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Abstract. In the last recent years, thanks to the increasing power of the computational ma-
chines, the interest in more and more accurate numerical schemes is growing. Methods based
on high-order approximations are nowadays the common trend in the computational research
community, in particular for CFD applications.

This work is focused on Powell-Sabin (PS) finite elements, a finite element method (FEM)
based on PS splines. PS splines are piecewise quadratic polynomials with a global C1 conti-
nuity, defined on conforming triangulations. Despite its attractive characteristics, so far this
scheme hasn’t had the attention it deserves. PS splines are adapted to unstructured meshes
and, contrary to classical tensor product B-splines, they are particularly suited for local re-
finement, a crucial aspect in the analysis of highly convective and anisotropic equations. The
additional global smoothness of the C1 space has a beneficial stabilization effect in the treat-
ment of advection-dominated equations and leads to a better capturing of thin layers. Finally,
unlike most of other typology of high-order finite elements, the numerical unknowns in PS ele-
ments are located in the vertices of the triangulation, leading to an easy treatment of the parallel
aspects.

Some geometrical issues related to PS elements are discussed here, in particular, the gen-
eration of the control triangles and the imposition of the boundary conditions. The PS FEM
method is used to solve the compressible Euler equation in supersonic regime. A classical
shock-capturing technique is used to reduce the oscillation around the discontinuity, while a
variational multiscale formulation is used to introduce numerical diffusion in the streamwise
direction. Some typical numerical examples are used to evaluate the performance of the PS
discretization.

1
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1 INTRODUCTION

Numerical methods with high degrees of regularity are of interest in many physical appli-
cations, such as magnetohydrodynamics, shells analysis and vibrations. In particular, finite-
element methods based on spline shape functions have raised a particular interest in the recent
years. On one hand, C1 spline methods allow to discretize higher-order derivatives (that is,
derivatives of order superior to the second), and on the other hand, they provide accurate geo-
metrical representation of the computational domain, see for example [1, 3] in the context of
Isogeometric Analysis. Moreover, it has also been shown recently that the additional global
smoothness of the spline interpolant introduces stability to the numerical solution for highly
convective equations, see [1] and [7], and also for turbulence computations, see [2]. Hence,
finite element methods based on spline shape functions can be advantageous also in the context
of fluid-dynamic problems.

Nowadays, splines are extensively used in the graphical design industry to create smooth
surfaces. The success of splines is basically due to the fact that they have very attractive and
unique characteristics: they have a compact representation, they are able to represent curves
and surfaces with an arbitrary level of regularity, simply increasing the polynomial degree of
the basis, and they are efficient in terms of locality, that is, they can be modified locally by
moving a control point, without perturbing the rest of the curve. Spline curves are usually
represented as a linear combination of basis functions, called B-splines. The basis functions
of a given order p are defined with a recursive relation starting with piecewise constant basis
functions (that is, p = 0),

Bi,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise

Bi,p(ξ) =
ξ − ξi
ξi+p − ξi

Bi,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ),

where the points ξi are the knots of the spline, i = 1, 2, . . . , n + p + 1, and n is the number of
basis functions. Hence, the spline curve expressed as a combination of B-splines is

S(ξ) =
n∑
i=1

Bi,pPi, (1)

where Pi are the control points of the spline.
Starting from the one-dimensional case (1), B-splines can be extended to higher dimensions

through a tensor product representation. However, tensor product B-splines are restricted to
structured rectangular meshes. The refinement procedure with tensor B-splines relies on the
insertion of knots, leading hence to a global modification of the domain discretization. Thus, no
local refinement is possible. Various solutions are proposed in literature to solve this limitation,
for example, the introduction of T-splines in [3].

This work is focused on another approach, based on the definition of bivariate splines on
irregular triangulations, that is, Powell-Sabin (PS) splines [5, 6, 7, 8]. PS splines are piece-
wise quadratic polynomial with C1 continuity, defined on a unstructured triangulation of the
domain. The major advantage with respect to tensor product B-splines is that PS splines allow a
straightforward adaptive refinement of the mesh, which is a key ingredient in the simulation of
anisotropic equations. Another advantage of PS elements is related to the fact that the unknowns
are concentrated on the nodes of the triangulation. This means that there are no unknowns on

2
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the element faces or in the interior of the elements. This is not the case for other C1 interpola-
tion techniques, such as, for example, the Clough-Tocher elements. The consequence is that the
stencil is the same for each node of the mesh, which produces a linear system matrix with a reg-
ular block shape that facilitates the implementation aspect, enhances the parallel performance
and improves the efficiency of the linear system solution.

In this work, a PS finite element method is presented for the solution of the two dimensional
(2D) compressible Euler equation in supersonic regime. A SUPG stabilization technique is used
to introduce numerical dissipation in the streamwise direction only, and an isotropic diffusion
terms is added to avoid oscillation around the discontinuities.

The outline of the paper is as follows. Section 2 introduces the PS splines and their represen-
tation. Section 3 deals with the geometrical and mathematical tools to define the PS elements
and in particular the generation of the shape functions. A detailed discussion is also given on the
imposition of the boundary conditions. Finally, in Section 4 two classical numerical examples
are presented.

2 POWELL-SABIN SPLINES

In this section is introduced the framework and the notation to define spline functions on a
triangulation of a polygonal domain. Starting from the definition of bivariate polynomials on a
triangle, the goal is to obtain an interpolant of a generic function with C1 continuity. Consid-
ering a single triangle Ωk of vertices Vi = (xi, yi), with i = 1, 2, 3, any bivariate polynomial
p(x, y) of degree ≤ 2 in the space Π2 = {

∑2
i=0

∑2−i
j=0 ai,jx

iyj, ai,j ∈ R} can be written in the
Bernstein-Bézier representation

p(x, y) := p(ξ) =
∑

i+j+k=2
i,j,k≥0

bi,j,kB
2
i,j,k(ξ(x, y)), (2)

where ξ = (ξ1, ξ2, ξ3) are the barycentric coordinates of a point (x, y) ∈ R2 and B2
i,j,k(ξ) are

the Bernstein polynomials of degree 2 in Ωk, that is

B2
i,j,k =

2!

i!j!k!
ξi1ξ

j
2ξ
k
3 . (3)

The set of Bernstein polynomials B2
i,j,k(ξ) is a basis for the space of polynomials Π2, see [4],

hence the six coefficients bi,j,k uniquely define the second order polynomial p(x, y) and they are
called the Bézier ordinates with respect to the triangle Ωk

1.
Let Ω ⊂ R2 be a polygonal domain with boundary ∂Ω. Let T be a conforming triangulation

of Ω with vertices Vl, l = 1, . . . , Nv and elements Ωe, e = 1, . . . , Ne. Defining S2
1 as the

linear space of piecewise quadratic polynomials on T , the following interpolation problem is
considered: given any set of triples (fl, fxl, fyl), l = 1, . . . , Nv, find s(x, y) ∈ S2

1 such that,

s(Vl) = fl,
∂s

∂x
(Vl) = fxl,

∂s

∂y
(Vl) = fyl, l = 1, . . . , Nv. (4)

It is clear that such a problem has no solution in general: in fact, problem (4) requires the
imposition of nine parameters to define the second order polynomial on each triangle, while
only six coefficients are available, see equation (2).

1Note that (2) can be expanded as p(ξ) = b2,0,0ξ
2
1+b0,2,0ξ

2
2+b0,0,2ξ

2
3+2b1,1,0ξ1ξ2+2b1,0,1ξ1ξ3+2b0,1,1ξ2ξ3.
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Thus, to obtain a solution to the interpolation problem (4), one possibility is to subdivide
each triangle in sub-triangles and to define the interpolant in the refined triangulation. One of
the solutions proposed by Powell and Sabin in [5] is based on the subdivision of each triangle
in T into six smaller triangles (PS6-split). Hence, the conditions in (4) are imposed only on the
vertices of the original triangulation, while in the other added nodes only C1 continuity of the
interpolating function is imposed. More details can be found in [5].

The so called Powell-Sabin refinement of T is denoted with T ∗ and is obtained dividing each
triangle in T in six sub-triangles. The procedure to define T ∗ is described in [7] and reads as
follows.

• Select a split point Ck inside each triangle Ωk and connect it to the three vertices of Ωk.

• For each pair of triangles Ωp and Ωq, with a common edge, connect the two points Cp and
Cq. If Ωp is a boundary triangle, connect also Cp to an arbitrary point on the boundary
edge.

The PS refinement defines also a set of points, called PS points, associated to each vertex.
The PS points associated to the vertex Vl are defined as the midpoints of all the edges of the
PS refinement containing Vl, plus the point Vl itself. The PS points are fundamental for the
definition of the shape functions as explained in the next section.

Having defined the PS refinement T ∗, the linear space of piecewise quadratic polynomials
with C1 continuity can be denoted as S1

2(T ∗). Each element S1
2(T ∗) is uniquely defined by

its values and derivatives at the vertices of T , thus the functional space S1
2(T ∗) has dimension

3Nv.

3 POWELL-SABIN FINITE ELEMENTS

In this section PS splines are introduced in a finite-element framework to solve partial differ-
ential equations, defining shape functions belonging to the space S1

2(T ∗). Hence, it is necessary
to express each element s(x, y) ∈ S1

2(T ∗) as a linear combination of PS spline basis functions,
that is

s(x, y) =
Nv∑
l=1

3∑
r=1

cl,rB
(r)
l (x, y),

where the functions B(r)
l are called Powell-Sabin B-splines and cl,r are the coefficients of the

representation.
Each B-spline B(r)

l (x, y) can be seen as the solution of the interpolation problem (4) with
all (fi, fxi, fyi) = 0 except for (fl, fxl, fyl) = (α, β, γ) 6= 0. The quantity (α, β, γ) is called a
triple and represents the value of the function and the derivatives with respect the Cartesian axes
in a given vertex. Then, it is easy to see that each basis B(r)

l , r = 1, 2, 3, vanishes outside the
moleculeMl of vertex Vl defined as the union of all triangles Ωe containing Vl. This guarantees
the compactness of the support for PS B-splines.

In principle, it is possible to define the PS B-splines simply choosing, for each vertex
Vl ∈ T , three linearly independent vectors (αl,r, βl,r, γl,r), r = 1, 2, 3, and solving the in-
terpolation problem (4). This procedure generates three linearly independent basis functions
for each vertex. However, in a finite element context, it is interesting to work with normalized
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B-splines, that is, basis functions that form a partition of unity on Ω, i.e.

B
(r)
l (x, y) ≥ 0 ∀x, y ∈ Ω,

Nv∑
l=1

3∑
r=1

B
(r)
l (x, y) = 1 ∀x, y ∈ Ω,

which leads to the following constrains on the triples

3∑
r=1

αl,r = 1,
3∑
r=1

βl,r = 0,
3∑
r=1

γl,r = 0.

This property is also crucial to ensure the completeness of the basis.
The procedure proposed in [8] allows to obtain PS B-splines that form a partition of unity

and with good characteristic from a numerical point of view. It is based on the fact that each
set of three independent B-splines associated to a vertex Vl uniquely define a control triangle
Tl = (Ql,1,Ql,2,Ql,3) for the PS spline, with vertices Ql,j = (Xl,j, Yl,j), j = 1, 2, 3. The
control triangle of a PS spline as a role similar to the control polygon for univariate splines in
terms of control of the shape of the spline. In fact, in [8] it is shown that the control triangle
and the coefficients cl,j define three control points (Xl,j, Yl,j, cl,j) defining a spatial plane that is
always tangent to the spline surface at the vertex Vl. Optimal shape functions from a numerical
point of view are associated to a minimal area control triangle [8].

The points Ql,j are related to the three triples and the vertex Vl via the linear systemαl,1 αl,2 αl,3
βl,1 βl,2 βl,3
γl,1 γl,2 γl,3

Xl,1 Yl,1 1
Xl,2 Yl,2 1
Xl,3 Yl,3 1

 =

xl yl 1
1 0 0
0 1 0

 . (5)

The positivity of the B-splines associated to the vertex Vl is guaranteed if all the barycentric
coordinates with respect the control triangle Tl of all the PS points associated to Vl are positive.
This means geometrically that all the PS points associated to Vl are contained in the control
triangle Tl, see Figure 1.

Hence, the procedure of computing the three shape functions for each vertex is:

• find a suitable control triangle for the vertex Vl that contains all the PS points associated
to Vl;

• compute the triple defining the three shape functions solving the linear system (5).

The control triangles for each vertex are constructed looking for the minimal area triangle that
contains all the PS points. This lead to an optimization problem consisting in circumscribing a
convex polygon with a minimal area triangle. An optimal algorithm is proposed by O’Rourke
in [9] for solving such a problem, with a computational cost O(n), with n the number of PS
points. This is the algorithm used here in the numerical tests. In Figure 1 is depicted an example
of control triangle, with the relative PS control points, obtained with the O’Rourke algorithm.

In order to understand the role of the control triangle in the definition of the basis functions,
a comparison of the condition number of the linear system matrix as been carried out for three
structured computational meshes for a square domain [0, 1]×[0, 1]. In the first case, the minimal
area triangle have been used to compute the basis. In the second case, the minimal area triangle
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Vl

Figure 1: Powell-Sabin control triangle and relative Powell-Sabin points for the vertex Vl.

Table 1: Condition number comparison for the stiffness matrix and the mass matrix obtained with optimal and
non-optimal control triangles in a square domain: Ne is the number of triangular elements of the mesh, h is the
element size.

Cond. numb. of the stiffness matrix Cond. numb. of the mass matrix
Ne h optimal non optimal optimal non optimal
200 70.71E-03 83 389 171 4466
800 35.36E-03 326 453 163 4466

3200 17.68E-03 1305 1585 154 4469

has been expanded moving (to a distance equal to five times the original one) each vertex along
the line joining the vertex with the node to which the triangle belongs. Table 1 shows the results:
it is possible to notice how increasing the control triangle area degrades the condition number
of mass matrix and the stiffness matrix.

4 STABILIZED APPROXIMATION OF THE EULER EQUATIONS WITH POWELL-
SABIN ELEMENTS

The 2D inviscid Euler equations of gas dynamics are considered,

∂ρ

∂t
+ ∇·(ρu) = 0

∂ρu

∂t
+ ∇·(ρu⊗ u + pI) = 0

∂ρE

∂t
+ ∇·((ρE + p)u) = 0

(6)

where ρ is the density, u is the velocity vector, E is the total energy, I is the identity matrix
and p is the pressure, which is defined by the equation of state p = (γg − 1)ρε, γg = 1.4 is the
ratio of specific heats and ε = E − 1/2‖u‖2 is the internal energy.

Problem (6) is recast in a conservative form,
∂U

∂t
+ ∇·F = 0, (7)

having defined the vector of conservative variables U = (ρ, ρu, ρv, ρE)T and the flux tensor F
with components, in Cartesian coordinates,

F =
[
F x F y

]
, F x =


ρu

ρu2 + p
ρuv

(ρE + p)u

 , F y =


ρv
ρuv

ρv2 + p
(ρE + p)v

 ,
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where u and v are the x and y components of the velocity vector.
A stabilized formulation based on PS splines is considered to solve problem (7). To simplify

the presentation, in an abuse of notation, the same symbol is used for the numerical approxima-
tion, belonging to the finite dimensional space, and the exact solution U . Hence, the stabilized
finite element problem corresponding to (7) reads: find U ∈ [S1

2(T ∗)]4 such that∫
Ω

V · ∂U
∂t

dΩ−
∫

Ω

∇V ..F dΩ +

∫
∂Ω

FV · n dΓ +DSUPG +DSC = 0, (8)

for all V ∈ [S1
2(T ∗)]4. The terms DSUPG and DSC are the stabilization terms and they will be

discussed later.
A fully implicit first-order time integration scheme is employed to approximate the time

derivatives. The non-linear convective term is linearized using a Newton-Raphson procedure of
the type ∫

Ω

∇V ..Fk dΩ ≈
∫

Ω

∇V .. Ak−1U k dΩ,

where k stands for the current N-R iteration and the third order tensor A is the Jacobian of the
flux,

A =
∂F
∂U

,

and can be expressed as a second order tensor for each Cartesian direction, that is

∂F x

∂U
=


0 1 0 0

γg−1

2
‖u‖2 − u2 (3− γg)u (1− γg)v γg − 1
−uv v u 0

γg−1

2
u‖u‖2 − uH −u2(γg − 1) +H (1− γg)uv γgu

 ,

∂F y

∂U
=


0 0 1 0
−uv v u 0

γg−1

2
‖u‖2 − v2 (1− γg)u (3− γg)v γg − 1

γg−1

2
v‖u‖2 − vH (1− γg)uv −v2(γg − 1) +H γgv

 ,

having defined the entalpy, H = E + p/ρ.

4.1 Imposition of the boundary conditions

Solid walls and free-stream boundaries are considered for defining the boundary conditions
of system (6). Walls are considered as slip boundary conditions, that is, the normal component
of the flux is set to zero on a wall. This kind of condition does not entail particular problems, and
it is weakly imposed by the boundary integral in (8). On the contrary, inlet and outlet boundary
conditions are imposed setting different components of the unknown vector at the boundary
nodes, depending on the subsonic/supersonic regime at the boundary, see [15]. The problem of
imposing boundary values deserves particular attention in the framework of PS finite elements.
Since these kind of conditions are typically set on straight boundaries, the interest is focused on
imposing boundary values with PS elements on polygonal boundaries.

A careful choice of the control triangle associated to the boundary node Vl simplify the
task of imposing boundary values. Two different cases must be considered: the boundary node
belongs to two edges forming an angle different to π, or equal to π. From equation (5), the
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following relations are derived

αl,1Ql,1 + αl,2Ql,2 + αl,3Ql,3 = Vl, (9)
βl,1Ql,1 + βl,2Ql,2 + βl,3Ql,3 = ex, (10)
γl,1Ql,1 + γl,2Ql,2 + γl,3Ql,3 = ey, (11)

where ex and ey are respectively the unity vector in the x and y directions. Equation (9) states
that (αl,1, αl,2, αl,3) are the barycentric coordinates of the vertex Vl with respect to the control
triangle, while (10) and (11) mean that (βl,1, βl,3, βl,3) and (γl,1, γl,2, γl,3) are respectively the
barycentric coordinates of the vectors ex and ey with respect to the control triangle.

In the case Vl forms an angle different from π, if the control triangle has two sides aligned
with the two boundary edges as in Figure 2 (left), from equation (9) derives that only one shape
function has value different from zero in Vl. This allows to directly set the boundary value to the
unknown associated to the non-zero shape function. Moreover, from (10) and (11) derives that
the other two shape functions have zero derivative in the directions the two edges concurring in
Vl. In particular, using the notation depicted in Figure 2 (left) where triangle vertices are now
called A,B and C, it results

αl,B = αl,C = 0, (⇒ αl,A = 1),{
βl,B
γl,B

}
· t = 0,{

βl,C
γl,C

}
· r = 0.

Denoting with U the component of U to be imposed, and û the L2 projection of the prescribed
values on the space of univariate quadratic splines on ∂Ω, the resulting equations relative to the
unknowns of the vertex Vl are

Ul,A = û(Vl),

Ul,A

{
βl,A
γl,A

}
· r + Ul,B

{
βl,B
γl,B

}
· r = ∇û(Vl) · r,

Ul,A

{
βl,A
γl,A

}
· t + Ul,C

{
βl,C
γl,C

}
· t = ∇û(Vl) · t,

that is

Ul,A = û(Vl),

Ul,B =

∇û(Vl) · r − û(Vl)

{
βl,A
γl,A

}
· r{

βl,B
γl,B

}
· r

,

Ul,C =

∇û(Vl) · t− û(Vl)

{
βl,A
γl,A

}
· t{

βl,C
γl,C

}
· t

,

8
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r

t

Vl

A

C

B
r

Vl

A

CB

Figure 2: Control triangles for imposing boundary values: on an angle different from π (left) and equal to π (right).

where Ul,A, Ul,B, Ul,C are the unknowns related to the shape functions with respectively triples
(αl,A, βl,A, γl,A), (αl,B, βl,B, γl,B) and (αl,C , βl,C , γl,C).

In the case Vl belongs to a plane angle, if the control triangle is aligned with the boundary as
in Figure 2 (right), there is one shape function with zero value on Vl, see equation (9). Hence,
the unknown related to this shape function is not affected by the boundary condition. Moreover,
again equations (10) and (11) guarantee that the same shape function has zero derivative in the
direction parallel to the boundary. Thus, with reference to Figure 2 (right), results

αl,A = 0, αl,B 6= 0, αl,C 6= 0,{
βl,A
γl,A

}
· r = 0,

leading to the following relations for the unknowns in the vertex V l

Ul,Bαl,B + Ul,Cαl,C = û(Vl),

Ul,B

{
βl,B
γl,B

}
· r + Ul,C

{
βl,C
γl,C

}
· r = ∇û(Vl) · r,

that is

Ul,B =

(
û(Vl)

{
βl,C
γl,C

}
− αl,C∇û(Vl)

)
· r(

αl,B

{
βl,C
γl,C

}
− αl,C

{
βl,B
γl,B

})
· r

,

Ul,C =

(
û(Vl)

{
βl,C
γl,C

}
− αl,C∇û(Vl)

)
· r(

αl,B

{
βl,C
γl,C

}
− αl,B

{
βl,C
γl,C

})
· r

.

4.2 Stabilization by artificial viscosity

Stabilized formulations are obtained adding extra terms in the Galerkin weak form, with
the goal of reducing the instabilities with the introduction of artificial viscosity. Here, two
stabilization terms are considered.

The first term is the streamline upwind Petrov-Galerkin (SUPG) term, used to produce a
stable upwind discretization without introducing excessive numerical dissipation. The SUPG
method was introduced by T. Hughes in [11] and it is one of the most established stabilized for-
mulations in finite element flow computations. The SUPG method introduces a certain amount
of artificial viscosity in the streamline direction only.
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The second stabilization term is a shock capturing term, and it is used to prevent oscillations
around the discontinuities arising in the solution in supersonic regimes. These spurious oscil-
lations might lead to severe accuracy loss or stability problems. Differently from the SUPG
stabilization term, the shock-capturing stabilization term introduce an isotropic artificial diffu-
sion, but only in a sharp zone surrounding the discontinuities.

Since a first order time discretization is employed, a simplified version of the SUPG stabi-
lization term is used

DSUPG =
Ne∑
e=1

∫
Ωe

AT∇V ..
(
τSUPGA∇U

)
dΩe, (12)

which does not take into account the complete residual of the original equation, but only the
convective term.

The shock capturing stabilization term is

DSC =
Ne∑
e=1

∫
Ωe

∇V ..
(
τSC∇U

)
dΩe. (13)

The terms τSUPG and τSC are stabilization matrices. Various options to compute these terms can
be found in literature. In this work, for the SUPG stabilization term, two options have been
retained: the first one is a simple diagonal matrix

τSUPG ≡ τSP = τI,

and a constant value τ is used in the whole mesh, τ = dt/2, being dt the time step. The second
choice, denoted τTz, is inspired by the work of Tezduyar [13]

τTz =
(
(1/2dt)(−2) +

3∑
r=1

3∑
q=1

∣∣u ·∇B(q)
r

∣∣ )(−1/2)
.

For the shock-capturing operator, two choices described in [13, 12] are retained, and are
described using four sensors. The first sensor is based on the relative density variation and it is
defined, in each element, as

[∇̃ρ]e =
3∑
r=1

3∑
q=1

∣∣∣∣∣∇ρ ·∇B
(q)
r

|∇ρ|

∣∣∣∣∣ .
The second sensor is based on the relative gradient according to the principle axes and is written

[∇̃U ]e =

(
2∑
d=1

∥∥∥∥∂U∂xd
∥∥∥∥2
) 1

2

,

while the third sensor scales the with the values of the unknowns

[Ũ ]e = ‖U‖ .

Finally the fourth sensor takes into account the local relative convective flux

[A∇̃U ]e = ‖A∇U‖ .

10
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Hence, the first shock capturing artificial viscosity is defined as a combination of the sensors
with a managing parameter β as follows

τSC1(β) = [∇̃ρ]e[∇̃U ]−(2−β)
e [A∇̃U ]−βe ,

and the second
τSC2(β) = [∇̃ρ]e[∇̃U ]−(2−β)

e [Ũ ](1−β)
e [A∇̃U ]−βe .

In [12], it is suggested to use β = 1 is for smooth shocks and β = 2 for strong shocks. A
compromise between the two definitions is proposed,

τSC =
τSC(β = 1) + τSC(β = 2)

2
,

and it is the choice used in this work.

5 NUMERICAL TESTS

5.1 Numerical simulation of a supersonic flow past a forward facing step

This is classical test case for 2D numerical codes for supersonic flows and a detailed descrip-
tion can be found in [14]. It consists in a supersonic flow entering an infinite long wind tunnel
with a step. The interaction of the supersonic flow with the step and the tunnel walls creates a
typical patter of shock reflections.

The numerical set up of the simulation is as follows (see Figure 3): the computational domain
has dimensions 3 × 1 length units, and the step is 0.2 length units high and it is located at 0.6
length units from the left boundary. The flow is entering from the left boundary with a uniform
horizontal Mach 3 velocity and pressure p = 1. The tunnel walls are non-slip boundaries,
while the right boundary is a free exit. The simulation is started setting the variables at the inlet
boundary values. No particular treatment is done for the corner of the step, which represent
a singular point and it is known for introducing numerical errors, and no positivity correction
was needed for the test cases here illustrated. However, with strong refinement in the corner, a
negative pressure was developed in a point few elements after the corner and would require a
special treatment. This point is still under investigation.

For the SUPG stabilization, the simple τSM is used. For the shock capturing term, the form
τ̃SC1 is retained. The time step dt is linearly incremented at the beginning of the simulation,
until reaching a final CFL=1. In order to compare the results with [16], four computational
meshes are employed with decreasing element size h = 1/40, 1/80, 1/160, 1/320. The results
for a simulation time t = 4 are depicted in Figure 4 for the density variable. A correct shock
reflection pattern is obtained and the results are globally similar to the reference [16]. While the
Mach steam is almost completely disappeared in the finest mesh, as expected, there is no Kelvin-
Helmholtz instabilities near the top of the domain. This could be due to the extra diffusion
introduced by the triangular discretization, with respect the quadrangular used in [16], and it is
still not fully understood.

In Figure 5 is also shown the shock profile on a horizontal line at y = 0.1, for the four
meshes, with a comparison with the element size. It is possible to notice that there are no
overshoots in the solution across the discontinuity and the shock is spread across about four
element widths, which is acceptable.
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Figure 3: Forward facing step case: computational domain and boundary conditions.
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h= 1/80

h= 1/160
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Figure 4: Forward facing step problem: density ρ, 30 equally spaced contour lines at t = 4.
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Figure 5: Forward facing step case: shock profile at a section y = 0.1 for the four meshes. The discretization is
also displayed.

5.2 The Double Mach reflection test

The second test case considered is the Double Mach reflection test, also introduced in [14].
It represents the impinging of a strong shock wave, at Mach 10, against an oblique wall, which
produce a typical reflected shock with a curved shape, and a bubble of denser gas. The set up of
the test is the following, see Figure 6 : the computational domain is a box of dimensions 3× 1,
and a wall boundary condition is set in the lower boundary starting from x = 1/6. The right
boundary and the remaining of the lower boundary (from x = 0 to x = 1/6) is set to an outflow
boundary, while the left and the top boundaries are inlet boundaries. In the upper boundary, a
time variable condition is set, simulating the traveling of the shock wave to the right. In the
initial condition, the shock wave creates an angle of 60◦ from the x axis and impinges the wall
at x = 1/6. Post-shock conditions are set to the right of the wave, pre-shock to the left.

In order to avoid spurious oscillation of the solution in the first steps of the simulation, the
fields are initialized with a smooth shock profile in the domain, with the discontinuity smeared
over four elements. Moreover, the time step is increased with a cubic ramp until reaching a
CFL=1 in 100 time steps.

For the SUPG stabilization, similar results are obtained for τSM and τTz. The shock-capturing
stabilization however resulted more critical in this case: the parameter τ̃SC1 used in the previous
case resulted too diffusive, hence the form τ̃SC2 is used instead. As in [16], four meshes are
considered for comparison purpose, with element size h = 1/60, 1/120, 1/240, 1/480. Again,
a stable solution is obtained with a sharp shock resolution. However, the shock patterns inside
the bubble is not obtained, and further investigation are needed. A positivity correction was
used in this case: the value of the internal energy is artificially set to 10−5 in those Gauss points
where a negative value is obtained.

6 CONCLUSIONS

In this paper is presented a finite element method based on Powell-Sabin (PS) splines, for the
solution of the 2D compressible Euler equations in supersonic regime. The mathematical and
geometrical tools to define the PS shape functions are presented, in particular, the subdivision
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Figure 6: Double Mach reflection case: computational domain and boundary conditions.

of the elements that allows to define the PS splines as piecewise second order polynomials in
each sub-triangle, the definition of the PS points and the control triangles.

A stabilized formulation is adopted, with SUPG and shock-capturing term. A simple isotropic
artificial diffusion technique is adopted for the shock capturing term. Two classical examples
are shown: the Woodward and Colella forward-facing step with Mach 3 flow and the Double
Mach reflection test. Satisfactory results are obtained in terms of stabilization of the solution
and resolution of the discontinuities. Further investigations are needed to understand the differ-
ences with the results with the reference solution and to set up an efficient positivity correction
procedure.
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