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Gibbs from N.N. 
models and MaxEnt Mapping

Perspectives
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Spikes in sensory neurons are conveyed 
collectively to the cortex using correlated 
binary patterns (in space and time) which 
constitute “the neural code”. Since patterns 
occur irregularly it is appropriate to 
characterize them using probabilistic 
descriptions or statistical models. Two 
major approaches attempt to characterize 
the spike train statistics: The Maximum 
Entropy Principle (MaxEnt) and Neuronal 
Network modeling (N.N). Remarkably, 
both approaches are related via the concept 
of Gibbs distributions. MaxEnt models are 
restr icted to t ime-invariant Gibbs 
d i s t r ibu t ions , v i a the under ly ing  
assumption of stationarity, but this concept 
extends to non-stationary statistics (not 
defined via entropy), allowing to handle as 
well statistics of N.N models and GLM 
with non-stationary dynamics. We show in 
this poster that, stationary N.N, GLM 
models and MaxEnt models are equivalent 
via an explicit mapping. This allows us, in 
particular, to interpret the so-called 
"effective interactions" of MaxEnt models 
in terms of “real connections” models.

The potential     (Max Ent) and      (N.N) 
are mapped onto each others via 
cohomology. Two cohomologous 
potentials correspond to the same Gibbs 
distribution (spatio-temporal spikes 
patterns have the same probabilities in 
the two models) if they satisfy the 
following equation. 

The Gibbs theory provides a very general 
and flexible way to build statistical models 
from data and N.N models and is suitable 
to model biological phenomena. This 
approach offers interesting perspectives, 
for example how spat io-temporal 
correlations are modified by adding a non 
stationary stimulus using the linear 
response. Other examples include Hidden 
Gibbs models (related to  Binning [4]), 
Conditioning upon the future (related to 
the notion of anticipation) etc.. 
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The Gibbs potential obtained from N.N 
models can be expressed as a sum of spike 
interactions. The classical summation of 
spike interactions, on which MaxEnt 
model is grounded, leads to a plethora of 
redundant terms and a huge and artificial 
spread of dimensionality. The pairwise 
interactions are not easily related to 
synaptic interactions, they also depend on 
the stimulus as shown by Cocco and 
Monasson [3] for the Ising spatial model 
(no memory in dynamics). We extend it 
here to the spatio-temporal case. 
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Cohomology equation: Two Gibbs 
potentials are cohomologous if there 
exist a function   and a constant    such 
that:
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N.N Models: From neuronal network 
models to Gibbs potentials [2].

The Gibbs potential is an explicit non linear 
function of synaptic weights and stimulus 

MaxEnt: From experimental data to 
Gibbs potentials [1].

H(!) =
2NLX

l=1

hlOl

Lagrange multipliers      have no interpretation 
in terms of the biological network. 
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Exact conditional probabilities  for  blocks  of range R obtained 
from the normalized potential  , v/s  exact conditional 
probabilities associated with the potential     .

Empirical probabilities of blocks (darker lower 
length), obtained from a discrete leaky integrate 
and fire spike train of size T = 10^5 v/s the 
probabilities of the same blocks predicted by the 
Gibbs distribution with potential    .
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