a real number r as argument to the method getSolutions makes width
of boxes isolating solutions that are returned smaller than r if maximum precision allows it.
Otherwise isolating boxes will have width as small as possible.

Inria
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2 Some tools of Interval Analysis

2.1 Notations

Let IR be the set of non-empty closed intervals of R. We will denote an element of IR with a
lowercase bold letter as x. If x ∈ IR, we will denote by l(x) (resp. u(x)) its lower (resp. upper)

bound, by w(x) its width defined as u(x) − l(x) and by m(x) its center (that is l(x) + w(x)
2 ).

The interior ]l(x), u(x)[ of x will be denoted by int(x) and its boundary x \ int(x) by ∂(x).
Let m ∈ N

+
∗ and consider IRm. We call box an element of IRm and we will denote it by an

uppercase bold letter as X. Let X = (x1, . . . ,xm) be an element of IRm, we will denote by m(X)
its center (m(x1), . . . ,m(xm)) and by w(X) its width defined as w(X) = max1≤i≤mw(xi). We
note (int(x1), . . . , int(xm)) the interior of X and ∂(X) its boundary X \ int(X).

Usual arithmetic operators can be extended to intervals and boxes.

2.2 Evaluating Functions on Boxes

Consider the polynomial function f : Rm → R and let X ∈ IR
m. We will denote by f(X) the

set {f(X)|X ∈ X}. The following definitions are picked up from [10].
We will call interval extension of f a function �f : IRm → IR s.t.

X ∈ IR
m ⇒ f(X) ⊆ �f(X) (1)

and
X ∈ R

m ⇒ f(X) = �f(X). (2)

We say that an interval extension �f is inclusion monotonic if

X ⊆ Y ⇒ �f(X) ⊆ �f(Y). (3)

For a polynomial f , a natural interval extension of f that is inclusion monotonic is obtained by
combining interval operators that intervene in the Horner form of f (see [10]). We will denote it
0f , and 0f(X) will be the value of the evaluation of 0f on X ∈ IR

m.
An other inclusion monotonic interval extension (see [10]) that is classically used is the mean

value form 1f defined as
1f(X) = f(P) +�Jf (X)(X−P) (4)

where P is the center of X represented as an interval and �Jf an inclusion monotonic interval
extension of the Jacobian matrix Jf of f (i.e. the m components of �Jf are intervals extensions

of the m partial derivatives of f). 0Jf , which components are
0∂f
x1

, . . . ,
0 ∂f
xm

, is classically used
for �Jf .

Here we will use the interval extension obtained by considering Taylor expansion at order 2
around the center P of X, defined as:

2f(X) = f(P) + Jf (P)(X −P) +
1

2
(X−P)t(0Hf (X))(X −P) (5)

where 0Hf is the natural interval extensions of the Hessian matrix Hf of f . 2f is shown in [6]
to be an inclusion monotonic interval extension of f , and we will call it evaluation at order two
of f .

Above definitions are easily extended to functions F : Rm → R
m. Notice that if �F is an

interval extension of F , then we have

0 /∈ �F (X)⇒ F does not vanish on X. (6)

RT n° 476
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Algorithm 1 CertifyNoSolution(F,X)

Input: A function F : Rm → R
m and a box X.

Output: true or false; if true then F = 0 has no solution in X.
1: if (0 /∈ 0F (X) ∩ 2F (X)) or (2KF (X) ∩X = ∅) then
2: return true

3: return false

Algorithm 2 CertifyOneSolution(F,X)

Input: A function F : Rm → R
m and a box X.

Output: true or false; if true then X contains a unique solution of F = 0.
1: if 2KF (X) ⊂ int(X) then
2: return true

3: return false

2.3 The Krawczyk Operator

We consider now a function F : R
m → R

m defined as F (X) = (f1(X), . . . , fm(X)) where
fi : R

m → R for 1 ≤ i ≤ m and we recall the definition of the Krawczyk operator KF that is a
classical tool in interval analysis (see for instance [2, Def. 1.16] or [4, Theo. 8.2] or [9, Sec. 7] ).

KF (X) = P− (JF (P))−1F (P) + (I − (JF (P))−1
�JF (X))(X −P) (7)

where P is the center of X represented as an interval and �JF is the interval extensions of the
Jacobian matrix JF of F . Kf has the following properties:

(K1) KF (X) ⊂ int(X)⇒ F (X) = 0 has one and only one solution in X that is in KF (X)

(K2) KF (X) ∩X = ∅ ⇒ F (X) = 0 has no solution in X

(K3) if X and Y are s.t. KF (X) ⊂ int(X) and KF (Y) ⊂ int(Y) then X ∩Y 6= ∅ ⇒ X and Y

contain the same solution of F (X) = 0.

Proof of (K3): because KF is inclusion monotonic (i.e. X ⊆ Y ⇒ KF (X) ⊆ KF (Y)), see [3],
one has KF (X ∩Y) ⊂ int(X ∩Y) and X ∩Y contains a unique solution. �

When using a mean value extension of JF around the center P of X to compute �JF (X) one
can rewrite Eq. 7 as

2KF (X) = P− (JF (P))−1(F (P) +H) (8)

where H is a box in IR
m which i-th component hi is:

hi = (X−P)t(0Hfi(X))(X −P) (9)

where 0Hfi is the natural interval extension of the Hessian matrix Hfi of fi. We will call 2KF (X)
the Krawczyk operator at order 2 since it uses second order partial derivatives of F ; we assume
here that it satisfies properties (K1), (K2) and (K3).

One can use (K2) and Eq. 6 to justify Algo. 1 that certifies that a system F = 0 with
F : Rm → R

m has no solutions on a box X. (K1) justifies Algo. 2 that certifies that F = 0
has a unique solution on X. Algo. 3 decides if the solution of F = 0 contained in a box
X s.t. KF (X) ⊂ int(X) is already contained in a box of a list L containing boxes Y s.t.
KF (Y) ⊂ int(Y). It is correct from (K3).

Inria
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Algorithm 3 IsSolInList(F,X,L)

Input: A function F : Rm → R
m, a box X and a list of boxes L s.t. KF (X) ⊂ int(X) and

∀Y ∈ L,KF (Y) ⊂ int(Y).
Output: true or false; if true then the solution of F = 0 contained in X is in a box of L.
1: for Y ∈ L do

2: if X ∩Y 6= ∅ then

3: return true

4: return false

3 Adapting Arithmetic Precision

Intervals are usually represented by their two bounds represented by floating points, and interval
operators by operations on floating points with appropriated rounding policy. In what follows,
we will call precision of the arithmetic the number of bits of the mantissa of floating points.

The branch and bound method we did implement uses recursive bisections of boxes until it is
possible to certify either the absence or the existence and uniqueness of a solution in each box.
Lack of accuracy can intervene during this process either when a box has a component that has
roughly the smallest width allowed by the arithmetic precision (i.e. the bounds are consecutive
floating points), or when accumulated rounding affects the inclusion monotonicity of an interval
extension. These cases have to be detected to avoid infinite computations. When they occur a
simple strategy is to double the arithmetic precision and to continue the computations.

We recall in 3.1 two criteria pickud up from [7] that decide if the arithmetic precision is not
sufficient, and we present in 3.2 a criterion that is, as far as we know, new and is used as an
heuristic in our solver.

3.1 Criteria of [7]

[7] presents a simple branch and bound algorithm using adaptive multi-precision to find zeros of
an univariate real function f with interval extension �f , using interval newton method. At each
step, an interval x is bisected in x1,x2 s.t. x = x1 ∪x2, and the arithmetic precision is increased
if one of the following conditions holds:

• w(x1) ≥ w(x) or w(x2) ≥ w(x),

• w(�f(x1)) ≥ w(�f(x)) or w(�f(x2)) ≥ w(�f(x)).

The first criterion is satisfied when x has no point of its interior that can be represented as
a floating point with actual precision. When the second criterion is satisfied, Eq. 3 is not true
and �f is not an interval extension of f due to numeric inaccuracy. One can alternatively test
if �f(x) ⊆ (�f(x1) ∪ �f(x2)). We adapt here these criteria to a multi-variate context with
F : Rm → R

m, �F : IRm → IR
m an interval extension of F , X1,X2 and X elements of IRm

such that X = X1 ∪X2. In the branch and bound method presented in Sec. 4, the arithmetic
precision is increased if one of the following conditions holds:

(C1) w(X1) ≥ w(X) or w(X2) ≥ w(X),

(C2) �F (X) ⊆ (�F (X1) ∪�F (X2)).

Algo. 4 verifies these conditions and returns true if (C1) or (C2) is satisfied.

RT n° 476
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Algorithm 4 CheckCond12(F or F,X,X1,X2)

Input: A function F : Rm → R
m or a list F of functions f : Rm → R, three boxes X, X1, X2 .

Output: if (C1) or (C2) is satisfied then true; false otherwise.

Algorithm 5 CheckCond3(F,X)

Input: A function F : Rm → R
m, a box X.

Output: if (C3) is satisfied then true; false otherwise.

3.2 A new criterion

Consider Eqs. (7) and (8). Whatever its order (we state it here for order two), one can rewrite
Krawczyk operator as

2KF (X) = −(0JF (P))−1(0F (P)) +P+ something (10)

to highlight that F (P) and JF (P) are interval evaluations. Hence one has

w(2KF (X)) = w((0JF (P))−1(0F (P))) + w(something) (11)

and a necessary condition for 2KF (X) to certify the existence of a unique solution in X is
w((0JF (P))−1(0F (P))) < w(X): otherwise one can not have 2KF (X) ⊂ int(X). Recall that P is
a point (i.e. w(P) = 0) hence one should have, w(0F (P)) = 0 and w((0JF (P))−1(0F (P))) = 0.

In the branch and bound method presented in Sec. 4, the arithmetic precision is increased if
the following condition holds:

(C3) w((0JF (P))−1(0F (P))) ≥ w(X) and (P− (0JF (P))−1(0F (P)))) ∩X 6= ∅.

The condition w((0JF (P))−1(0F (P))) ≥ w(X) can also be due to low values of partial derivatives
of F in P. In that case, even if 0F (P) has small width, its projection P− (0JF (P))−1(0F (P)))
can have large width and can be located “far away” from X. The second part of the condition
(C3) is used to filter the latter cases. Algo. 5 verifies (C3) and returns true if it is satisfied.

This condition is used as an heuristic and is checked only if a maximal arithmetic precision
specified by the user has not been reached.

4 Algorithm

We describe in Algo. 6 the adaptive multi-precision subdivision solver we implemented. Its input
and output are fully specified in Sec. 4.1. For a given initial box X0 where solutions of F (X) = 0
are sought, a minimal width ω ∈ R

+ of boxes that can be explored, an initial arithmetic precision
p and a maximal precision pmax, it proceeds as follows.

The simple branch and bound algorithm described in Algo. 7 is first applied to X0 using p as
arithmetic precision. Its output are a list of boxes containing a unique solution of F (X) = 0, a
list of boxes with width smaller than ω that can contain solutions and a list Lprec of boxes such
that one of the conditions (C1), (C2) or (C3) holds.

The precision p is then doubled and Algo. 7 is applied to boxes of Lprec. This process is
iterated until p reaches pmax. When Algo. 7 is applied for the last time with p = pmax, the
condition (C3) is not checked.

Sec. 4.2 describes Algo. 7.

Inria
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Algorithm 6 Subdivision Solving With Adaptive Arithmetic Precision

Input: A function F : Rm → R
m, a box X0, a real number ω, an initial precision p, a maximal

precision pmax as described in Sec 4.1.
Output: Two lists Lsols,Lcomp and an integer r as described in Sec 4.1.
1: Let Lsols,L′sols,Lcomp,L′comp and Lprec be empty lists.
2: Push back (X0, true) in Lprec.
3: while Lprec is not empty and p ≤ pmax do

4: (L′sols,L
′
comp,Lprec)← SolveWithFixedPrec(F,Lprec,ω,p,pmax)

5: Append boxes of L′sols to Lsols
6: Append boxes of L′comp to Lcomp

7: if 2p < pmax or p == pmax then

8: Set p to 2p
9: else

10: Set p to pmax

11: Determine r as described in Sec 4.1.
12: return Lsols, Lcomp, r

4.1 Input and Output of Algo. 6

Our multi-precision branch and bound method accepts mainly as input:

• a polynomial function F (X) = (f1(X), . . . , fm(X)), where X = (x1, . . . , xm);

• a box X0 where solutions of F (X) = 0 are sought;

• a real number ω ∈ R
+ that is the minimum width of boxes to be explored during the

subdivision process;

• an initial precision p and a maximal precision pmax of the floating arithmetic used to
represent bounds of intervals, given as the number of bits of the mantissa.

The minimal width ω allows to avoid infinite computations arising in particular when F (X) = 0
has non-regular solutions in X0. If it is null, the termination of the process is not ensured.

The output of our multi-precision branch and bound method consists in:

• a list of boxes Lsols containing solutions;

• a list of boxes Lcomp where other solutions could lie;

• an integer r specifying the status of the solving process.

Consider now the following properties:

(P1) if Xs ∈ Lsols then it exists a unique Xs ∈ Xs ∩ int(X0) s.t. F (Xs) = 0;

(P2) if Xs ∈ int(X0) is s.t. F (Xs) = 0 then it exists at most one Xs ∈ Lsols s.t. Xs ∈ Xs;

(P3) if Lcomp is empty then for each Xs ∈ int(X0) s.t. F (Xs) = 0 it exists Xs ∈ Lsols s.t.
Xs ∈ Xs; furthermore there is no solution of F = 0 on ∂(X0).

Properties (P1) and (P2) are always satisfied when the process terminates. When, in addition,
(P3) is satisfied, the value of r is 0. When (P3) is not satisfied because of a lack of arithmetic
precision, the value of r is 1. Otherwise the value of r is 2.

RT n° 476
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4.2 Branch and Bound Method with Fixed Arithmetic Precision

The branch and bound algorithm described in Algo. 7 can be seen as a Depth First Search in a
tree which root corresponds to an initial box X0, and children of a node corresponding to a box
X correspond either to boxes obtained by bisecting X, i.e. cutting it in two boxes with respect
to one of its components, or to a box obtained by contracting X around a solution.

The goal of such an algorithm is to find sub-boxes X of X0 that contains a unique solution
X∗ of F = 0 s.t. X∗ ∈ int(X0). Notice that the krawczyk test used in Algo. 2 can only certify
existence and uniqueness of a solution in int(X), and solutions lying exactly on borders of sub-
boxes of X0 could be missed. ǫ-inflation introduced for instance in [10, Sec. 5.9] can among
other circumvent this pitfall. It consists in slightly enlarging a box X obtaining Xǫ s.t. X ⊂ Xǫ.
Hence Algo. 2 is applied to Xǫ to certify existence and uniqueness of a solution in Xǫ. This
mechanism can however lead to find the same solutions in several neighbor boxes. X∗ ∈ int(X0)
is then verified when Xǫ ⊆ int(X0). In order to optimize the number of evaluations of F and its
derivatives, the absence of solutions with Algo. 1 is also tested on Xǫ.

A leaf of the tree corresponds

(n1) either to a box X s.t. w(X) ≤ ω that can possibly contain solutions but that are smallest
than the minimum width ω given in input,

(n2) or to a box X that is certified to contain no solution of F = 0 with Algo. 1,

(n3) or to a box X s.t. Xǫ contains a unique solution X∗ of F = 0 and Xǫ ⊆ int(X0).

An inner node of the tree corresponds

(n4) either to a box X s.t. existence and uniqueness of a solution is certified in Xǫ, and s.t. Xǫ∩
∂(X0) 6= ∅; this case is identified in Algo. 7 with the boolean variable inflateAndBisect;

(n5) either to a box X where neither the absence nor the existence of a solution can be certified;
such a node has two children corresponding to boxes obtained by bisecting X.

When a node corresponding to a box X is visited, it is first checked with Algo. 8 that the
actual arithmetic precision p is sufficient. If it is not, X is pushed in the list Lprec; the subtree
which root is the actual node will be explored with higher precision providing that p < pmax.
Notice that the condition (C3) presented in Sec. 3.2 is checked in Algo. 8 only if p < pmax.

If the arithmetic precision p is sufficient, the type of the actual node ((n1) or (n2) or . . . or
(n5)) is determined. The actual node is of type (n3) if CertifyOneSolution(F,Xǫ) returns
true (see Algo. 2) and Xǫ ⊆ int(X0). If the latter condition is not fulfilled the actual node is
of type (n4) and the value of inflateAndBisect is set to false. The sole child of the actual
node corresponds to the box 2KF (Xǫ) ⊂ X. If Xǫ ⊆ int(X0), it is tested with Algo. 3 that the
solution in Xǫ has not already been found. Finally, when the actual node is of type (n5), X is
bisected.

Literature proposes different strategies to choose a direction to cut a box X, and some of
them are surveyed in [1]. We did choose here to implement the maximum smear-diameter
strategy (see [1, Sec. 3.1.1, MaxSmearDiam]). In Algo. 7 the bisection is performed by
the function Bisect(F,X,ω), where the direction i to cut X = (x1, . . . ,xi, . . . ,xm) is cho-
sen so that w(xi) > ω. The latter function returns a couple (X1,X2) of boxes s.t. X1 =
(x1, . . . , [l(xi),m(xi)], . . . ,xm) and X2 = (x1, . . . , [m(xi), u(xi)], . . . ,xm).

Inria
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Algorithm 7 SolveWithFixedPrec(F,Lwork,ω,p,pmax)

Input: A function F : Rm → R
m, a list Lwork of boxes, a real number ω, a precision p and a

maximal precision pmax.
Output: Three lists Lsols,Lcomp and Lprec of boxes.
1: while Lwork is not empty do

2: Pop the front of Lwork and store it in (X, inflateAndBisect).
3: if CheckPrec(F,X,ω,p,pmax,inflateAndBisect) then

4: Push back X in Lprec.
5: continue

6: if w(X) ≤ ω then

7: Push back X in Lcomp.
8: continue

9: if inflateAndBisect then

10: Let Xǫ be obtained by ǫ-inflation of X.
11: else

12: Let Xǫ be a copy of X.

13: if CertifyNoSolution(F,Xǫ) then

14: continue

15: if CertifyOneSolution(F,Xǫ) then

16: if Xǫ ∩ ∂(X0) 6= ∅ then

17: Push back (2KF (Xǫ), false) in Lwork

18: else if Xǫ ⊆ int(X0) and not IsSolInList(F,Xǫ,Lsols) then

19: Push back Xǫ in Lsols
20: else

21: (X1,X2) = Bisect(F,X,ω).
22: Push (X1, true) and (X2, true) in the front of Lwork.

23: return Lsols, Lcomp, Lprec

5 Benchmarks

We propose here some experimental results to justify the chosen strategy for certifying non-
existence or existence and uniqueness of a solution in a box. We compare four possible strategies
for functions CertifyNoSolution and CertifyOneSolution :

(1) Evaluation at order 2 and Krawczyk operator at order 2, as described in previous algo-
rithms;

(2) Evaluation at order 2 and Krawczyk operator as defined in Eq. 7: obtained by replacing
2KF (X) by KF (X) in previous algorithms;

(3) Evaluation at order 1 and Krawczyk operator as defined in Eq. 7: obtained by replacing
2F by 1F and 2KF (X) by KF (X) in previous algorithms;

(4) Natural interval extension and Krawczyk operator as defined in Eq. 7: obtained by replacing
2F by 0F and 2KF (X) by KF (X) in previous algorithms.

We did use these four strategies to solve dense, randomly generated, systems with m poly-
nomial equations of degree d with integer coefficients of bit-size 8, for (m, d) ∈ {(2, 64), (2, 128),
(3, 16), (3, 32), (4, 8), (5, 4)}. Table 1 gives for each strategy and each couple (m, d) the number n
of boxes that have been explored and the sequential time t in seconds spent to solve the system.

RT n° 476
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Algorithm 8 CheckPrec(F,X,ω,p,pmax,inflateAndBisect)

Input: F,X, ω, p, pmax as described in Sec. 4.1, and a boolean variable inflateAndBisect.
Output: true if the arithmetic precision has to be increased to treat X; false otherwise.
1: if inflateAndBisect then

2: (X1,X2) = Bisect(F,X,ω).
3: Let Xǫ,X

1
ǫ ,X

2
ǫ be obtained by ǫ-inflation of X,X1,X2.

4: return CheckCond12(F,Xǫ,X
1
ǫ,X

2
ǫ) or ( CheckCond3(F,Xǫ) and p < pmax )

5: else

6: return (CheckCond3(F,X) and p < pmax)

Table 1: Comparaison of strategies (1),(2),(3) and (4). m is the number of equations and
variables of the system, d is the degree of its polynomial equations. n is the number of boxes
that have been explored, t the sequential time in seconds spent for the process on a Intel(R)
Core i7-5600U CPU @ 2.60GHz .

m 2 3 4 5
d 64 128 16 32 8 4

n t n t n t n t n t n t

(1) 855 0.33 1028 1.75 6650 2.65 18310 61.5 49647 17.0 104373 10.7
(2) 886 0.40 1053 2.01 6943 3.16 18881 70.9 52501 20.3 110229 12.6
(3) 1158 0.36 1594 2.24 14338 4.05 47703 107 158076 36.4 298727 21.9
(4) 1286 0.40 1916 2.66 23219 6.62 102539 230 363274 81.3 576107 39.6

We note that using evaluation at order 2 (i.e. strategies (1) and (2) versus (3) and (4))
brought an important gain both in terms of number of boxes explored and time, and higher
m and d are, higher is this gain. The gain allowed by Krawczyk operator at order 2 (strategy
(1) versus strategy (2)) is more perceptible for small values of m and d. Notice that applying
strategy (1) instead of strategy (2) does not induce additional evaluations since values of the
Hessian matrix are computed for the evaluation at order 2.
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