
HAL Id: hal-01377656
https://hal.inria.fr/hal-01377656

Submitted on 7 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code Bones: Fast and Flexible Code Generation for
Dynamic and Speculative Polyhedral Optimization

Juan Manuel Martinez Caamaño, Willy Wolff, Philippe Clauss

To cite this version:
Juan Manuel Martinez Caamaño, Willy Wolff, Philippe Clauss. Code Bones: Fast and Flexible
Code Generation for Dynamic and Speculative Polyhedral Optimization. Euro-Par 2016, Aug 2016,
Grenoble, France. pp.12, �10.1007/978-3-319-43659-3_17�. �hal-01377656�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49330418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01377656
https://hal.archives-ouvertes.fr

Code Bones: Fast and Flexible Code Generation
for Dynamic and Speculative Polyhedral

Optimization

Juan Manuel Martinez Caamaño, Willy Wolff, and Philippe Clauss

INRIA CAMUS, ICube lab., University of Strasbourg, France

Abstract. In this paper, we present a new runtime code generation tech-
nique for speculative loop optimization and parallelization, that allows
to generate on-the-fly codes resulting from any polyhedral optimizing
transformation of loop nests, such as tiling, skewing, fission, fusion or
interchange, without introducing a penalizing time overhead. The pro-
posed strategy is based on the generation of code bones at compile-time,
which are parametrized code snippets either dedicated to speculation
management or to computations of the original target program. These
code bones are then instantiated and assembled at runtime to constitute
the speculatively-optimized code, as soon as an optimizing polyhedral
transformation has been determined. Their granularity threshold is suf-
ficient to apply any polyhedral transformation, while still enabling fast
runtime code generation. This strategy has been implemented in the
speculative loop parallelizing framework Apollo.

1 Introduction

The polytope model (or polyhedral model) [7] is a powerful mathematical frame-
work for reasoning about loop nests, and for performing aggressive transfor-
mations which improve parallelism and data-locality. Although very powerful,
compilers relying on this model [3, 8] are restricted to a small class of compute-
intensive codes that can only be handled at compile-time. However, most codes
are not amenable to this model, due to dynamic data structures accessed through
indirect references or pointers, which prevent a precise static dependence anal-
ysis. On the other hand, Thread-Level Speculation (TLS) [14] is a promising
approach to overcome this limitation: regions of the code are executed in paral-
lel before all the dependences are known. Hardware or software mechanisms track
register and memory accesses to determine if any dependence violation occur.
While traditional TLS systems implement only a straightforward loop paral-
lelization strategy consisting of slicing the target loop into consecutive parallel
threads, TLS frameworks implementing a speculative and dynamic adaptation
of the polytope model have been recently proposed: VMAD [9] and Apollo [17],
where parallelizing and optimizing transformations are performed for loops ex-
hibiting a polyhedral-compliant behavior at runtime. A main limitation of these
frameworks relies on the dynamic code generation mechanism: for each target

2

loop nest, some code skeletons, which are incomplete optimized code versions
that will be completed at runtime, are generated at compile-time and embed-
ded in the final executable file. This approach has several limitations: (1) Each
skeleton only supports a limited set of loop optimizing transformations; for ex-
ample, while a given skeleton enables a combination of skewing and interchange,
it cannot support any additional transformation as tiling or fission. (2) The im-
pact of some code transformations regarding the structure of the resulting loop
nest cannot be predicted; for example, loop fission may result in an arbitrary
number of loops; another example is loop unrolling, where the best unroll fac-
tor may only be known at runtime. (3) With code skeletons, the same schedule
must be applied to all the statements of a target loop, while the polytope model
considers scheduling per statements. (4) The complicated structure of generic
code skeletons hampers the application of some compiler optimizations, as for
example automatic vectorization.

In this paper, we present a dynamic code generation mechanism for specula-
tive polyhedral optimization, that allows to apply on-the-fly any combinations of
transformations to a target loop nest, similarly to what is achieved at compile-
time by static polyhedral compilers as Pluto [3]. It is based on the compile-time
generation of code bones, which are code snippets either made of instructions
of the target loop nest, or of speculation verification instructions. These code
bones are then instantiated and assembled at runtime, according to an optimiz-
ing transformation that has just been determined from runtime profiling. The
resulting assembled code is then further optimized and compiled using the LLVM
just-in-time compiler to generate the final executable code. Our contribution has
been implemented in the speculative parallelization framework Apollo [17]. We
show on a set of benchmark codes that this code generation technique enables:
(1) significant parallel speed-ups, thanks to (2) various automatic runtime loop
optimizations that are traditionally only possible at compile-time, (3) on loops
that cannot be handled at compile-time.

The paper is organized as follows. An overview of Apollo is presented in
section 2. Section 3 details the proposed code generation mechanism (the main
contribution of this paper). Section 4 present the empirical results regarding per-
formance and time overhead of the proposed approach. Section 5 compares our
mechanism against other approaches. Finally, conclusions are given in Section 6.

2 Speculative Parallelization

Apollo1 [17] is a framework capable of applying polyhedral loop optimizations
on any kind of loop-nest2, even if it contains unpredictable control and memory
accesses through pointers or indirections, as soon as it exhibits a polyhedral-
compliant behavior at runtime. The framework is made of two components: a
static compiler, whose role is to prepare the target code for speculative paral-
lelization, and implemented as passes of the Clang-LLVM compiler [10]; and a

1 Automatic POLyhedral speculative Loop Optimizer
2 for-loops, while-loops, do-while-loops

3

runtime system, that orchestrates the execution of the code. New virtual itera-
tors, starting at zero with step one, are systematically inserted at compile-time
in the original loop nest. They are used for handling any kind of loop in the same
manner, and serve as a basis for building the prediction model and for reasoning
about code transformations.

Apollo’s static compiler analyzes each target loop nest regarding its memory
accesses, its loop bounds and the evolution of its scalar variables. It classifies
these objects as being static or dynamic. For example, if the target address of a
memory instruction can be defined as a linear function of the iterators, then it is
considered as static. Otherwise, it is dynamic and thus requires instrumentation
to be analyzed at runtime to take part of the prediction model. The same is
achieved for the loop bounds and for scalars. This classification is used to build
an instrumented version of the code, where instructions collecting values of the
dynamic objects are inserted, as well as instructions collecting the initial values
of the static objects (e.g. base addresses of regular data structures).

At runtime, Apollo executes the target loop nest in successive phases, where
each phase corresponds to a slice of the outermost loop (see Figure 1):

1. First, an on-line profiling 1© phase is launched, executing only a small num-
ber of iterations, and recording memory addresses, loop-trip counts and
scalar values.

2. 2© From the recorded values, linear functions are interpolated to build a
linear prediction model. Using this model, a loop optimizing and parallelizing
transformation is determined by invoking, on-line, the polyhedral compiler
Pluto. From the transformation, the corresponding parallel code is generated,
with additional instructions devoted to the verification of the speculation.

3. A backup 3© of the memory regions, that are predicted to be updated during
the execution of the next slice, is performed. An early detection of a mis-
prediction is possible, by checking that all the memory locations that are
predicted to be accessed are actually allocated to the process.

4. A large slice of iterations is executed 4© using the parallel optimized version
of the code. While executing, the prediction model is also verified by com-
paring the actual values against their linear predictions. If a misprediction is
detected, memory is restored 5© to cancel the execution of the current slice.
Then, the execution of the slice is re-initiated using the original 6© serial
version of the code, in order to overcome the faulty execution point. Finally,
a profiling slice is launched again to capture the changing behavior and build
a new prediction model. If no misprediction was detected during the run of

Fig. 1: Execution in slices of iterations

4

the parallel code, a next slice of the loop nest using the same parallel code
is launched.

3 Code Generation strategy

Until now, in order to achieve fast code generation, the Apollo framework has
been using code skeletons [9]. Code skeletons are incomplete transformed ver-
sions of the target loop nests that are generated at compile-time, and completed
at runtime as soon as the necessary information has been discovered and com-
puted. Each of such skeletons supports a fixed combination of loop transforma-
tions, related to a fixed loop structure. This approach becomes impractical when
supporting combinations of polyhedral transformations that may alter the loop
structure, such as loop fission, loop unrolling or even simple statement reorder-
ings. To cover every possible combination of loop transformations, we propose a
new fast code generation strategy based on code bones, which are parametrized
code snippets generated at compile-time, and assembled at runtime to result in
the transformed code.

Any speculatively optimized code is generally composed of two types of com-
putations: (1) computations of the original target code, whose schedule and
parameters have been modified for optimization purposes; and (2) computations
related to the verification of the speculation, whose role is to ensure semantic
correctness and to launch a recovery process in case of wrong speculation. These
computations are generated in two phases: (i) a compile-time phase where code
bones of each type are built, and (ii) a runtime phase where complex transfor-
mations are determined and instantiated using the code bones.

Generation of code bones: At compile time, code bones are extracted from the
control-flow graph (CFG) of the target loop nest. Each memory write instruction
yields an associated code bone, that includes all instructions belonging to the
backward static slice of the memory write instruction. In other words, these are
all the instructions required to execute an instance of the memory write. Notice
that memory read instructions are also included in code bones, since the role
of any read instruction is related to the accomplishment of at least one write
instruction. Starting from this first set of code bones (called computation bones),
a second set of bones devoted to the verification of the predictions (called ver-
ification bones) is generated. For each memory instruction of the computation
bones, that may be a write or a read, an associated verification bone is created.
These verification bones contain a verification instruction comparing the actual
accessed address to the generic predicting linear function that will be instanti-
ated at runtime. Hence, the backward slice computing the target address of the
verified memory instruction is also inserted in the verification bone. In the corre-
sponding computation bone, all these instructions are removed and replaced by
the computation of the predicting linear function. This provides better oppor-
tunities for the compiler to optimize the computation bones thanks to simpler
address computations. Similar verification bones are also created for dynamic

5

scalars and loop bounds. Each code bone is then optimized independently of the
rest of the code by the compiler. Finally, the so-built code bones are embedded in
a fat binary code in their LLVM intermediate representation form (LLVM-IR).
They will be used later by the runtime system for code generation.

Example: As an illustration, consider the loop nest in Listing 1.1. Since array
A is accessed through an indirection using array B, whose values are unknown at
compile-time, it is impossible to determine what elements of A will be updated.
The corresponding CFG is shown in Figure 2. To make the examples clearer for
the reader, instructions are shown in a simplified SSA intermediate representa-
tion. Instructions defining original loop iterators are identified by number 1© ,
memory accesses by 2© and loop exit conditions by 3© . Loop iterators are
identified as phi-nodes in the header of each loop, recalling that a phi-node is an
instruction used to select an incoming value depending on the predecessor of the
current basic block. In order to handle this loop nest at runtime for speculative
optimization, code bones are generated. Since there is only one memory write,
one computation bone is built. Array B is accessed through a linear memory
reference that is identified at compile-time. Hence, only one verification bone is
built, which is related to the access of array A. The computation bone is shown
in Figure 3. The computations of the predictions for the original iterators and
addresses are identified by number 1© , while the memory access instructions
using the predicted address by 2© . The associated verification bone is shown
in Figure 4, where the computations of the predicted addresses are identified by
number 1© , number 2© points out the load of B[j] using the predicted memory
address, original ptr calculates the actual address of A[B[j]], while the verifi-
cation instruction is identified by 3© , which compares original ptr against the
prediction stored in A.pred. Notice that this bone includes the original address
computations. Variables vi.0 and vi.1 stand for the virtual iterators that are
used as a basis for building the prediction model. They are passed as parameters
to the code bone. The linear functions of the prediction model are interpolated
in terms of these iterators. Variables coef i.0-1, coef j.0-2, coef a.0-2 and
coef b.0-2 are the coefficients of the linear functions. These coefficients will be
instantiated and replaced by constant values at runtime.

Runtime composition of code bones: The runtime code generation process is de-
picted in Figure 5. When linear interpolating functions have been successfully
built from the on-line profiling phase, they are used to build the encoding of a
loop nest which is compliant with the polyhedral model, using the OpenScop
format [2]. This polyhedral representation is then given as input to Pluto to
perform dependence analysis, and to compute an optimizing and parallelizing
transformation. Pluto’s result, also in OpenScop, is then passed to the code gen-
erator Cloog [1] to obtain the polyhedral scan, i.e., the new loops and iterators
for the statements. Then, a dedicated translation proccess generates LLVM-IR
from Cloog’s output. This translation process is straightforward: Cloog’s out-
put recalls some constructs in C code like for-loops, simple if-conditions and
statement invocations. This code invokes the code bones and instantiates the

6

for (i = 0 ; i < 900 ; ++i)
for (j = 0 ; j < 900 ; ++j)

A[B[j]] += i + j ;

Listing 1.1: A simple loop nest

Fig. 2: CFG of a simple loop nest

Fig. 3: Computation bone Fig. 4: Verification bone

Prediction
model

OpenScop
representation

OpenScop
encoding

Optimized code
OpenScop

representation

Speculatively
optimized code
with code bones

Cloog +
translation

Speculatively
optimized code

(executable)

LLVM-JITPluto

Fig. 5: Runtime code generation

embedded linear functions according to the schedule provided by Cloog. Notice
that a given bone may be invoked several times, but with different parame-
ters to instantiate the linear functions. This may happen in case of loop fission
for example. Finally, the resulting code is optimized further and converted into
executable form using the LLVM just-in-time compiler.

Transformation selection overhead: The selection of a loop transformation is
performed using the polyhedral compiler Pluto. However in [18], it has been
shown that the execution time of Pluto increases in a roughly n5 complexity in
the number of statements in the system. In consequence, for complex kernels
involving many dependences, Pluto can introduce a high time overhead which
is inadequate for a runtime usage. Meanwhile the availability of a just-in-time
polyhedral compiler, we bypass this issue by handling codes that may yield a
high overhead of Pluto in a specific way. Kernels which are associated with more
than 5 computation bones are classified as complex, while the others are classi-
fied as simple. For simple kernels, Pluto’s time is masked by the execution of a
slice of the original serial code. Apollo then starts executing the parallel code
as soon as it is ready. For complex kernels, contiguous code bones in the same
iteration domain are fused into a single bone. The execution is then equivalent

7

paral le l for (t2=0; t2<=899; t2++)
VerifBone (s l i c e l ow e r , t2) ;

paral le l for (t2=0; t2<=899; t2++)
for (t1=s l i c e l ow e r ; t1<=s l i c e u pp e r ; t1++)

CompBone(t1 , t2) ;

Listing 1.2: Generated code

Fig. 6: CFG of the verification code
Fig. 7: CFG of the computation code

to their serial executions. Notice that this fused bone can perform verification
and multiple memory-writes. Simplification of complex kernels is achieved by
fusing bones until the total number reaches a given threshold. From our ex-
periments, this threshold has been fixed to 15 bones. Then Pluto is invoked to
select a transformation. If the threshold cannot be reached, Pluto is used solely
for dependence analysis, to determine which loops in the original code may be
parallelized, without any additional transformation.

Optimization of the verification: Verification bones exhibit three specific opti-
mization opportunities: (1) While computation bones often participate in depen-
dencies, verification bones may not. Such verification bones are extracted into
a separate loop nest, which is run before the rest of the bones in a inspector-
executor fashion. (2) For these latter verification bones, it is possible to identify
dimensions of the iteration domain (i.e., loop indices), for which the the predict-
ing linear functions is invariant. This is achieved by checking the linear functions:
if the coefficients multiplying the iterator of a dimension are zero, the computa-
tion remains invariant for this dimension. Thus, only the first iteration is run.
(3) When some operands of the computing functions are detected as being neces-
sarily linear, while some others require some memory accesses to be performed,
outer loops embedding the memory accesses are fully executed, while the inner
loops computing linear operands only require the first iteration to be executed.

Example (continued): Let us now assume that at runtime, each array element
B[j] is assigned with j. Thus, Apollo discovers, through profiling and interpo-

8

lation, that addresses touched by the store instruction can be represented by
a linear function of the form: j + base address. The dependence spawned is
an output dependence carried by the outermost loop. The large reuse distance
between elements of A is penalizing regarding temporal data locality. Since the
store instruction is going to use the predicting linear function as its target ad-
dress, accesses to array B and A are not dependant anymore. Notice also that
all the linear functions for verifying the memory access have 0 as coefficient for
the outermost loop iterator. Then, it is sufficient to execute a single iteration
of this loop. Both loop nests are sent to Pluto: a first single-loop nest accessing
array B and verifying that its elements yield addresses equal to the predicting
linear function, and a second two-loop nest computing and storing elements of
array A using the linear function as the target address. Pluto suggests to paral-
lelize the single verification loop, to interchange loops i and j in the second nest
to improve temporal data locality, and also to parallelize the outermost loop.
For clarity, the resulting code built by the code generator is represented in C,
in Listing 1.2, although every operation is performed on LLVM-IR. Parameters
slice lower and slice upper are the bounds of the slice of the original loop
nest that will be run speculatively by Apollo. The CFGs of both generated loop
nests are represented in Figures 6 and 7. The invocations to the respective code
bones are marked with number 2© . Notice the branch (marked with number
3©) to the rollback procedure in case of misprediction in the verification code.
Number 1© marks the iterators of the new loops.

4 Experiments

Our experiments were ran on two AMD Opteron 6172 processors of 12 cores
each. Reported results are obtained by averaging the outcome of three runs.
The tile sizes were always set to Pluto’s default (32 for each dimention). The
set of benchmarks has been built from a collection of benchmark suites, such
that the selected codes include a main loop nest and highlights Apollo’s capa-
bilities: SOR from the Scimark suite3, backprop and needle from the Rodinia
suite [5]; dmatmat, ispmatmat, spmatmat, djacit and pcg from the SPARK00
suite of irregular codes [13], mri-q and stencil from the Parboil suite [16], and
finally seidel-2d, which is a special version of the code belonging to the Poly-
bench suite4, in which the arrays are allocated dynamically, thus yielding pointer
aliasing issues. The input problem sizes are as follows: dmatmat, ispmatmat

and SOR: 3000 × 3000 matrices; spmatmat (square): 2500 × 2500 matrices;
spmatmat (diagonal): 8000×8000 matrices; spmatmat (random): 2000×2000
matrices with 3000000 non-zero elements; spmatmat (worst case scenario):
4000 × 4000 matrices with 1600000 non-zero elements; pcg: 1100 × 1100 matri-
ces; seidel-2d: 20, 000 × 20, 000 matrices; needle: 24, 000 × 24, 000 matrices;
stencil: 4000 × 4000 matrices; mri-q: two vectors of sizes 2048 and 262,144;

3 http://math.nist.gov/scimark2/
4 http://sourceforge.net/projects/polybench

9

Table 1: Number of code bones and applied transformations.

Benchmark #comp #verif Applied
-bones -bones transformation

needle 1 1 Tile + Skew + Vectorize + Unroll
SOR 1 6 Tile + Skew + Vectorize + Unroll
seidel-2d 1 10 Tile + Skew + Unroll
dmatmat 1 5 Tile + Unroll
ispmatmat 1 8 Tile + Unroll
spmatmat 1 11 Tile + Vectorize + Unroll
stencil 1 2 Tile + Interchange + Vectorize + Unroll
djacit 7 5 Skew + Unroll
mri-q 2 1 Interchange + Unroll
backprop 2 4 Interchange + Vectorize + Unroll
pcg 21 33 Identity + Unroll

backprop: a neural-network with 80,000 input units, 512 hidden units and 16
output units.

Table 1 shows the number of generated bones and the optimizing transfor-
mations that were applied on-the-fly, in addition to parallelization. For every
benchmark, except spmatmat, mispredictions are detected in advance, during
backup, and before launching the speculatively-optimized code, as explained in
Section 2. Codes djacit and pcg are both classified as complex : code bones
where automatically fused to accelerate Pluto’s transformation selection. Code
djacit was simplified to 6 bones, while pcg was simplified at maximum to 21
bones. For the latter, the identity loop transformation was used since the total
number of bones remained over the threshold of 15.

To emphasize different features of Apollo, four different inputs were used for
spmatmat: (i) a square matrix, (ii) a band matrix, (iii) a randomly distributed
matrix, and (iv) a matrix yielding the worst-case scenario for Apollo. Input (i)
exhibits a single linear phase, which is conducive to Apollo. Input (ii) yields two
different phases: the input band matrix has a constant number of elements per
rows, excepting in the very last rows where this number is decreasing. Apollo is
successful in optimizing the first large phase where rows have a constant num-
ber of elements. But since this number decreases in the last rows, the change
of memory accesses and loop bounds yields a rollback, followed by instrumenta-
tion and serial loop completion. For input (iii), Apollo is not able to interpolate
linear functions to build the prediction model, and continuously switches be-
tween instrumented and original executions of the loop. The last input, (iv),
represents the worst case scenario for Apollo, consisting of multiple phases of
a few iterations. After each instrumented execution for profiling, Apollo suc-
cessfully builds a prediction model and generates an optimized code; but when
executing the speculatively-optimized version, a misprediction is detected, and
a rollback occurs. For this last input, the execution yields 6 rollbacks. Figure 8
shows a comparison with inputs (iii) and (iv), where Apollo is not able to execute
any optimized slice of iterations successfully. Caption spmatmat - non-linear

10

stands for the previously described input (iii), while caption spmatmat - worst

case scenario stands for input (iv). Even if Apollo imposes an overhead, it
does not influence execution time significantly from clang’s serial version. More-
over, even if input (iv) yields the worst case scenario – where the framework
continuously performs code generation, backup, and fails during the optimized
code execution, and rollbacks – the performance impact is weak.

As mentioned, we can distinguish four parts in the code generation process
of Apollo: (i) encoding the code bones in an OpenScop object, (ii) determining a
polyhedral transformation (Pluto), (iii) generating the scan (Cloog), and finally
(iv) generating executable code (LLVM-JIT). In Figure 9, we only depict the
time overheads for the last three stages. Indeed, the time spent encoding the
code bones information (i) is negligible when compared to the other parts (0.012
sec. at maximum, 0.004 sec. on average). Figure 10 shows the percentage of the
total execution time which is spent in the main steps of Apollo. Interpolation,
code generation and transformation selection phases are grouped with caption
’code-generation’. The backup time remains lower than 5% of the execution time
for most of the benchmarks. Instrumentation is one of the most time-consuming
phases of Apollo, however mostly as fast as executing the original serial code. It is
particularly large for backprop, since the original serial code is slow due to poor
data locality (column-major array access). Since the code generation phase is
always executed in parallel with the original code, the percentage corresponding
to the original code execution is always higher than the one corresponding to the
code generation phase. Figure 11 show a comparison between the code generation
strategy using skeletons used by Apollo and the one proposed in this paper
with code bones. To compute the speed-ups, we selected the best serial version
generated among the gcc-4.8 or clang-3.4 compilers with optimization level 3
(-O3). The code bones approach outperforms the code skeletons approach for
codes that benefit from transformations not supported by the code skeleton
approach, such as tiling. For benchmarks where the applied transformation is
the same with both approaches, similar speed-ups are obtained. For SOR, tiling
is required for parallelization.

Fig. 8: Slow-downs compared to
clang and gcc in worst-case sce-
narios.

needle
seidel-2d

dmatmat
ispmatmat

spmatmat(square)
spmatmat(diagonal)

pcg
stencil

djacit
mri-q

backprop
SOR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Transformation(Pluto) Scan(Cloog) Jit-compilation(llvm)

Fig. 9: Total code-generation times.

11

needle

seidel-2d

dmatmat

ispmatmat

spmatmat(square)

spmatmat(diagonal)

pcg

stencil

djacit

mri-q

backprop

SOR

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Code-Generation Instrumentation Original Backup Rollback Parallel

Fig. 10: Overheads of Apollo among the total execution time(24 threads).

needle
seidel-2d

dmatmat
ispmatmat

spmatmat(square)
spmatmat(diagonal)

pcg
stencil

djacit
mri-q

backprop
SOR

0

2

4

6

8

10

12

14

16

18

20

Code-Skeletons(8th) Code-Bones(8th) Code-Skeletons(24th) Code-Bones(24th)

S
pe

ed
up

 o
ve

r
be

st
 o

f c
la

ng
/g

cc

Fig. 11: Speedup against the best of clang/gcc (8 and 24 threads)

5 Related Work

The Apollo framework is a major revision of a previous framework called VMAD
[9]. To generate parallel code on-the-fly, VMAD builds code skeletons at compile-
time, whose limitations have been addressed in this paper.

Most TLS systems [11, 15, 12] are limited to simple parallelization schemes:
the outermost loop of the original loop nest is optimistically sliced into specu-
lative parallel threads. Such a scheme does not consider complex reordering of
iterations and statements, thus, the implemented code generation mechanisms
are reduced to different statically generated and simple code versions, and a
runtime system that switches between them. Softspec [4] represents preliminary
ideas of our approach. However, no code transformations are performed, only
slicing the loop for parallel execution.

Polly [8] may be seen as the static counterpart of our proposal. Polly is a
polyhedral compiler built on top of LLVM. However, since Polly operates only at
compile-time, without any coupled runtime system, it is limited to codes where
precise information is available in the LLVM-IR. SPolly [6] is an extension to
enlarge its applicability, by detecting common expression values and aliasing
properties that prevent polyhedral optimization. During a first execution of the
program, a profile is generated; values and aliasing properties are deduced, and
specialized versions of the loop are created. These specialized code versions are
not generated at runtime. There is no speculation and thus no verification code.

12

6 Conclusion

The proposed runtime code generation strategy offers the opportunity of apply-
ing any polyhedral loop transformation on-the-fly, without paying a penalizing
time overhead. It also enlarges the scope of speculative parallelization by bringing
it closer to what a static optimizing compiler may achieve. The CFG abstraction
using code bones could also be employed for other goals related to dynamic op-
timization, as soon as the runtime process consists in scheduling, guarding and
instantiating some sub-parts of the target code.

References

1. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT (2004)

2. Bastoul, C.: Openscop: A specification and a library for data exchange in polyhe-
dral compilation tools. Tech. rep. (2011)

3. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI (2008)

4. Bruening, D., Devabhaktuni, S., Amarasinghe, S.: Softspec: Software-based spec-
ulative parallelism. In: ACM FDDO (2000)

5. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S.H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: IISWC (2009)

6. Doerfert, J., Hammacher, C., Streit, K., Hack, S.: Spolly: Speculative optimizations
in the polyhedral model. In: IMPACT (2013)

7. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part 2 :
multidimensional time. IJPP (1992)

8. Grosser, T., Größlinger, A., Lengauer, C.: Polly - performing polyhedral optimiza-
tions on a low-level intermediate representation. PPL (2012)

9. Jimborean, A., Clauss, P., Dollinger, J.F., Loechner, V., Martinez, J.M.: Dynamic
and Speculative Polyhedral Parallelization Using Compiler-Generated Skeletons.
IJPP (2014)

10. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. CGO’04 (2004)

11. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: Posh:
A tls compiler that exploits program structure. In: PPoPP (2006)

12. Rauchwerger, L., Padua, D.: The lrpd test: Speculative run-time parallelization of
loops with privatization and reduction parallelization. SIGPLAN Not. (1995)

13. van der Spek, H., Bakker, E., Wijshoff, H.: Spark00: A benchmark package for the
compiler evaluation of irregular/sparse codes. arXiv:0805.3897 (2008)

14. Steffan, J., Mowry, T.: The Potential for Using Thread-Level Data Speculation to
Facilitate Automatic Parallelization. HPCA ’98

15. Steffan, J., Colohan, C., Zhai, A., Mowry, T.: The stampede approach to thread-
level speculation. ACM TCS (2005)

16. Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., Chang, L.W., Anssari, N., Liu,
G.D., m. Hwu, W.: The Parboil technical report. Tech. rep., IMPACT (2012)

17. Sukumaran-Rajam, A., Martinez, J., Wolff, W., Jimborean, A., Clauss, P.: Specula-
tive Program Parallelization with Scalable and Decentralized Runtime Verification.
In: Runtime Verification (2014)

18. Upadrasta, R., Cohen, A.: Sub-polyhedral scheduling using (unit-)two-variable-
per-inequality polyhedra. POPL ’13 (2013)

