

Stochastic parameterization of geophysical flows through modelling under location uncertainty

Valentin Resseguier, Etienne Mémin, Bertrand Chapron, Pierre Dérian

▶ To cite this version:

Valentin Resseguier, Etienne Mémin, Bertrand Chapron, Pierre Dérian. Stochastic parameterization of geophysical flows through modelling under location uncertainty. Data Analysis and Modeling in Earth Sciences (DAMES) 2016, Sep 2016, Hambourg, Germany. hal-01377719

HAL Id: hal-01377719 https://hal.inria.fr/hal-01377719

Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stochastic parametrization of geophysical flows through modeling under location uncertainty

Valentin Resseguier,

Pierre Dérian, Etienne Mémin, Bertrand Chapron

Motivations

- Rigorously identified sudgrid dynamics effects
- Injecting likely small-scale dynamics
- Studying bifurcations and attractors

• Quantification of modeling errors

Ensemble forecasts and data assimilation

Contents

- Randomized dynamics
- SQG under Moderate Uncertainty
- Lorenz under location uncertainty

Randomized dynamics

Random equations

Random initial conditions

Underdispersive + need large ensemble

Arbitrary Gaussian forcing

Adding energy + wrong phase

• Averaging, homogenization

Assumptions and energy issues

 Adding white random velocity

$\frac{D\Theta}{Dt} = 0$

Advection of tracer Θ

$$\partial_t \Theta + w^* \cdot \nabla \Theta + \sigma \dot{B} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2}a \nabla \Theta\right)$$

$$\partial_t \Theta + \mathbf{w}^{\star} \cdot \nabla \Theta + \boldsymbol{\sigma} \dot{\boldsymbol{B}} \cdot \nabla \Theta = \nabla \cdot \left(\frac{1}{2} \boldsymbol{a} \nabla \Theta\right)$$

SQG under Moderate Uncertainty

SQG MU

Code available online

$t = 17 \,\mathrm{days}$

Reference flow:

deterministic

SQG 512 x 512

$t = 17 \,\mathrm{days}$

Reference flow:

deterministic

SQG 512 x 512

One realization

One realization

Ensemble

Spectrum of the errors and its estimation at t=12 days

Ensemble

Spectrum of the errors and its estimation at t=12 days

Summary of QG models

- Better small scales
- Estimate position and amplitude of errors
- Extreme events
- Bifurcations

 under Strong Uncertainty: Simple 2D description of frontolysis/frontogenesis

> Code SQG MU: link from Fluminance website - V. Resseguier

Lorenz model under location uncertainty

Do large-scale (diffusive) models lead to over-representing "stable"-states in ensemble simulations?

$$\begin{aligned} & \text{Lorenz model(s)} \\ & \frac{\mathrm{d}X}{\mathrm{d}t} = \Pr\left(Y - X\right) - \frac{4}{2\Upsilon}X \\ & \mathrm{d}Y = \left[X(\rho - Z) - Y - \frac{4}{2\Upsilon}Y\right]\mathrm{d}t + \frac{\rho - Z}{\Upsilon^{1/2}}\mathrm{d}B_t \\ & \mathrm{d}Z = \left[XY - bZ - \frac{8}{2\Upsilon}bZ\right]\mathrm{d}t + \frac{Y}{\Upsilon^{1/2}}\mathrm{d}B_t \end{aligned}$$

- (usual) **deterministic** model ~ DNS, accurate but impossible to compute
- (deterministic) **diffusive** model ~ LES
- **stochastic** model under location uncertainty
 - ➡ behaviors of ensembles?

Short time behavior

Comparison ensemble ↔reference 3 metrics: minimum distance, bias, RMS distance

Short time behavior

16

Long time

Long time

Long time

100 initial conditions

100 initial conditions

Conclusion

Conclusion

- Random transport applicable to any dynamics
- Better small scales
- Efficient spreading of the ensemble
- Likely scenarios
- Exploration of the attractor

Thank you for your attention

Code SQG MU: link from Fluminance website - V. Resseguier

Drift correction

Drift correction

Bifurcations in SQG

tracked by SQG MU

Reference flow: deterministic SQG

512² versus 128²

Initial condition 1

Reference flow: deterministic SQG

512² versus 128²

Initial condition 1

SQG under Strong Uncertainty

SQG SU

Mesoscale divergence

Geostrophic balance

$$m{f} imes m{u} = -rac{1}{
ho_b} m{
abla} p' + rac{a}{2} \Delta m{u}$$

$$\bigtriangledown \left\{ oldsymbol{
abla} \cdot oldsymbol{u} \propto \Delta oldsymbol{
abla}^{oldsymbol{oldsymbol{\omega}}^{oldsymbol{oldsymbol{\omega}}} \cdot oldsymbol{u}
ight\}$$

Filtering of model outputs:

Gula, Jonathan, M. Jeroen Molemaker, and James C. McWilliams "Gulf Stream dynamics along the southeastern US seaboard." *Journal of Physical Oceanography* 45.3 (2015): 690-715.

Filtering of model outputs:

Gula, Jonathan, M. Jeroen Molemaker, and James C. McWilliams "Gulf Stream dynamics along the southeastern US seaboard." *Journal of Physical Oceanography* 45.3 (2015): 690-715.

Spatial test

Spatial test

Spectral test

Long time: weak noise

Long time: weak noise

Long time: weak noise

Computing the visit rate

- Discrete covering of the Lorenz attractor (GAIO)
 → 611,550 cubic boxes of radius=0.15625
- For each ensemble, the visit rate:

 $\tau(T) = \frac{\#\{\text{ unique boxes visited by ensemble over } [0;T]\}}{\text{total } \# \text{ of boxes}}$

