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Abstract. In two-party computation, achieving both fairness and guar-
anteed output delivery is well known to be impossible. Despite this limita-
tion, many approaches provide solutions of practical interest by weakening
somewhat the fairness requirement. Such approaches fall roughly in three
categories: “gradual release” schemes assume that the aggrieved party
can eventually reconstruct the missing information; “optimistic schemes”
assume a trusted third party arbitrator that can restore fairness in case of
litigation; and “concurrent” or “legally fair” schemes in which a breach of
fairness is compensated by the aggrieved party having a digitally signed
cheque from the other party (called the keystone).
In this paper we describe and analyse a new contract signing paradigm
that doesn’t require keystones to achieve legal fairness, and give a con-
crete construction based on Schnorr signatures which is compatible with
standard Schnorr signatures and provably secure.

1 Introduction

When mutually distrustful parties wish to compute some joint function of their
private inputs, they require a certain number of security properties to hold for
that computation:
– Privacy: Nothing is learnt from the protocol besides the output;
– Correctness: The output is distributed according to the prescribed function-

ality;
– Independence: One party cannot make their inputs depend on the other

parties’ inputs;
– Delivery: An adversary cannot prevent the honest parties from successfully

computing the functionality;
– Fairness: If one party receives output then so do all.

Any multi-party computation can be securely computed [5,7,16,17,30] as long
as there is a honest majority [22]. In the case where there is no such majority,
and in particular in the two-party case, it is (in general1) impossible to achieve
both fairness and guaranteed output delivery [9, 22].
1 See [19] for a very specific case where completely fair two-party computation can be
achieved.



Weakening Fairness. To circumvent this limitation, several authors have
put forth alternatives to fairness that try and capture the practical context
(e.g. contract-signing, bank transactions, etc.). Three main directions have been
explored:

1. Gradual release models: The output is not revealed all at once, but rather
released gradually (e.g. bit per bit) so that, if an abort occurs, then the
adversary has not learnt much more about the output than the honest party.
This solution is unsatisfactory because it is expensive and may not work if
the adversary is more computationally powerful [13,18,19,24].

2. Optimistic models: A trusted server is setup but will not be contacted unless
fairness is breached. The server is able to restore fairness afterwards, and
this approach can be efficient, but the infrastructure requirements and the
condition that the server be trusted limit the applicability of this solution
[3,6,23]. In particular, the dispute-resolving third party must be endowed with
functions beyond those usually required of a normal certification authority.

3. Legally fair, or concurrent model: The first party to receive output obtains
an information dubbed the “keystone”. The keystone by itself gives nothing
and so if the first party aborts after receiving it, no damage has been done –
if the second party aborts after receiving the result (say, a signature) then
the first party is left with a useless keystone. But, as observed in [8] for the
signature to be enforced, it needs to be presented to a court of law, and
legally fair signing protocols are designed so that this signature and the
keystone give enough information to reconstruct the missing data. Therefore,
if the cheating party wishes to enforce its signed contract in a court of law, it
by doing so reveal the signature that the first party should receive, thereby
restoring fairness [8]. Legal fairness requires neither a trusted arbitrator nor
a high degree of interaction between parties.

Lindell [22] also introduces a notion of “legally enforceable fairness” that sits
between legal fairness and optimistic models: a trusted authority may force a
cheating party to act in some fashion, should their cheating be attested. In this
case the keystone consists in a digitally signed cheque for an frighteningly high
amount of money that the cheating party would have to pay if the protocol were
to be aborted prematurely and the signature abused.

Concurrent Signatures. Chen et al. [8] proposed a legally fair signature scheme
based on ring signatures [2, 27] and designated verifier signatures [21], that is
proven secure in the Random Oracle Model assuming the hardness of computing
discrete logarithms.

Concurrent signatures rely on a property shared by ring and designated
verifier signatures called “ambiguity”. In the case of two-party ring signatures,
one cannot say which of the two parties produced the signature – since either
of two parties could have produced such an ambiguous signature, both parties
can deny having produced it. However, within the ring, if A receives a signature
then she knows that it is B who sent it. The idea is to put the ambiguity-lifting



information in a “keystone”. When that keystone is made public, both signatures
become simultaneously binding.

Concurrent signatures schemes can achieve legal fairness depending on the
context. However their construction is not abuse-free [4, 12]: the party A holding
the keystone can always determine whether to complete or abort the exchange of
signatures, and can demonstrate this by showing an outside party the signature
from B with the keystone, before revealing the keystone to B.

Our Results. In this work we describe a new contract signing protocol that
achieves legal fairness and abuse-freeness. This protocol is based on the well-
known Schnorr signature protocol, and produces signatures compatible with
standard Schnorr signatures. For this reason, and as we demonstrate, the new
contract signing protocol is provably secure in the random oracle model under the
hardness assumption of solving the discrete logarithm problem. Our construction
can be adapted to other DLP schemes, such as most2 of those enumerated in [20],
including Girault-Poupard-Stern [14] and ElGamal [10].

2 Preliminaries

We assume the reader to be familiar with Schnorr signatures, that we recall in
Appendix A.

2.1 Concurrent Signatures

Let us give a more formal account of legal fairness as described in [8,22] in terms
of concurrent signatures. Unlike classical contract-signing protocol, whereby
contractors would exchange full-fledged signatures (e.g. [15]), in a concurrent
signature protocol there are “ambiguous” signatures that do not, as such, bind
their author. This ambiguity can later be lifted by revealing some additional
information: the “keystone”. When the keystone is made public, both signatures
become simultaneously binding.

LetM be a message space. Let K be the keystone space and F be the keystone
fix space.

Definition 1 (Concurrent signature). A concurrent signature is composed
of the following algorithms:

– Setup(`): Takes a security parameter ` as input and outputs the public keys
(yA, yB) of all participants, a function KeyGen : K → F , and public parame-
ters pp describing the choices ofM,K,F and KeyGen.

2 In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security
proofs.



– aSign(yi, yj , xi, h2,M): Takes as input the public keys y1 and y2, the private
key xi corresponding to yi, an element h2 ∈ F and some message M ∈M;
and outputs an “ambiguous signature”

σ = 〈s, h1, h2〉

where s ∈ S, h1, h2 ∈ F .
– aVerify(σ, yi, yj ,M): Takes as input an ambiguous signature σ = 〈s, h1, h2〉,

public keys yi and yj, a message M ; and outputs a boolean value, with the
constraint that

aVerify (σ′, yj , yi,M) = aVerify (σ, yi, yj ,M)

where σ′ = 〈s, h2, h1〉.
– Verify(k, σ, yi, yj ,M): Takes as input k ∈ K and σ, yi, yj ,M as above; and
checks whether KeyGen(k) = h2: If not it terminates with output False, other-
wise it outputs the result of aVerify(σ, yi, yj ,M).

A valid concurrent signature is a tuple 〈k, σ, yi, yj ,M〉 that is accepted by
the Verify algorithm. Concurrent signatures are used by two parties A and B in
the following way:

1. A and B run Setup to determine the public parameters of the scheme. We
assume that A’s public and private keys are yA and xA, and B’s public and
private keys are yB and xB .

2. Without loss of generality, we assume that A initiates the conversation. A
picks a random keystone k ∈ K, and computes f = KeyGen(k). A takes her
own public key yA and B’s public key yB and picks a message MA ∈M to
sign. A then computes her ambiguous signature to be

σA = 〈sA, hA, f〉 = aSign(yA, yB , xA, f,MA).

3. Upon receiving A’s ambiguous signature σA, B verifies the signature by
checking that

aVerify(sA, hA, f, yA, yB ,MA) = True

If this equality does not hold, then B aborts. Otherwise B picks a message
MB ∈M to sign and computes his ambiguous signature

σB = 〈sB , hB , f〉 = aSign(yB , yA, xB , f,MB)

then sends this back to A. Note that B uses the same value f in his signature
as A did to produce σA.

4. Upon receiving B’s signature σB , A verifies that

aVerify(sB , hB , f, yB , yA,MB) = True

where f is the same keystone fix as A used in the previous steps. If the
equality does not hold, then A aborts. Otherwise A sends keystone k to B.



At the end of this protocol, both 〈k, σA〉 and 〈k, σB〉 are binding, and accepted
by the Verify algorithm.

Remark 1. Note that A has an the upper hand in this protocol: Only when A
releases the keystone do both signatures become simultaneously binding, and
there is no guarantee that A will ever do so. Actually, since A controls the timing
of the keystone release (if it is released at all), A may only reveal k to a third
party C but withhold it from B, and gain some advantage by doing so. In other
terms, concurrent signatures can be abused by A [4, 12].

Chen et al. [8] argue that there are situations where it is not in A’s interest to
try and cheat B, in which abuse-freeness is not necessary. One interesting scenario
is credit card payment in the “four corner” model. Assume that B’s signature
is a payment to A. To obtain payment, A must channel via her acquiring bank
C, which would communicate with B’s issuing bank D. D would ensure that B
receives both the signature and the keystone — as soon as this happens A is
bound to her signature. Since in this scenario there is no possibility for A to keep
B’s signature private, fairness is eventually restored.

Example 1. A concurrent signature scheme based on the ring signature algorithm
of Abe et al. [2] was proposed by Chen et al. [8]:

– Setup: On input a security parameter `, two large primes p and q are selected
such that q|p − 1. An element g ∈ Z×p of order q is selected. The spaces
S = F = Zq and M = K = {0, 1}∗ are chosen. Two cryptographic hash
functions H1, H2 : {0, 1}∗ → Zq are selected and we set KeyGen = H1. Private
keys xA, xB are selected uniformly at random from Zq and the corresponding
public keys are computed as gxi mod p.

– aSign: The algorithms takes as input yi, yj , xi, h2,M , verifies that yi 6= yj

(otherwise aborts), picks a random value t ∈ Zq and computes

h = H2

(
gtyh2

j mod p‖M
)

h1 = h− h2 mod q
s = t− h1xi mod q

where ‖ denotes concatenation. The algorithm outputs 〈s, h1, h2〉.
– aVerify: This algorithm takes as input s, h1, h2, yi, yj ,M and checks whether

the following equation holds:

h1 + h2 = H2

(
gsyh1

i yh2
j mod p‖M

)
mod q

The security of this scheme can be proven in the Random Oracle model assuming
the hardness of computing discrete logarithms in Z×p .

2.2 Legal Fairness for Concurrent Signatures

A concurrent signature scheme is secure when it achieves existential unforgeability,
ambiguity and fairness against an active adversary that has access to a signature



oracle. We define these notions in terms of games played between the adversary
A and a challenger C. In all security games, A can perform any number of the
following queries:
– KeyGen queries: A can receive a keystone fix f = KeyGen(k) where k is

chosen by the challenger3.
– KeyReveal queries: A can request that C reveals which k was chosen to

produce a keystone fix f in a previous KeyGen query. If f was not a previous
KeyGen query output then C returns ⊥.

– aSign queries: A can request an ambiguous signature for any message of his
choosing and any pair of users4.

– SKExtract queries: A can request the private key corresponding to a public
key.

Definition 2 (Unforgeability). The notion of existential unforgeability for
concurrent signatures is defined in terms of the following security game:
1. The Setup algorithm is run and all public parameters are given to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A outputs a tuple σ = 〈s, h1, f〉 where s ∈ S, h1, f ∈ F , along with

public keys yC , yD and a message M ∈M.
A wins the game if aVerify accepts σ and either of the following holds:
– A did not query SKExtract on yC nor on yD, and did not query aSign on

(yC , yD, f,M) nor on (yD, yC , h1,M).
– A did not query aSign on (yC , yi, f,M) for any yi 6= yC , and did not query
SKExtract on yC , and f is the output of KeyGen: either an answer to a
KeyGen query, or A can produce a k such that k = KeyGen(k).

The last constraint in the unforgeability security game corresponds to the situation
where A knows one of the private keys (as is the case if A = A or B).

Definition 3 (Ambiguity). The notion of ambiguity for concurrent signatures
is defined in terms of the following security game:
1. The Setup algorithm is run and all public parameters are given to A.
2. Phase 1: A can perform any number of queries to C, as described above.
3. Challenge: A selects a challenge tuple (yi, yj ,M) where yi, yj are public keys

and M ∈ M. In response, C selects a random k ∈ K, a random b ∈ {0, 1}
and computes f = KeyGen(k). If b = 0, then C outputs

σ1 = 〈s1, h1, f〉 = aSign(yi, yj , xi, f,M)

Otherwise, if b = 1 then C computes

σ2 = 〈s2, h2, f〉 = aSign(yj , yi, xi, f,M)

but outputs σ′2 = 〈s2, f, h2〉 instead.
3 The algorithm KeyGen being public, A can compute KeyGen(k) for any k of her
choosing.

4 Note that with this information and using KeyGen queries, A can obtain concurrent
signatures for any message and any user pair.



4. Phase 2: A can perform any number of queries to C, as described above.
5. Finally, A outputs a guess bit b′ ∈ {0, 1}.

A wins the game if b = b′ and if A made no KeyReveal query on f , h1 or h2.

Definition 4 (Fairness). The notion of fairness for concurrent signatures is
defined in terms of the following security game:

1. The Setup algorithm is run and all public parameters are given to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A chooses two public keys yC , yD and outputs k ∈ K and S =

(s, h1, f, yC , yD,M) where s ∈ S, h1, f ∈ F , M ∈M.

A wins the game if aVerify(S) accepts and either of the following holds:

– f was output from a KeyGen query, no KeyReveal query was made on f , and
Verify accepts 〈k, S〉.

– A can output S′ = (s′, h′1, f, yD, yC ,M
′) where aVerify(S′) accepts and Verify(k, S)

accepts, but Verify(k, S′) rejects.

This definition of fairness formalizes the idea that B cannot be left in a position
where a keystone binds his signature to him while A’s initial signature is not
also bound to A. It does not, however, guarantee that B will ever receive the
necessary keystone.

3 Legally Fair Co-Signatures

3.1 Legal Fairness Without Keystones

The main idea builds on the following observation: Every signature exchange
protocol is plagued by the possibility that the last step of the protocol is not
performed. Indeed, it is in the interest of a malicious party to get the other
party’s signature without revealing its own. As a result, the best one can hope
for is that a trusted third party can eventually restore fairness.

To avoid this destiny, the proposed paradigm does not proceed by sending
A’s signature to B and vice versa. Instead, we construct a joint signature, or
co-signature, of both A and B. By design, there are no signatures to steal — and
stopping the protocol early does not give the stopper a decisive advantage. More
precisely, the contract they have agreed upon is the best thing an attacker can
gather, and if she ever wishes to enforce this contract by presenting it to a court
of law, she would confirm her own commitment to it as well as the other party’s.
Therefore, if one can construct co-signatures without intermediary individual
signatures being sent, legal fairness can be achieved without keystones.

Since keystones can be used by the party having them to abuse the other [8],
the co-signature paradigm provides an interesting alternative to concurrent
signatures.



3.2 Schnorr Co-signatures

To illustrate the new paradigm, we now discuss a legally fair contract-signing
protocol built from the well-known Schnorr signature protocol, that produces
signatures compatible with standard Schnorr signatures. This contract signing
protocol is provably secure in the random oracle model under the hardness
assumption of solving the discrete logarithm problem.

The construction can be adapted to other DLP schemes, such as most5 of
those enumerated in [20], including Girault-Poupard-Stern [14] and ElGamal [10].

– Setup: An independent (not necessarily trusted) authority generates a classical
Schnorr parameter-set p, q, g which is given to A and B. Each user U generates
a usual Schnorr public key yU = gxU and publishes yU on a public directory
D (see Figure 1). To determine the co-signature public-key yA,B of the pair
〈A,B〉, a verifier consults D and simply computes yA,B = yAyB. Naturally,
yA,B = yB,A.

Alice

D

Bob

g, p, q

yA
y
B

Fig. 1. Public directory D distributing the public keys.

– Cosign: To co-sign a messagem, A and B compute a common r and a common
s, one after the other. Without loss of generality we assume that B initiates
the co-signature.
• During the first phase (Figure 2), B chooses a private random number
kB and computes rB ← gkB . He commits to that value by sending to A
a message digest ρ← H(0‖rB). A chooses a private random number kA,
computes rA ← gkA and sends rA to B. B replies with rB , which A checks
against the earlier commitment ρ. Both parties compute r ← rArB , and
e← H(1‖m‖r), where m is the message to be co-signed.

• During the second phase of the protocol, B sends sB ← kB − exB mod q
to A. A replies with sA ← kA − exA mod q. Both users compute s ←
sA + sB mod q.

– Verify: As in the classical Schnorr signature, the co-signature {r, s} is checked
for a message m by computing e← H(m‖r), and checking whether gsye = r

5 In a number of cases, e.g. DSA, the formulae of s do not lend themselves to security
proofs.



Alice Bob

yA,B ← yAyB yA,B ← yAyB

kA
$←− Z∗q kB

$←− Z∗q
rA ← gkA rB ← gkB

ρ← H(0‖rB)
ρ←−−−−−−−−−−−
rA−−−−−−−−−−−→
rB←−−−−−−−−−−−

if H(0‖rB) 6= ρ abort
r ← rArB r ← rArB
e← H(1‖m‖r) e← H(1‖m‖r)
sA ← kA − exA mod q sB ← kB − exB mod q

sB←−−−−−−−−−−−
sA−−−−−−−−−−−→

s← sA + sB mod q s← sA + sB mod q

Fig. 2. Generating the Schnorr co-signature of message m.

(Figure 3). If the equality holds, then the co-signature binds both A and B
to m; otherwise neither party is tied to m.

Co-signature
m, r, s

r
?= gsyeA,B

Incorrect co-signature. No
party involved with m.

Valid co-signature. Both
parties involved with m. noyes

Fig. 3. Verification of a Schnorr co-signature m, r, s.

Remark 2. Note that during the co-signature protocol, A might decide not to
respond to B: In that case, A would be the only one to have the complete
co-signature. This is a breach of fairness insofar as A can benefit from the co-
signature and not B, but the protocol is abuse-free: A cannot use the co-signature
as a proof that B, and B alone, committed to m. Furthermore, it is not a breach
of legal fairness: If A presents the co-signature in a court of law, she ipso facto
reveals her commitment as well.



Remark 3. In a general fair-contract signing protocol, A and B can sign different
messages mA and mB . Using the co-signature construction requires that A and
B agree first on the content of a single message m.

3.3 Security Analysis

The security of the co-signature scheme essentially builds on the unforgeability
of classical Schnorr signatures. Since there is only one co-signature output, the
notion of ambiguity does not apply per se — albeit we will come back to that
point later on. The notion of fairness is structural in the fact that a co-signature,
as soon as it is binding, is binding for both parties.

As for concurrent signatures, an adversary A has access to an unlimited
amount of conversations and valid co-signatures, i.e. A can perform the following
queries:

– Hash queries: A can request the value of H(x) for a x of its choosing.
– CoSign queries: A can request a valid co-signature r, s for a message m and

a public key yC,D of its choosing.
– Transcript queries: A can request a valid transcript (ρ, rC , rD, sC , sD) of the

co-signing protocol for a message m of its choosing, between users C and D
of its choosing.

– SKExtract queries: A can request the private key corresponding to a public
key.

– Directory queries: A can request the public key of any user U .

The following definition captures the notion of unforgeability in the co-signing
context:

Definition 5 (Unforgeability). The notion of unforgeability for co-signatures
is defined in terms of the following security game between the adversary A and a
challenger C:

1. The Setup algorithm is run and all public parameters are provided to A.
2. A can perform any number of queries to C, as described above.
3. Finally, A outputs a tuple (m, r, s, yC,D).

A wins the game if Verify(m, r, s) = True and there exist public keys yC , yD ∈ D
such that yC,D = yCyD and either of the following holds:

– A did not query SKExtract on yC nor on yD, and did not query CoSign on
m, yC,D, and did not query Transcript on m, yC , yD nor m, yD, yC .

– A did not query Transcript on m, yC , yi for any yi 6= yC and did not query
SKExtract on yC , and did not query CoSign on m, yC , yi for any yi 6= yC .

We shall say that a co-signature scheme is unforgeable when the success probability
of A in this game is negligible.



To prove that the Schnorr-based scheme described above is secure we use the
following strategy: Assuming an efficient forger A for the co-signature scheme, we
turn it into an efficient forger B for Schnorr signatures, then invoke the Forking
Lemma to prove the existence of an efficient solver C for the discrete logarithm
problem. All proofs hold in the Random Oracle model.

Since the co-signing protocol gives the upper hand to the last-but-one speaker
there is an asymmetry: Alice has more information than Bob. Therefore we address
two scenarios: When the attacker plays Alice’s role, and when the attacker plays
Bob’s.

Theorem 1. Let {y, g, p, q} be a DLP instance. If A plays the role of Bob (resp.
Alice) and is able to forge in polynomial time a co-signature with probability
εF , then in the Random Oracle model A can break the DLP instance with high
probability in polynomial time.

Proof. See Appendix B, where this theorem is split in twain depending on whether
A impersonates Bob or Alice. ut

4 Concurrent Co-signatures

4.1 Proofs of Involvment

We now address a subtle weakness in the protocol described in the previous
section, which is not captured by the fairness property per se and that we refer to
as the existence of “proofs of involvment”. Such proofs are not valid co-signatures,
and would not normally be accepted by verifiers, but they nevertheless are valid
evidence establishing that one party committed to a message. In a legally fair
context, it may happen that such evidence is enough for one party to win a trial
against the other — who lacks both the co-signature, and a proof of involvment.

Example 2. In the co-signature protocol of Figure 2, sB is not a valid Schnorr
signature for Bob. Indeed, we have gsBye

B = rB 6= r. However, Alice can construct
s′ = sB + kA, so that m, r, s′ forms a valid classical signature of Bob alone on m.

Example 2 illustrates the possibility that an adversary, while unable to forge a
co-signature, may instead use the information to build a valid (mono-) signature.
Note that Alice may opt for a weaker proof of involvment, for instance by
demonstrating her possession of a valid signature using any zero-knowledge
protocol.

A straightforward patch is to refrain from using the public keys yA, yB for
both signature and co-signature — so that attempts at constructing proofs of
involvment become vain. For instance, every user could have a key y(1)

U used
for classical signature and for certifying a key y(2)

U used for co-signature6. If an

6 The key y(2)
U may be derived from y

(1)
U in some way, so that the storage needs of D

are the same as for classical Schnorr.



adversary generates a classical signature from a co-signature transcript as in
Example 2, she actually reveals her harmful intentions.

However, while this exposes the forgery — so that honest verifiers would reject
such a signature — the perpetrator remains anonymous. There are scenarios in
which this is not desirable, e.g. because it still proves that B agreed (with some
unknown and dishonest partner) on m.

Note that the existence of proof of involvment is not necessary and depends
on the precise choice of underlying signature scheme.

4.2 Security Model

It is important to make extremely clear the security model that we are targeting.
In this situation an adversary A (possibly Alice or Bob) tries to forged signatures
from partial and/or complete traces of co-signature interactions, which can be of
two kinds :

1. Co-signatures between two parties, at least one of which did not take part in
the co-signature protocol;

2. (Traditional) signatures of either party.

A succeeds if and only if one of these forgeries is accepted, which can be captured
as the probability of acceptance of A’s outputs, and the victim (purported
mono-signatory, or co-signatory) doesn’t have a co-signature with A7.

Observe that due to the unforgeability of Schnorr signatures, the attacker
must necessarily impersonate one of the co-signatories to achieve either of the
two forgeries mentioned above (in fact, the strongest position is that of Alice,
who has an edge over Bob in the protocol). This is the reason why the victim
may have a co-signature of A, so that this security model captures fairness.

In short, we propose to address such attacks in the following way:

1. By using a different key for co-signature and mono-signature;
2. By having Bob store specific co-signature-related information in non-volatile

memory.

The reason for (1) is that it distinguishes between mono-signatures, and mono-
signatures generated from partial co-signature traces. Thanks to this, it is easy
for the verifier to detect a forgery, and perform additional steps.

The reason for (2) is twofold: On the one hand, it enables the verifier to
obtain from Bob definitive proof that there was forgery; on the other hand, once
the forgery has been identified, it makes it possible for the verifier to re-establish
fairness binding the two real co-signatories together. Note that Bob is in charge
of keeping this information secure, i.e. available and correct.

7 In particular, the question of whether Bob “intended” to sign is outside the scope of
this security model.



4.3 Concurrent Co-signatures
In the interest of fairness, the best we can ask is that if A tries to incriminate B
on a message they both agreed upon, she cannot do so anonymously.

To enforce fairness on the co-signature protocol, we ask that the equivalent of
a keystone is transmitted first; so that in case of dispute, the aggrieved party has
a legal recourse. First we define the notion of an authorized signatory credential:
Definition 6 (Authorized signatory credential). The data field

ΓAlice,Bob = {Alice,Bob, kA, σxA
(gkA‖Alice‖Bob)}

is called an authorized signatory credential given by Alice to Bob, where σxA
is

some publicly known auxiliary signature algorithm using Alice’s private key xA

as a signing key.
Any party who gets ΓAlice,Bob can check its validity, and releasing ΓAlice,Bob is by
convention functionally equivalent to Alice giving her private key xA to Bob. A
valid signature by Bob on a message m exhibited with a valid ΓAlice,Bob is legally
defined as encompassing the meaning (V) of Alice’s signature on m:

{ΓAlice,Bob, signature by Bob on m}V signature by Alice on m

Second, the co-signature protocol of Figure 2 is modified by requesting that Alice
provide t = σxA

(gkA‖Alice‖Bob) to Bob. Bob stores this in a local non-volatile
memory L along with sB . For all practical purposes, L can be simply regarded
as Bob’s hard disk. Together, t and sB act as a keystone enabling Bob (or a
verifier, e.g. a court of law) to reconstruct ΓAlice,Bob if Alice exhibits a (fraudulent)
signature binding Bob alone with his co-signing public key.

Therefore, should Alice try to exhibit as in Example 2 a signature of Bob
alone on a message they both agreed upon (which is known as a fraud), the court
would be able to identify Alice as the fraudster.

The modified signature protocol is described in Figure 4. Alice has only one
window of opportunity to try and construct a fraudulent signature of Bob: by
stopping the protocol at breakpoint 2 and using the information sB

8.
Indeed, if the protocol is interrupted before breakpoint 1 , then no information

involving m was released by any of the parties: The protocol’s trace can be
simulated without Bob’s help as follows

sB , r
$←− Zq

e← H(1‖m‖r‖Alice‖Bob)
rB ← gsBye

B

rA ← rr−1
B

t← σxA
(rA‖Alice‖Bob)

ρ← H(0‖rB)
8 If Bob transmits a wrong or incorrect sB , this will be immediately detected by Alice
as rB 6= gsByeB . Naturally, in such a case, Bob never sent any information binding
him to the contract anyway.



Alice Bob

yA,B ← yAyB yA,B ← yAyB

kA
$←− Z∗q kB

$←− Z∗q
rA ← gkA rB ← gkB

ρ← H(0‖rB)
ρ←−−−−−−−−−−−

t← σxA (rA‖Alice‖Bob) rA,t−−−−−−−−−−−→
if t is incorrect then abort
store t in L

rB←−−−−−−−−−−−
if H(0‖rB) 6= ρ then abort
r ← rArB r ← rArB
e← H(1‖m‖r‖Alice‖Bob) e← H(1‖m‖r‖Alice‖Bob)
sA ← kA − exA mod q sB ← kB − exB mod q

store sB in L
breakpoint 1

sB←−−−−−−−−−−−
if sB is incorrect then abort

breakpoint 2
sA−−−−−−−−−−−→

if sA is incorrect then abort
breakpoint 3

s← sA + sB mod q s← sA + sB mod q
if {m, r, s} is valid then
erase t, sB from L

Fig. 4. The legally fair co-signature of message m.

and Bob has only received from Alice the signature of a random integer.
If Alice and Bob successfully passed the normal completion breakpoint 3 ,

both parties have the co-signature, and are provably committed to m.

5 Conclusion and Further Work

In this paper we described an alternative construction paradigm for legally fair
contract signing that doesn’t require keystones, but can be combined with them
to provide additional power. The new paradigm produces co-signatures that bind
a pair of users, and can be adapted to a number of DLP signature protocols. In
the co-signature version of Schnorr’s protocol, the resulting co-signatures have the
same format as classical (single-user) signature. This paradigm guarantees fairness
and abuse-freeness, and can be equipped with keystones to add functionalities
such as whistleblower traceability.



proof of involvement
m, r, s̄B

proof of involvement
m, r, kA(or ZKA(kA)), sB

∃sB , t ∈ L s.t.
ν(t, gs̄B−sB ) ?= true

∃t ∈ L s.t.
ν(t, gkA) ?= true

Alice is not involved with
m. Bob gets deniability.

No party involved with m.

Alice is Bob’s authorized signatory.
Now check Bob’s role:

r
?= gs̄ByeB

Alice is Bob’s authorized
signatory but Bob did not sign.

No party involved with m.

Alice cheated, involved Bob and
involved herself as well with m.
Both parties involved with m.

no no

s̄B
←
sB

+
kA

no

Fig. 5. The verification procedure: proof of involvement.
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A Schnorr Signatures

Schnorr digital signatures [28] are an offspring of ElGamal [10] signatures. This
family of signatures is obtained by converting interactive identification protocols
(zero-knowledge proofs) into transferable proofs of interaction (signatures). This
conversion process, implicitly used by ElGamal, was discovered by Feige, Fiat
and Shamir [11] and formalized by Abdalla, Bellare and Namprempre [1].

Throughout the paper, we will refer to the original Schnorr signature protocol
as “classical” Schnorr. This protocol consists in four algorithms:

– Setup(`): On input a security parameter `, this algorithm selects large primes
p, q such that q ≥ 2` and p−1 mod q = 0, as well as an element g ∈ G of order
q in some multiplicative group G of order p, and a hash function H : {0, 1}∗ →
{0, 1}`. The output is a set of public parameters pp = (p, q, g,G, H).

– KeyGen(pp): On input the public parameters, this algorithm chooses uniformly
at random x

$←− Z×q and computes y ← gx. The output is the couple (sk, pk)
where sk = x is kept private, and pk = y is made public.

– Sign(pp, sk,m): On input public parameters, a secret key, and a message m
this algorithm selects a random k

$←− Z×q , computes

r ← gk

e← H(m‖r)
s← k − ex mod q

and outputs 〈r, s〉 as the signature of m.
– Verify(pp, pk,m, σ): On input the public parameters, a public key, a message

and a signature σ = 〈r, s〉, this algorithm computes e← H(m, r) and returns
True if and only if gsye = r; otherwise it returns False.

The security of classical Schnorr signatures was analysed by Pointcheval and
Stern [25, 26] using the Forking Lemma. Pointcheval and Stern’s main idea is as
follows: in the Random Oracle Model, the opponent can obtain from the forger
two valid forgeries {`, s, e} and {`, s′, e′} for the same oracle query {m, r} but
with different message digests e 6= e′. Consequently, r = gsy−e = gs′y−e′ and
from that it becomes straightforward to compute the discrete logarithm of y = gx.
Indeed, the previous equation can be rewritten as ye−e′ = gs′−s, and therefore:

y = g
s′−s

e−e′ ⇒ Dlogg(y) = s′ − s
e− e′

The Forking Lemma for Schnorr signatures is originally stated as follows:

Theorem 2 (Forking Lemma, [26]). Let A be an attacker which performs
within a time bound tF an existential forgery under an adaptively chosen-message
attack against the Schnorr signature, with probability εF . Assume that A makes
qh hashing queries to a random oracle and qs queries to a signing oracle.



Then there exists an adversary solving the discrete logarithm problem in
subgroups of prime order in polynomial expected time. Assume that εF ≥ 10(qs +
1)(qs + qh)/q, then the discrete logarithm problem in subgroups of prime order
can be solved within expected time less that 120686 qhtF /εF .

This security reduction loses a factor O(qh) in the time-to-success ratio. Note
that recent work by Seurin [29] shows that this is essentially the best possible
reduction to the discrete logarithm problem.

B Proof of Theorem 1

Adversary Attacks Bob

Theorem 3. Let {y, g, p, q} be a DLP instance. If AAlice plays the role of Alice
and is able to forge in polynomial time a co-signature with probability εF , then in
the Random Oracle model AAlice can break that DLP instance with high probability
in polynomial time.

Proof. The proof consists in constructing a simulator SBob that interacts with
the adversary and forces it to actually produce a classical Schnorr forgery. Here
is how this simulator behaves at each step of the protocol.

1. Key Establishment Phase:
SBob is given a target DLP instance {y, g, p, q}. As a simulator, SBob emulates
not only Bob, but also all oracles and the directory D (see Figure 6).

AAlice SBob

g, p, q, yg, p, q

activate

1

yB = y/yA

2

ss

SAlice ABob

g, p, qg, p, q, y

activate

1

yA = y/yB

2

ss

Fig. 6. The simulator SBob (left) or SAlice (right) answers the attacker’s queries to the
public directory D.

SBob injects the target y into the game, namely by posting in the directory
the “public-key” yB ← yy−1

A .
To inject a target DLP instance y ← gx into A, the simulator SBob reads
yA from the public directory and poses as an entity whose public-key is
yS ← yy−1

A . It follows that yA,S , the common public-key of A and S will be
precisely yA,S ← ySyA which, by construction, is exactly y.



Then SBob activates AAlice, who queries the directory and gets yB. At this
point in time, AAlice is tricked into believing that she has successfully estab-
lished a common co-signature public-key set {g, p, q, y} with the “co-signer”
SBob.

2. Query Phase:
AAlice will now start to present queries to SBob. In a “normal” attack, AAlice
and Bob would communicate with a random oracle O representing the hash
function H. However, here, the simulator SBob will play O’s role and answer
AAlice’s hashing queries.
SBob must respond to three types of queries: hashing queries, co-signature
queries and transcript queries. SBob will maintain an oracle table T containing
all the hashing queries performed throughout the attack. At start T ← ∅.
When AAlice submits a hashing query qi to SBob, SBob answers as shown in
Algorithm 1.

Algorithm 1 Hashing oracle simulation.
Input: A hashing query qi from A

if ∃ei, {qi, ei} ∈ T then
ρ← ei

else
ρ

$←− Z×q
Append {qi, ρ} to T

end if
return ρ

When AAlice submits a co-signature query to SBob, SBob proceeds as explained
in Algorithm 2.

Algorithm 2 Co-signing oracle simulation.
Input: A co-signature query m from AAlice

sB , e
$←− Z∗q

rB ← gsBye

Send H(0‖rB) to AAlice
Receive rA from AAlice
r ← rArB
u← 1‖m‖r
if ∃e′ 6= e, {u, e′} ∈ T then

abort
else

Append {u, e} to T
end if
return sB



Finally, when AAlice requests a conversation transcript, SBob replies by send-
ing {m, ρ, rA, rB , sB , sA} from a previously successful interaction.

3. Output Phase:
After performing queries, AAlice eventually outputs a co-signature m, r, s
valid for yA,S where r = rArB and s = sA + sB . By design, these parameters
are those of a classical Schnorr signature and therefore AAlice has produced
a classical Schnorr forgery.

To understand SBob’s co-signature reply (Algorithm 2), assume that AAlice is
an honest Alice who plays by the protocol’s rules. For such an Alice, {s, r} is a
valid signature with respect to the common co-signature public-key set {g, p, q, y}.
There is a case in which SBob aborts the protocol before completion: this happens
when it turns out that rArB has been previously queried by AAlice. In that case,
it is no longer possible for SBob to reprogram the oracle, which is why SBob must
abort. Since AAlice does not know the random value of rB, such a bad event
would only occur with a negligible probability exactly equal to qh/q (where qh is
the number of queries to the hashing oracle).

Therefore, AAlice is turned into a forger for the target Schnorr instance with
probability 1− qh/q. Since AAlice succeeds with probability εF , AAlice’s existence
implies the existence of a Schnorr signature forger of probability εS = (1−qh/q)εF ,
which by the Forking Lemma shows that there exists a polynomial adversary
breaking the chosen DLP instance with high probability. ut

Being an attacker, at some point AAlice will output a forgery {m′, r′, s′}. From
here on we use the Forking Lemma and transform AAlice into a DLP solver as
described by Pointcheval and Stern in [26, Theorem 14].

Adversary Attacks Alice The case where A targets A is similar but somewhat
simpler, and the proof follows the same strategy.

Theorem 4. Let {y, g, p, q} be a DLP instance. If ABob plays the role of Bob
and is able to forge a co-signature with probability εF , then in the Random Oracle
model ABob can break that DLP instance with high probability in polynomial time.

Proof (Theorem 4). Here also the proof consists in constructing a simulator,
SAlice, that interacts with the adversary and forces it to actually produce a
classical Schnorr forgery. The simulator’s behaviour at different stages of the
security game is as follows:

1. The Key Establishment Phase:
SAlice is given a target DLP instance {y, g, p, q}. Again, SAlice impersonates
not only Alice, but also O and D. SAlice injects the target y into the game as
described in Appendix B. Now SAlice activates ABob, who queries D (actually
controlled by SAlice) to get yB. ABob is thus tricked into believing that it
has successfully established a common co-signature public-key set {g, p, q, y}
with the “co-signer” SAlice.



2. The Query Phase:
ABob will now start to present queries to SAlice. Here as well, SAlice will play
O’s role and will answer ABob’s hashing queries.
Again, SAlice must respond to hashing queries and co-signature queries.
Hashing queries are answered as shown in Algorithm 1. When ABob submits
a co-signature query to SAlice, SAlice proceeds as explained in Algorithm 3.

Algorithm 3 Co-signing oracle simulation for SAlice.
Input: A co-signature query m from ABob
Receive ρ from ABob
Query T to retrieve rB such that H(0‖rB) = ρ

e, sA
$←− Zq

r ← rBg
sAye

u← 1‖m‖r
if ∃e′ 6= e, {u, e′} ∈ T then

abort
else

Append {u, e} to T
end if
rA ← rr−1

B

Send rA to ABob
Receive rB from ABob ; this rB is not used by SAlice
Receive sB from ABob
return sA

SAlice controls the oracle O, and as such knows what is the value of rB that
ABob is committed to. The simulator is designed to trick ABob into believing
that this is a real interaction with Alice, but Alice’s private key is not used.

3. Output:
Eventually, ABob produces a forgery that is a classical Schnorr forgery
{m, r, s}.

Algorithm 3 may fail with probability 1/q. Using the Forking Lemma again,
we transform ABob into an efficient solver of the chosen DLP instance. ut
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