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Abstract
Modern optimizing compilers rely on the Static Single Assignment
(SSA) form to make optimizations fast and simpler to implement.
From a semantic perspective, the SSA form is nowadays fairly well
understood, as witnessed by recent advances in the field of formally
verified compilers.

The destruction of the SSA form, however, remains a difficult
problem, even in a non-verified environment. In fact, the out-of-
SSA transformation has been revisited, for correctness and per-
formance issues, up until recently. Unsurprisingly, state-of-the-art
compiler formalizations thus either completely ignore, only par-
tially handle, or implement naively the SSA destruction.

This paper reports on the implementation of such a destruc-
tion within a verified compiler. We formally define and prove the
properties of the generation of Conventional SSA (CSSA) which
make its destruction simple to implement and prove. Second, we
implement and prove correct a coalescing destruction of CSSA, à
la Boissinot et al., where variables can be coalesced according to a
refined notion of interference.

This formalization work extends the CompCertSSA compiler,
whose correctness proof is mechanized in the Coq proof assis-
tant. Our CSSA-based, coalescing destruction removes, on aver-
age, more than 99% of introduced copies, and leads to encouraging
results concerning spilling during post-SSA register allocation.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification - Correctness Proofs; F.3.1
[Logics and meanings of programs]: Specifying and Verifying and
Reasoning about Programs - Mechanical verification

General Terms Languages, Verification

Keywords Verified Compilers, conventional SSA, coalescing

1. Introduction
The Static Single Assignment (SSA) form [11] is an intermediate
representation of code where variables are statically assigned ex-
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actly once. Thanks to the considerable strength of this property,
the SSA form simplifies the definition of many optimizations, and
improves their efficiency, as well as the quality of their results. It
is therefore not surprising that modern compilers (e.g., GCC or
LLVM) or code generators [13], rely heavily on the SSA form.

The powerful properties of SSA are enabled by the unique-
ness of variable definition points. To ensure this criteria on non-
linear control-flow graphs (with branches and junction points), SSA
uses dedicated instructions, placed at junction points. For a junc-
tion point with n predecessors, the so-called φ-functions, of the
form x := φ(x1, x2, . . . , xn), select, at run-time, according to the
control-flow path executed, the right definition to use among all
definitions xi reaching that junction point. The corresponding xk
is then assigned to x. All the φ-functions at a same junction point
are considered as a whole, and interpreted with a parallel semantics.
If φ-functions are indeed the key ingredient of SSA, they are not di-
rectly available as machine instructions, hence the need to go out
of the SSA form. The standard way of integrating SSA-based tech-
niques in a compilation chain is to (i) first convert to the SSA form,
then (ii) perform SSA-based code analyses and optimizations, and
(iii) re-convert back to a non-SSA representation of code.

Destructing SSA. The destruction of the SSA form (i.e., φ-
functions elimination) can be seen as a way of compiling φ-
functions, or implementing them with regular instructions of the
language at hand, namely, copies. Eliminating φ-functions in a
non-naive way (without introducing too many copies) is a noto-
riously difficult problem. Indeed, the out-of-SSA transformation
has kept being revisited, for correctness and performance issues,
from its introduction in the early 90’s up until recently. We give a
brief summary of these revisions, in chronological order. A more
comprehensive summary can be found in [13].

The initial destruction proposed by Cytron et al. [11] consists
essentially in introducing a copy x := xi at each i-th predecessor of
a junction point. Copies are then coalesced using a Chaitin-style co-
alescing [10]. This destruction is then identified by Briggs et al. [8]
as incorrect in the presence of critical edges in the control-flow
graph, after aggressive value-numbering or copy propagation (the
lost-copy problem). Other cases of bugs can arise after copy fold-
ing, if the parallel semantics of φ-function blocks is not carefully
considered (the swap problem). They propose two new algorithms
to correct these issues.

The work of Sreedhar et al. [17] constitutes a real progress in the
understanding of the essence of the SSA destruction. They iden-
tify a subclass of SSA, Conventional SSA (CSSA), in which the
elimination of φ-functions is, so-to-say, obviously correct. In fact,
CSSA is defined in [17] as the SSA form in which all φ-related
variables can be coalesced together without changing the seman-
tics of the program. They observe that, while the conversion of
code to SSA ensures a CSSA form, many optimizations break this
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property (including copy propagation and common sub-expression
elimination based on value-numbering [7]). Hence, they propose to
destruct SSA by first converting to CSSA, inserting fresh copies to
ensure a φ-congruence property: all variables related (transitively)
by φ-functions should have disjoint live-ranges. They progressively
refine the copy insertion strategy so as to minimize the number of
inserted copies.

More recently, Boissinot et al. [5] revisit the problem, with a
resolute emphasis on the need for a conceptually simple destruc-
tion of SSA, to ensure both the correctness, and the performance of
the destruction. To ensure the correctness of the destruction, they
propose to first generate CSSA following the most naive copy in-
sertion strategy of Sreedhar et al. (we will come back to this trans-
formation in more details). The destruction phase is then seen as a
classic and generic coalescing problem, in which the notion of non-
interference is refined to include, in addition to liveness informa-
tion, some value information, which can be easily computed or ap-
proximated in SSA. Interestingly, the copies they insert are parallel
copies, to mimic the way φ-function blocks operate, and to allow
for more coalescing opportunities. Parallel copies remaining after
the coalescing are sequentialized in a final step. Boissinot et al. [5]
make a clear case for correctness consideration, pointing out some
subtle inaccuracies in [17] related to the liveness information used
to check interferences between variables. They even provide some
high-level proof sketches about the correctness of the CSSA gener-
ation and non-interferences of φ-related variables.

SSA in Verified Compilers. From a semantic perspective, SSA is
nowadays fairly well understood, as witnessed by recent advances
in the field of formally verified compilers. The earliest mechanized
formalizations date back from the work of Blech et al. [3]. Since
then, the SSA generation has been studied in more realistic con-
texts. The CompCertSSA [1] project uses a complete, verified val-
idator, for the generation of pruned-SSA, based on dominance fron-
tiers [11]. The Vellvm project proves in [18, 19] a simplified ver-
sion of the LLVM SSA generation, based on register promotion.
Recently, the generation algorithm proposed by Braun et al. [6] has
been formalized in Isabelle/HOL [9].

Apart from the generation itself, some progress has also been
made on the formalization of the useful invariants and properties
of SSA that ease the reasoning when it comes to proving optimiza-
tions. This includes some semantic invariants such as strictness, ba-
sic equational reasoning, dominance-region reasoning [1, 12, 19],
with concrete applications to the formal proof of Sparse Condi-
tional Propagation and Common Subexpression Elimination based
on Global-Value-Numbering based [12], or Copy Propagation and
micro memory optimizations [19].

The destruction of SSA, however, has not received much atten-
tion yet from the verified compilation community. In fact, even if
Sreedhar et al. [17] and Boissinot et al. [5] provide some high-level

arguments to justify the correctness of their SSA destruction strat-
egy, it is unclear whether the non-interference of φ-related variables
is a sufficient condition to prove the correctness of the φ-function
elimination, or if the transformation has to establish stronger in-
variants for corner cases not yet identified, despite the scrutiny of
compiler writers.

As a matter of fact, state-of-the-art compiler formalizations
either completely ignore, only partially handle, or implement
naively the SSA destruction. Indeed, so far, the SSA destruction
in CompCertSSA [1, 12] is partial, requiring that φ-blocks behave
the same when executed sequentially or in parallel. On programs
that do not satisfy this criterion, the compiler fails. This restriction
disallows many optimizations. Furthermore, on programs that meet
this requirement, the elimination of φ-instructions is done naively,
with massive copy insertion, thus impacting the performance of
the subsequent register allocation phase, which in practice, results
in a substantial amount of spill/reload code. Consequently, most
of the gain that we could hope from SSA optimizations is lost in
the backend. Vellvm [18, 19] does not consider this problem at
all, focusing on SSA construction and optimizations. The compiler
backend (and thus the destruction of SSA) is not included in the
verified part of the project.

Contributions. We argue that integrating a complete (i.e., non-
failing), non-trivial SSA destruction in a verified compiler raises
an interesting question. Indeed, proving the correctness of the φ-
function elimination requires to establish a precision result about
the underlying liveness analysis. In contrast, most of the time,
verified compilers can confine themselves to proving the soundness
of static analyses (imprecise analysis just results in less optimized
code). In the case of SSA destruction, the situation is different: if
φ-related variables have overlapping live-ranges, or if the liveness
analysis is too coarse to detect their disjointness, one would not be
able to prove that removing all φ-functions preserves the program
semantics. Here, we observe that the full CSSA generation (Method
I of Sreedhar et al. and Boissinot et al.) ensures that the required
precision can be met, by inserting fresh copies for all φ-instructions
arguments and destinations (referred to as φ-resources in the rest of
the paper).

This paper reports on the implementation of such a destruc-
tion within the verified compiler CompCertSSA, whose correctness
proof is mechanized using the Coq proof assistant. We implement
an SSA destruction à la Boissinot et al. [5]. This comprises the
generation of CSSA using parallel copies, the implementation of
a variable coalescing on CSSA using a refined notion of interfer-
ence, and the sequentialization of remaining parallel copies. More
technically, we make the following contributions:

• We implement the generation of CSSA, and prove it is semantic
preserving. Despite its conceptual simplicity (introduce fresh
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variables and parallel copies, and rename φ-instructions accord-
ingly), the proof is quite technical to complete.

• We formally prove that in the resulting CSSA code, φ-resources
of a same φ-instruction have disjoint live-ranges. This precision
result, combined with the freshness property of inserted copies,
allows us to prove that, independently of any sophisticated
coalescing, eliminating all φ-functions of the generated CSSA
code is semantics preserving.

• We implement a CSSA-based coalescing algorithm and prove
its correctness. To do this, we formalize the refined notion of
non-interference of [5], integrating the SSA-value. To account
for heuristics in the coalescing algorithm, we rely on verified a
posteriori validators.

• On the practical side, the CSSA-based coalescing removes,
on average, more than 99% of the (massively) introduced
copies. This leads to encouraging results concerning spilling
and reloading during post-SSA register allocation. This vali-
dates empirically the utility of such a coalescing destruction.

The middle-end of CompCertSSA, extended with the new SSA
destruction is depicted in Figure 1. It is plugged in CompCert at the
level of the RTL intermediate language, that is a 3-address, unstruc-
tured representation of code in a control-flow graph (CFG), with
virtual registers. After a normalization phase of RTL, we generate
from there the SSA form of the code, and perform SSA-based op-
timizations. The generation and optimization phases are described
in [1, 2, 12]. The work presented in this paper is represented inside
the grey area. It comprises the generation of Conventional SSA
(CSSA), and the coalescing algorithm used for going out of SSA
back to RTL. In a first step, we eliminate φ-instructions and coa-
lesce variables. In a second step, we sequentialize remaining paral-
lel copies (if any) using the formalization of Rideau et al. [16]. We
hence also introduce the intermediate language RTL//, a variant of
RTL augmented with parallel copy blocks.

Structure of the Paper. In Section 2, we briefly recall the nec-
essary background notions relative to verified compilation. In Sec-
tion 3, we present our formalization of the CSSA form (syntax and
semantics), and its important property of disjoint live-ranges for φ-
resources. In Section 4, we present a basic destruction of CSSA,
that only eliminates φ-instructions, without further coalescing. We
give the main structure of its proof of semantic correctness. The de-
struction of CSSA presented in Section 5 improves it by incorporat-
ing a refined notion of non-interference leveraging the SSA-value
of variables. In Section 6, we present some experimental results
measuring the effectiveness of this verified coalescing on program
benchmarks. Finally, Section 7 concludes and discusses some fu-
ture directions of research.

In the paper, we choose not to present results in the Coq syn-
tax, to account for unfamiliar readers. The formal development is
available online at http://compcertssa.gforge.inria.fr/

2. Background on Verified Compilation
Compiler correctness aims at giving a rigorous proof that a com-
piler preserves the behavior of programs. After 40 years of a rich
history, the field is entering into a new dimension, with the advent
of realistic and mechanically verified compilers. This new genera-
tion of compilers was initiated with CompCert [15], programmed
and verified in the Coq proof assistant. It is a realistic formally
verified compiler that generates PowerPC, ARM or x86 code from
source programs written in a large subset of C. CompCert formal-
izes the operational semantics of dozen intermediate languages, and
proves for each phase a semantics preservation theorem. Preserva-
tion theorems are expressed in terms of program behaviors, i.e. fi-
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Figure 2: Example programs. Program a) is the initial normalized
RTL program, Program b) is the SSA version and Program c) is
obtained by propagating the copy at node 4 to node 6.

nite or infinite traces of observable events (mainly system calls, and
volatile memory accesses) that are performed during the execution
of the program, and establish that individual compilation phases
preserve behaviors. A consequence of the theorems is that for any
program P (in a languageL) whose semantics is well defined, if the
compiler compiles it down to the target program P ′ (in a language
L′), it is the case that all behaviors of P ′ are possible behaviors of
the initial program P .

In practice, to prove such a property of semantic preservation
(called a backward simulation), we often prove instead a forward
simulation, which under standard hypotheses on the languages (re-
ceptive source and deterministic target), is equivalent but easier to
prove. A forward simulation proves that if P is well-defined, then
all possible behaviours of P are possible behaviours of P ′.

Establishing this property can be done by exhibiting a relation
∼ between execution states of the source and target programs, that
carries all the invariants needed for proving behavior preservation.
In this work, the source and target programs have execution states
that match after each small step in the semantics. We hence rely on
the following simulation scheme:

Lemma 1 (Lock-step simulation). Let ∼ be a relation between
source and target program execution states satisfying:

(i) for any initial state σ1 of P , there exists an initial state σ2 of
P ′, such that σ1 ∼ σ2

(ii) if σ1
t−→L σ2 and σ1 ∼ σ′1, then there exists a state σ′2 such

that σ′1
t−→L′ σ′2, and σ2 ∼ σ′2

(iii) if σ1 ∼ σ2 and σ1 is a final state of P , σ2 is a final state of P ′

Then all behaviors of P are also behaviors of P ′.

In Section 4 and Section 5, we will rely on this lemma to prove
the semantic correctness of the destructions. However, for space
reasons, we will focus on the most interesting case, (ii), which
states that the simulation relation ∼ is preserved after each step
of computation.

3. Conventional SSA
Program b) in Figure 2 gives an example of an SSA function built
from the normalized RTL function in Program a). Variables are
defined only once, and the φ-instruction at junction point selects, at
runtime, among x1 and x2, the one that is assigned to x3 according
to the flow of execution. In the example, if the left branch of the
condition is executed, x3 will get the value of x1, and if the right
branch is taken, it will get the value of x2. Observe in Program b),
how, right after the conversion to SSA, variable x1, x2 and x3 could
be merged back into the same name, and the φ-instruction be
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Figure 3: Example programs. Program c) is an optimized SSA pro-
gram, Program d) is obtained by conversion to CSSA and Program
e) is obtained by eliminating φ-functions.

removed, without affecting the semantics of the function, thanks
to their disjoint live-ranges.

Now, consider Program c) in Figure 2. It is obtained after a
simple copy propagation in Program b). In this program, removing
the φ-instruction, and merging x3, x1 and y would be incorrect.
Indeed, Program c) is an SSA program that is not conventional
anymore: the variables x1 and y (arguments of the φ-instruction
at point 6) are both live at program point 2, hence their live-range
intersect, and it would be incorrect to merge variables y and x1.
Indeed, the assignment of x1 would erase the one of y.

The goal of the conversion to CSSA is to re-establish the prop-
erty of disjoint live-range for φ-resources. The idea of the algo-
rithm favored in Boissinot et al. [5] is to introduce fresh variables
and parallel copies of φ-variables at junction points and their pre-
decessors, so that the φ-function becomes isolated. That is, for each
φ-instruction x0 := φ(x1, . . . , xn) at a junction point pc, we in-
troduce fresh variables a0, . . . , an, and do the following:

• The φ-instruction is replaced by a0 := φ(a1, . . . , an).
• A copy x0 := a0 is added to a parallel copy block at pc.
• A copy ai := xi is added to a parallel copy block at the ith

predecessor of pc, for all i ∈ {1, . . . , n}.

In Program d) of Figure 3, fresh variables a0, a1, a2 are introduced
to replace the φ-instruction x3 := φ(x1, y), and parallel copies are
inserted at nodes 3, 5 and 6 (depicted in dark gray). As expected,
all variables ai have now disjoint live-ranges.

In the rest of this section, we present how we model the syn-
tax, semantics, and properties of CSSA. Most of its properties are
inherited from the SSA intermediate language, and preserved by the
CSSA generation. The distinguishing property of CSSA, live-range
disjointness, is presented in Section 3.4.

3.1 Abstract Syntax
The syntax of a CSSA function is given in Figure 4. A CSSA function
has a name, a list of parameters, an entry point, and a codemapping
from a set of nodes to instructions (nop, arithmetic operations,
copies, conditionals. . . 1). Each instruction carries its successors
nodes. Hence, the CFG of the function is completely embedded in
the graph code. The CSSA function has also a phicodemapping from
nodes to φ-blocks (lists of φ-instructions of the form xd := φ(~x)),

1 We present here the core instruction set, abstracting many technical details
from the full language, e.g., memory accesses and function calls. Our
formalization does handle the full instruction set, enabling the compilation
of ISO C90 / ANSI-C programs.

pc, pc′, s 3 node

r, x, y 3 reg

ι ::= pc 7→ instr instructions
ϕ ::= pc 7→ −−−−−−→phi-instr φ-blocks
µ ::= pc 7→ −−−→pcopy parallel-copies

instr ::= nop(s) no operation
| iop(op, xd, ~x, s) arith. operation
| copy(xd, x, s) copy (xd := x)
| if(c, ~x, strue , sfalse) conditional
| . . .

phi-instr ::= phi(xd, ~x) phi-instr. (xd := φ(~x))
pcopy ::= mv(xd, x) copy (xd := x)

f 3 functionCSSA

f ::=

 name = id; params = ~x;
entry = pc; code = ι;
phicode = ϕ; parcode = µ


Figure 4: Syntax of CSSA (excerpt)

and a parcode mapping from nodes to parallel copy blocks (lists of
pcopy, see Figure 4).

To simplify the reasoning in our proofs, we assume a couple
of structural constraints on the functionCSSA data type. In our
development, these are not assumptions, but rather either verified,
or a posteriori validated.

Basic Structural Well-formedness. The phicodemapping is only
defined on junction points. Similarly, parcode is defined on junc-
tion points or predecessors of junction points. Each φ-instruction
has exactly as many arguments as required. Second, we assume that
each point in the CFG is reachable from the entry point, and that the
code is “self contained” (no instruction has a successor that points
to no instruction). Finally, the entry point has no predecessor, and
is not the predecessor of a junction point.

Normalization of Code. First, the RTL normalization ensures that
only a nop can branch to a junction point, and that the entry point
is also a nop. This is inherited from CompCertSSA, and allows for
a substantially simplified definition of the semantics [1].

Second, we assume that there is a nop(s) instruction at all
junction points. This invariant was introduced to simplify liveness
reasoning at junction points. Finally, there cannot be two successive
junction points in the control flow graph, which allows to use only
one graph parcode for parallel copy blocks.

3.2 Semantics
We use the following notations. We write (f ◦ g)(x) = f(g(x))
for function composition. If ~x is a vector of variables (x1, . . . , xn),
then for k ∈ {1, . . . , n}, we write ~x.k for xk.

Figure 5 presents selected rules defining the small-step opera-
tional semantics of CSSA, expressed as a labelled transition system
on execution states, whose transitions are of the form σ

e−→CSSA σ′.
For the instruction set we consider here in the paper, the observable
event e labelling the transition will be the silent event ε2, and ex-
ecution states σ (defined in Figure 5) are simple tuples (f, pc, rs)
gathering the function f being executed, the current program point
pc (a node in the code pointing the next instruction to execute),
and the current local environment rs , (finitely) mapping variables

2 The full formalization of the language does handle non-silent transitions.
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σ 3 state

σ ::= (f, pc, rs)
v 3 value rs 3 regset

rs ::= x 7→ v local environment

NopNJP

f.code(pc) = nop(pc′)
¬(joint point f pc′)

(f, pc, rs)
ε−→CSSA (f, pc′, rs)

NopJP

f.code(pc) = nop(pc′) (joint point f pc′) index pred(f, pc, pc′) = k
f.parcode(pc) = parcb f.phicode(pc′) = phib f.parcode(pc′) = parcb′

(f, pc, rs)
ε−→CSSA (f, pc′, [[parcb′]] ◦ [[phib]]k ◦ [[parcb]]rs)

Parallel-copy semantics
[[nil]]rs = rs
[[mv(xd, x)::parcb]]rs = ([[parcb]]rs)[xd ← rs(x)]

Phi-blocks semantics
[[nil]]krs = rs
[[phi(xd, ~x)::phib]]krs = ([[phib]]krs)[xd ← rs(~x.k)]

Figure 5: CSSA semantics (excerpt)

to values. We write rs[x← y] for the update, in rs , of the value of
x to the value of y.

In Figure 5, rule NopNJP is the simplest one. It expresses the
execution of an nop(pc′) instruction, when pc′ is not a junction
point (as indicated by the side-condition). Such a step changes
only the program point (it steps to pc′), and in particular, does not
change the environment rs .

When the successor pc′ of instruction nop(pc′) is a junction
point (rule NopJP), this time, both the parallel copy-block parcb at
node pc, the φ-block phib at node pc′, and the parallel copy-block
parcb′ at node pc′ must be executed, modifying the local environ-
ment rs . This is defined by [[parcb′]] ◦ [[phib]]k ◦ [[parcb]]rs , as the
three blocks are executed in only one “small” step, on the way from
node pc to pc′. More precisely, φ-blocks and copy-blocks are given
a parallel semantics (see Figure 5). Executing a block parcb on an
environment rs , written [[parcb]](rs), modifies the environment rs
in such a way that for each copy xd := x in the block, xd is as-
signed the value of x in the initial environment rs . The semantics
of a φ-block phib on an environment rs , [[phib]]k(rs) is defined
similarly, assigning to the φ-function destination xd the value (in
rs) of the k-th argument of the φ-function (~x.k).

This “small” step semantics of junction point predecessors, in-
herited from SSA, is intuitive, non-instrumented, and as close as
possible to the one of RTL// (apart from φ-nodes, it is the same).
This allows for easier proofs of the transformations.

The transition rules for all other instructions are completely
standard, and we do not give further details. Indeed, thanks to the
code normalization, these instructions do not branch to a junction
point, hence do not require executing any φ-block or parallel copy-
block.

3.3 Unique Definitions and Strictness
Each variable of a CSSA function has a unique definition point
(either in the code, or in a φ-instruction, or in a copy of a parallel
copy block). In our formalization, we of course have to formally
define this notion, and prove that it is ensured. Here, to smooth the
presentation, we omit the formal definition, and will just assume
a function deff () : reg → node computing the unique node in a
function f where a variable is defined.

More interesting is the notion of strictness: in a CSSA function,
each variable use must be strictly dominated by its definition point.
To account for the presence of parallel copy blocks and φ-blocks
at junction points and their predecessors, we use the following
definition.

Definition 1 (Strict dominance). In function f , a variable x strictly
dominates node pc, written x � pc, whenever one the following
holds:

• deff (x) strictly dominates pc in the CFG of f
• x is the destination of a φ-function at point pc

• x is the destination of a copy in a parallel copy block, and pc is
a junction point.

Given this definition, we can prove that the following property
holds:

Lemma 2 (Strictness). In a function CSSA f , if a variable x is used
at a node pc, then x � pc. Moreover, no variable is both assigned
and used in a same parallel copy block.

Note that the analogous property for φ-blocks is a consequence
of the general strictness in the CFG, because arguments to a φ-
function at a junction point are considered used at the predecessor,
as is standard in the SSA literature [11].

3.4 Live-range Splitting
We turn now our attention to the important properties established
by the conversion to CSSA. First, we observe that in [5], proof
sketches justifying the correctness of the destruction informally
rely on the precise way fresh copies are inserted to isolate each
φ-functions inside a same φ-block. In particular, fresh names are
introduced for each φ-functions. We will call this the φ-resources
disjointness property.

Definition 2 (φ-resources disjointness). A CSSA function f satisfies
the φ-resources disjointness property if all variables appearing in
a φ-function (anywhere in f.phicode) are pairwise distinct.

In particular, this ensures that no variable will appear twice in
a φ-block. Now, Definition 2 only capture that φ-functions do not
conflict regarding variables names. What remains to formalize is
that φ-functions are indeed isolated from the rest of the code, in
terms of live-ranges. In the literature, this is what is often called the
live-range splitting of CSSA conversion. We will use the following
definition:

Definition 3 (Split live-ranges). In a function f , variables x
and y have disjoint live-ranges (written x ⊥ y) when x 6∈
liveoutf (deff (y)), y 6∈ liveoutf (deff (x)), and deff (x) 6= deff (y).

In this definition, we formally define the liveness information
liveoutf (pc) as an inductive predicate, characterizing the set of x, in
the CFG of f , such that there exsists a path from pc to a use point of
x, with no re-definition of x in between. The condition deff (x) 6=
deff (y) is a technical requirement simplifying the reasoning about
parallel-copy and φ-function blocks (see discussion below). Thanks
to the way fresh copies are inserted during conversion to CSSA,
this extra condition will be met, by construction, on all variables
appearing in a φ-instruction.

Indeed, we can prove that the CSSA form generated by the algo-
rithm satisfies the two above properties.

Lemma 3. Let f a function produced by the conversion to CSSA.
Then the two following properties hold:
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• f satisfies the φ-resources disjointness property
• for any node pc, such that f.fn_phicode(pc) = phib, it is the

case, for each φ-instruction x0 := φ(x1, . . . , xn) in phib, that,
for all 0 ≤ i, j ≤ n, i 6= j ⇒ xi ⊥ xj

Proof. The proof of this lemma essentially results from the fresh-
ness of new variables in inserted copies. Once the freshness prop-
erty is proved, the proof of the non-interference goes through. We
first prove that for each φ-resource (i.e., source and destination of
a φ-function), it is defined and used at the same point. Next, as
they cannot be used anywhere else, they become dead just out the
junction point.

In Section 4, we rely on this lemma to prove that the elimina-
tion of φ-instructions (by coalescing all variables of a single φ-
instruction), is correct.

Discussion. Compared to the φ-congruence property of Sreed-
har et al., the two above properties are stronger. With these prop-
erties, we make explicit the fact that the CSSA generation (Method
1) generates short live ranges for φ-resources. In contrast, the φ-
congruence property is global on the CFG, which, we argue, would
make the reasoning more difficult. In particular, the definition of
φ-congruence classes [17] allows the case where xd := φ(z, x2)
and yd := φ(y1, z) belong to a same φ-block. Being able to prove
that eliminating these two φ-instructions is correct would require
to justify that xd and yd could also be replaced by a common rep-
resentative. But reasoning on their run-time value would require
to consider two, a priori, completely unrelated execution paths.
Boissinot et al. already pointed at that it is simpler to reason on
the “naive” CSSA generation, and that, at the same time, the sub-
sequent coalescing algorithm successfully coalesces most of intro-
duced copies. Our experimental results (Section 6) confirm this. We
hence decide to take full advantage of the two above properties, al-
lowing for a local reasoning at junction points.

4. Non-coalescing CSSA Destruction
In this section, we present a simple CSSA destruction, from CSSA to
RTL// function. The syntax of RTL// is the same as CSSA, without any
phicode field in the function record:

tf 3 functionRTL//

tf ::=

 name = id; params = ~x;
entry = pc; code = ι;
parcode = µ


Accordingly, the semantics of RTL// and CSSA are similar, the only
difference being the semantic rule NopJP, which is simpler in RTL//
because of this absence of φ-blocks.

The simple destruction only removes all φ-instructions, by
merging variables that appear in a same φ-instruction. This allows
us to characterize the essential properties that allow for elimination
of φ-instructions. Coalescing-based destruction will be presented
in the next section as an extension of this one.

4.1 Algorithm
Here, to lighten the presentation, we will assume that CSSA func-
tions are structurally well-formed, and satisfy Lemma 3. The algo-
rithm for this simple destruction is the following:

destruct(f) =
let R := classes(f) in
{ name := f.name;
params := map R f.params;
entry := f.entry;
code := pc 7→ mapinstr R (f.code(pc));
parcode := pc 7→ mapmov R (f.parcode(pc))}

First, a mapping R, is computed by the function classes. It is
a mapping from variables to a unique representative. Then, the
destruction consists in (i) removing completely the φ-code from
the function, and (ii) applying the mapping R (seen as a variable
renaming) to all parameters and instructions of the function f (in
the regular instruction graph f.code, as well as on the parallel copy
blocks graph f.parcode).

4.2 Properties of Variable Renaming R
More precisely, the computed R maps each variable appearing
as an argument of a φ-instruction to the destination of the φ-
instruction. Other variables will just be mapped to themselves. Note
that this computation only makes sense if the same variable does
not appear as a φ-argument of two distinct instructions (it could
otherwise map to two different destinations). This is effectively the
case in our CSSA form (by Definition 2). Another important point
to note is that no liveness analysis is required for this destruction.
Indeed, by construction of CSSA (Lemma 3), the live-ranges of
variables used in φ-functions are known to be disjoint. To sum up,
we (provably) characterize the computed mapping in the following
way.

Lemma 4. For each φ-instruction x := φ(x1, . . . , xn) of a φ-
block phib at node pc, and all k ∈ {1, . . . , n}, we have R(xk) =
x. For all variables not used in any φ-instruction, we have R(x) =
x.

We then prove the main property of our R mapping, namely
that, if a variable is indeed renamed during the destruction, then it
will be renamed into a variable that does not interfere with it:

Lemma 5. For each pair of distinct variables x, x′ of function f ,
if R(x) = R(x′), then x ⊥ x′.

Proof. Such x and x′ are necessarily φ-resources of a same φ-
instruction, by Lemma 4. We conclude using the live-range splitting
property ensured by Lemma 3.

4.3 Correctness Proof
The proof that the destruct function is semantically correct is done
by exhibiting a lock-step simulation between the two functions. In-
tuitively, we aim to show that the execution of the two functions
match, step by step. To do this, we need to maintain the invariant
that the value of all the necessary variables (i.e., variables live en-
tering current program point) is preserved by the renaming process.

Often, when reasoning about SSA code analysis and optimiza-
tions, one only needs to track a correctness invariant about the vari-
ables whose definition strictly dominates the current program point
pc. Indeed, for many SSA-to-SSA optimizations, at all point, if the
value of a variable influences program execution, we can prove that
we are executing a portion of code dominated by the definition of
this variable.

In the present case, this is no longer true. We need to track
the preservation of values for all live variables, a strictly stronger
property. Indeed, as soon as a variable becomes dead, we cannot
show its value is preserved, even in a code region that is dominated
by its definition, because its name could have been merged with
another one. Hence, the invariant must be relaxed.

The simulation relation∼ between execution states of functions
f and tf is defined as follows:

Definition 4 (State matching ∼). Let tf = destruct(f) be the
transformed function of f . Then (f, rs, pc) ∼ (tf , rs ′, pc′) if:

• pc = pc′

• ∀x. x ∈ liveinf (pc) ∪Djpf (pc)⇒ rs(x) = rs ′(R(x)).
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Here, Djpf (pc) denotes the set of variables that are defined
at junction point pc, i.e., in a φ-block, or in parallel copy block
at a junction point. Variables in this set are not necessarily live.
Hence, we maintain the invariant for a larger set of variables. This
technically allows us to work with a simpler definition of liveness
at junction points, at the granularity of the CFG. We now give some
highlights about the proof that the relation ∼ is indeed a lock-step
simulation.

Lemma 6. Let σ1, σ2 be execution states of f , and suppose that
σ1

t−→CSSA σ2. Let σ′1 an execution state of tf such that σ1 ∼ σ′1.
Then, there exists a state σ′2 such that σ′1

t−→RTL// σ
′
2 and σ2 ∼ σ′2.

Proof. The proof is done by a case analysis on the step relation. We
present here the most interesting cases only. Let σ1 = (f, pc, rs),
and σ′1 = (tf , pc, rs ′) two states satisfying the hypotheses of the
preceding lemma.

Let us first consider the case where σ1 is such that the next
instruction to execute is a single copy instruction x := y. Let now
r be a variable live out of pc (that is, live entering its successor).
We want to prove that local environments match after executing the
copy, i.e., rs[x ← y](r) = rs ′[(R(x) ← R(y)](R(r)). There are
several cases to consider:

• If r = x, the proof is straightforward: we can apply to y the
induction hypothesis because it is live entering pc, being used in
pc, and not defined at pc because of the code strictness property
of Lemma 2.

• If r 6= x andR(r) 6= R(x), then r was already live entering pc,
and the copy does not modify r orR(r), so the equality follows
from the matching relation between rs and rs ′.

• If r 6= x but R(r) = R(x), r is as before already live entering
pc, but the value of R(r) could have changed. Because r 6= x,
R(r) = R(x) means r ⊥ x, which is impossible, because r is
live out of the definition point of x.

The most difficult case is when the instruction at pc is a
nop(pc′), and pc′ is a junction point pc′ (rule NopJP in Figure 5),
which requires to simulate the execution of a parallel copy block
parcb at pc, followed by a φ-block phib and a parallel copy block
parcb′ at pc′ in only one step. In fact, we proceed in two steps,
by proving the matching relation between local environments is
preserved, but with some adjustments with respect to the variables
on which the matching holds.

First, we prove a lemma that propagates the necessary interme-
diate invariants after application of parcb. Mainly, it propagates the
invariant over the local environment for variables that are live en-
tering pc′ or assigned in parcb. Morally, the simulation of a block
of parallel copies is similar to that of a single copy. In particular,
we take advantage of the fact that, with this basic notion of interfer-
ence, we know that after renaming, no variable is assigned twice,
because x ⊥ y cannot happen for variables defined in a same point.
We rely on two technical helper lemmas. The first lemma charac-
terizes the effect of a renamed block on the representative R(r) of
a variable r that is not assigned in parcb.

Lemma 7. Let r be a variable that is not a destination in block
parcb. If for each copy x := y appearing in parcb, we have
R(r) 6= R(x), then [[mapmov R parcb]]rs

′(R(r)) = rs ′(R(r)).

The second lemma is similar, but for variables that are assigned
in the block.

Lemma 8. Let r be a variable that is a destination of a copy
r := y of the block parcb. If for any other copy x := y′ we have
R(r) 6= R(x), then [[mapmov R parcb]]rs

′(R(r)) = rs ′(R(y)).

This means, in fact, that the copies of parallel copy blocks
remain indeed parallel after renaming with R.

We give a highlight of the proof of this invariant propagation
after applying parcb. Let r be a variable live entering the junction
point pc′, successor of pc. We proceed by a case disjunction on
whether the variable is assigned or not in parcb.

• If r is assigned in a copy r := y at parcb, then R(r) 6= R(x)
for each copy x := y′ of parcb with x 6= r, otherwise r and x
would be defined at the same point, so r ⊥ x could not hold.
We can therefore apply Lemma 8.

• If r is not assigned in parcb, we also have R(r) 6= R(x) for
each copy x := y′ of parcb, because r is live out of point pc
(because live entering pc′), and x defined at pc, so r ⊥ x could
not hold. We can hence apply Lemma 7.

Second, we propagate further the matching between environ-
ments after executing the φ-block phib, for variables that are live
at pc′ or assigned in parcb or assigned at phib. Here, Lemma 4
is crucial. Indeed, the fact that in each φ-instruction, all variables
are mapped to the same representative, basically means that a φ-
instruction x0 := φ(x1, . . . , xn) would be renamed into x0 :=
φ(x0, . . . , x0), and would hence not modify the local environment.
This justifies the φ-block elimination.

At last, we achieve the propagation of the invariant after the
second parallel copy block parcb′, using a reasoning similar to the
previous one.

This destruction is only removing φ-instructions, and no further
coalescing of variables is done. Compared to the current destruction
in CompCertSSA, this makes the compiler accept more programs:
it will not fail to compile a program, even after an SSA optimization
that breaks the live-range splitting and φ-resources disjointness
properties. In the next section, we extend this destruction so that
a more aggressive coalescing can be performed.

5. CSSA Destruction with Coalescing
This destruction extends the previous one by allowing to remove
useless copies. In contrast, we make more use of verified a poste-
riori validators in place of direct proof. This approach yields the
same guarantees of correctness on the output program, while hav-
ing two main advantages: the proof is generally significantly sim-
pler, but more importantly, validators are robust against fined-tuned
adjustments done regarding heuristics of computations. For exam-
ple, the use of coalescing priorities, such as processing the junction
point before predecessors as we do (because it’s a more frequently
used execution path), doest not affect the proof.

5.1 Algorithm
The algorithm for the extended destruction is the following:

destruct(f) =
let live := live_analysis(f) in
let Vf := cssa_value_ext(f) in
let ninterfere := ninterfere_test(f, live, Vf ) in
let (R, classes) := build_classes_ext(f, ninterfere) in
if check(R, classes, ninterfere) && check_v(f ,Vf ) then
{ name := f.name;
params := map R f.params;
entry := f.entry;
code := pc 7→ mapinstr R (f.code(pc));
parcode := pc 7→ clean(mapmov R (f.parcode(pc)))}

else Error
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As previously, the destruction consists in computing a variable
renaming R, and then applying it to the whole code of a function.
There are however two noticable differences.

First, R is now computed by an external, untrusted OCaml pro-
gram, build_classes_ext, whose result is a posteriori validated,
as indicated by check, against a specification. If the validator suc-
ceeds, then we proceed to next phase. If not, then, here, the whole
destruction phase fails. In practice, the validator never fails.

The details of the computation of classes and properties (en-
sured by the checker) are presented in Section 5.3, but they rely on
a pre-computed liveness (live, computed and proved in Coq) and
CSSA-value information (Vf , computed in OCaml and checked by a
formally proved validator check_v).

Second, in addition to applying the variable renaming and elim-
inate φ-instructions, some copy elimination is performed (clean) in
renamed parallel copy blocks. We remove trivial copies of the form
x := x, effectively eliminating copies whose variables were coa-
lesced. We also remove redundant copies, i.e., copies with the same
destinations but not necessarily trivial (see Section 5.4). In fact, we
must ensure that all such redundant copies are removed before the
copy serialization phase, so that parallel copy blocks satisfy the
“windmill” condition of Rideau et al. [16].

5.2 Non-interference Refined with CSSA-value
Since the early work of Chaitin et al. [10], the ultimate criterion
to decide whether two variables can be merged is that they have
disjoint live-ranges, or the same value at execution time. The latter
condition, as proposed by Boissinot et al. [5], can be easily approx-
imated using the notion of SSA-value. The SSA-value is a sym-
bolic approximation (i.e., an expression) of the run-time value of
an SSA variable. This can be easily computed thanks to the unique
definition property of SSA. Here, as in [5], we particularize the
SSA-value to variable copies. More formally:

Definition 5 (CSSA-value). The CSSA-value function Vf of a CSSA
function f , is a function from variables to variables that satisfies
the following properties:

• If x := y is a copy (parallel or not) of f , then Vf (x) = Vf (y).
• If x := ins(~y) where ins is not a copy, then Vf (x) = x.

We compute such a function Vf in OCaml by a depth-first
traversal of the control flow graph of f as in Boissinot et al. [5].
The resulting Vf is validated a posteriori by a verified validator
check_v, ensuring that Vf satisfies Definition 5.

The main property of a CSSA-value (as specified in Definition 5),
on which we rely to prove the correctness of the destruction, is that
a variable and its CSSA-value evaluate to the same value at run-time,
at program points dominated by the definition point of the variable.

Lemma 9. For each reachable execution state σ = (f, pc, rs) of
the CSSA function f , then for each variable r such that r � pc, we
have rs(r) = rs(Vf (r)).

Proof. The proof is done by induction on the number of steps of the
execution reaching that state, with a dominance-based reasoning, as
presented in [12], and using the property that deff (Vf (r)) domi-
nates deff (r), which is proved, using Definition 5, by induction on
the CFG paths leading to deff (r).

As a direct corollary, we get:

Lemma 10. For each reachable execution state σ = (f, pc, rs)
of a CSSA function f , for all pairs of variables x, y of f such that
x � pc, y � pc and Vf (x) = Vf (y), we have rs(x) = rs(y).

This lemma will be useful in the correctness proof of the trans-
formation, to prove that it is correct to merge two variables with

equal CSSA-values. For example, if a variable r is merged with a
distinct variable x appearing in a copy x := y, and r is live out of
this point, we want to be able to prove that the value of the variable
issued from the fusion of x and r is unchanged by this copy.

We can now define the extended notion of non-interference from
Boissinot et al.:

Definition 6. Two variables x and y of a CSSA function f do not
interfere, written x ⊥v y, if x ⊥ y, or if Vf (x) = Vf (y).

The non-interference check ninterfere is implemented in Coq,
using the liveness and CSSA-value precomputations, and is proved
formally correct with respect to Definition 6.

5.3 Properties of Variable Renaming R
The coalescing algorithm build_classes_ext starts by putting all
variables appearing in a same φ-instruction in a same class. The
other variables of the program are at this point in singleton classes.
Then, each block of parallel copies is traversed and for each copy
x := y, we check (with ninterfere) whether we can merge the
coalescing classes of x and y, that is, if there is no interference
between a variable of the coalescing class of x and that of y. The
resulting R associates to each variable r, the representative of its
class. The computation of coalescing classes yields two maps: a
map from a set of representative to coalescing classes (classes),
and the map R. The validation a posteriori of coalescing classes
check ensures that, in each class, variables do not interfere, and
that each variable r belongs to the class of R(r) (hence, does not
interfere with any other member of the class). The current validator
check is a quadratic algorithm (in the size of the class), that checks
interference between all pairs of variables in a class.

The main properties established on R by the validator can be
stated as follows:

Lemma 11. For each pair of variables r, r′ of a CSSA function f , if
R(r) = R(r′), then r ⊥v r′. For each x, y in a same φ-instruction,
we have R(x) = R(y).

This lemma is analogous to Lemma 4. Now we have to take into
account the CSSA-value, and the fact that R can act on variables not
used in a φ-instruction, and appearing only as a source or destina-
tion of a parallel copy block. A posteriori validation is therefore
convenient, because simpler and more maintainable (changes on
coalescing heuristics do not require changes in proof).

Let us discuss Lemma 11, together with Definition 6. For vari-
ables x, y of a same φ-instruction, non-interference is due to x ⊥ y,
as in the non-coalescing case. Variables not used in a φ-instruction,
but appearing in parallel copies, can be added by the algorithm
to the coalescing class of variables of a φ-instruction, if it does
not interfere with all the variables in the class. Two distinct φ-
instructions of distinct φ-blocks can be merged if each pair of vari-
ables forming them do not interfere. As a future extension, two
φ-instructions x := φ(x1, . . . , xn) and y := φ(y1, . . . , yn) of a
same φ-block could eventually be merged if for all k ∈ {1, . . . , n},
Vf (xk) = Vf (yk), but with our current definition of interference,
the variables x and y interfere.

5.4 Correctness Proof
The proof of the extended destruction follows the same architecture
as the basic version of Section 4. We exhibit a lock-step simulation
between the source and target functions. Interestingly, the chosen
simulation relation (∼) is the same. The difference in the proof lies
in the specification of the variable renaming, which now includes
the possibility of coalesced variables to have equal CSSA-values, and
also on the elimination of trivial parallel copies of the form x := x.
This, in turn, requires us to generalize some lemmas, in particular
the ones characterizing the semantics of parallel copy blocks.
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Case of a Simple Copy Instruction. Let x := y be a copy at pc,
and r a variable live out pc. We have to prove rs[x ← y](r) =
rs ′[(R(x)← R(y)](R(r)).

The only case that differs significantly is the one with r 6= x and
R(r) = R(x). Then r is already live entering pc, but the value of
R(r) could have changed. In fact, R(r) = R(x) means that r and
x do not interfere, but because r is live out of pc, this means that
r and x do not interfere (Lemma 11) thanks to same CSSA-value,
so r and y have same CSSA-value also (a copy propagates the CSSA-
value). The property of CSSA-value of Lemma 10 then states that
rs(r) = rs(y), but we also have rs(y) = rs ′(R(y)) (because y is
live at pc), which allows to conclude.

Case of a Junction Point Predecessor. In this case, pc branches
to a junction point pc′ (rule NopJP). As in Section 4, we need to
prove intermediate propagations of the ∼ invariant after applying
parcb, phib and parcb′.

While CSSA invariants guarantee that no variable is assigned
more than once, this is no longer the case in the renamed block: sev-
eral copy destinations could be mapped to the same representative,
not because they have disjoint live-ranges, but because they could
have the same CSSA-value. Indeed, two copies x := y and x′ := y′

of parcb can be such thatR(x) = R(x′) if Vf (x) = Vf (x
′), which

happens if Vf (y) = Vf (y
′) (by propagation of CSSA-value through

copies). We hence prove generalized versions of Lemmas 7 and 8:

Lemma 12. Let r be a variable that is not a destination in block
parcb. If for each copy x := y appearing in parcb, we either have
R(r) 6= R(x) or rs ′(R(r)) = rs ′(R(y)), then:

[[clean(mapmov R parcb)]]rs
′(R(r)) = rs ′(R(r))

In particular, now, in the case where R(r) = R(x), the lemma
implies that the value of R(r) is unchanged.

Lemma 13. Let r be a variable that is a destination of a copy
r := y of the block parcb. If for any other copy x := y′, we have
R(r) 6= R(x) or rs ′(R(y′)) = rs ′(R(y)), then:

[[clean(mapmov R parcb)]]rs
′(R(r)) = rs ′(R(y)).

Another point to note is that (clean(mapmov R parcb)) repre-
sents the block parcb to which not only R has been applied to all
variables, but also in which trivial copies of the form x := x have
been removed. This removal is tricky to justify: if x appears in the
same parallel copy block as destination of another copy x := y,
we need to know that the sources x and y have the same value
(otherwise the parallel copy block would not be well-defined se-
mantically).

The proof of invariant propagation after applying parcb follows
the same schema as in the non coalescing case, but we have to take
into account the CSSA-value. For example, in the case where r is
in a copy r := y at parcb and there is another copy x := y′ at
parcb such thatR(r) = R(x), we want to prove that rs ′(R(y′)) =
rs ′(R(y)) as before. By Lemma 11, r and x do not interfere.
Because they are defined in the same node, we cannot have r ⊥ x
as in the non-coalescing case, so r and x have equal CSSA-values.
By CSSA-value propagation across copies, y and y′ have equal CSSA-
value too: as these are live entering pc, we can apply Lemma 10.
We can conclude applying Lemma 13. Other cases are similar.

6. Experimental Results
The proofs presented so far establish the semantic correctness of
the destruction, but it does not account for the quality of coalescing.
In this section, we evaluate the practical gain of integrating such a
destruction in CompCertSSA.

To do so, we rely on the Coq extraction mechanism, that pro-
duces efficient OCaml code from the formalization, and get an ex-
ecutable version of the CompCertSSA verified C compiler.

Benchmark Programs. We use a set of test programs taken from
the CompCert test suite, the SPEC2006 benchmarks and WCET-
related reference benchmarks. These represent around 192,600
lines of C code, each program ranging from thousands of lines
of C code, to tens of thousands. This comprises small programs
such as some cryptographic functions as aes.c, bigger programs
such as compression algorithms, or the first order logic prover spass
(http://www.spass-prover.org/) with tens of thousand lines.

Evaluation Criteria. We want to evaluate the impact of the coa-
lescing destruction on the generated code, as independently as pos-
sible from the rest of the compiler chain. Typically, assessing the
overall performance of the CompCertSSA compiler would be pre-
mature, and out of the scope of the present paper.

Hence, we will be comparing three different, but similar compil-
ers: CompCert3 without the SSA middle-end, CompCertSSA using
the old, partial destruction (deSSA) and CompCertSSA using the
new, complete, and coalescing destruction (CSSA).

One possible criterion for measuring the effects of coalescing
is the execution time of compiled programs. However, programs in
the benchmark suite we use have, for most of them, too short ex-
ecution times to make the observed variations significant. Hence,
we use more fine-grained measurements: namely the number of re-
maining copies (for the two variants of CompCertSSA) and the im-
pact on spilling and reloading on the subsequent register allocation
phase (for CompCert and the two CompCertSSA variants).

Number of Remaining Copies. Results are given in Figure 6. For
each program, we give the number of parallel copies (i) introduced
when converting to CSSA, (ii) introduced by the previous destruction
of SSA (deSSA), and (iii) remaining in RTL// after coalescing.

On average, more than 99% of the introduced copies are elim-
inated. More precisely, on average over all the copies introduced
by all the programs from Figure 6, we get 99.96% of eliminated
copies. And on average, 99.93% of copies are eliminated, by file.
As for spass, we get nearly 100% of eliminated copies over a to-
tal of 24574 introduced copies (only 4 copies remain). Results are
similar for bzip2 and raytracer.

This high percentage of copy elimination can be explained by
the fact that the current CompCertSSA optimizations do not intro-
duce many interferences in φ-blocks. Indeed, this would have made
the old destruction phase fail to compile the resulting programs.

One reason for copies not to be coalesced, with the current state
of CompCertSSA, is that two distinct φ-arguments of a same φ-
function in SSA could be live out of the junction point (so, typically,
after a copy propagation). Then, these two variables interfere for
liveness reasons, and cannot be put in the same coalescing class.
Optimizations making a variable appear multiple times in a φ-
block could also lead to non-eliminated copies: for example, if a
variable r appears in SSA as an argument of two φ-instructions
in a same block, xd := φ(~x) and yd := φ(~y), then r will
appear as a source of two parallel copies in CSSA, and only one
copy will eventually be eliminated. Indeed, eliminating both copies
would require us to merge the classes of xd and yd. Currently, this
is not possible with our non-interference definition. However, as
mentioned in Section 5.3, this limitation could be overcome by
extending the CSSA-value propagation through φ-functions.

Spilling and Reloading. Figure 7 gathers results on the number
of spilling and reloading instructions for programs spass, raytracer,

3 Our current development is based on CompCert 2.1., and we only consider
its x86 backend.
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Figure 6: Coalescing results

bzip2 and a sum over the CompCert test suite. For spass, the num-
ber of spills decreases from 4300 to 3453 (a 20% improvement),
and the number of reloadings from 6742 to 5430 (a 19% improve-
ment). On bzip2 spills decrease from 2410 to 450 (81% improve-
ment). On raytracer, we observe a slight regression from 261 to 271
(4% regression). We observe a decrease from 842 spills to 576 on
the CompCert test suite (32% improvement). Overall, the new de-
struction allows to reach spilling and reloading rate that are close
to CompCert 2.1 (without SSA): for example 7% less spilling for
spass, but 15% more spilling for bzip2. Note this remains a signifi-
cant improvement when compared to the 520% of extra spilling we
use to obtain with the old, non-coalescing destruction.

Discussion. The results in terms of remaining copies are satisfy-
ing, and overall, the improvement in spilling and reloading is sig-
nificant, compared to the previous destruction. In fact, the coalesc-
ing destruction leads to results comparable to CompCert 2.1. The
minor regression in spilling on raytracer means however that there
remains room for improvement. In particular, it would be interest-
ing to study whether this is due to a too aggressive coalescing, in-
creasing live ranges [14]. In the end, our empirical validation could
of course benefit from a more thorough benchmarking process, but
these preliminary results are promising.

7. Conclusions and Future Work
In this paper, we have presented a formalization of the SSA de-
struction, based on the convertion to conventional SSA, and a sub-
sequent coalescing algorithm. First, we identify the necessary prop-
erties of CSSA for a non-coalescing destruction, using the live-range
splitting property of φ-resources and disjointness of variables in φ-
blocks. We then proved an extension of this destruction, that uses
a coalescing algorithm to eliminate useless introduced copies. The
results in terms of eliminated copies are very satisfying and match
our expectations, with more than 99% of eliminated copies, and an
overall spilling that decreased significantly.

Development size. Table 1 gives an overview of the Coq devel-
opment size, as given by program coqwc, organized thematically.
We give the total number of source code lines, and the number of
proof lines. This provides an idea of the proof effort, although these
numbers are not always linearly correlated with the actual difficulty
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Table 1: Lines of source code

Total Proofs
CSSA and RTL// Syntax and semantics 793 15
CSSA generation 8372 5545
Non-coalescing destruction 3689 2723
Destruction with coalescing 6612 4567
De-parallelization 2657 1453
Utility lemmas 1407 822
Total 23530 15125

of the proofs: some proofs are long and tedious but without any
real technical difficulty (like the CSSA generation), and some other
proofs could probably get along with some factorizations.

Validation and direct proof. We used two approches to verify our
transformations: direct proof of Coq algorithms, and validation a
posteriori of non-proved algorithms by formally proved validators,
which gives the same correctness guarantees on the generated code.
Validation a posteriori sometimes leads to simpler and more main-
tainable proofs, because the validator proof depends less on the ac-
tual algorithm. This is especially true for the coalescing algorithm,
where we have truly benefitted from the validation approach during
the fine-tuning of coalescing heuristics.

Non detailed transformations. Some proofs we do not detail in
this paper are the semantic preservation of the CSSA generation
from SSA, and the guarantee that CSSA-invariants hold. The main
time-consuming task was to reason about the freshness of intro-
duced variables and proving the unique definition property, which
required us to prove that in each φ-block each variable appeared
once, but also that two distinct φ-blocks had not common variables.
Another phase not detailed here is the sequentialization of parallel
copy blocks. This part is essentially a proof reuse of the formaliza-
tion by Rideau et al. [16].

Future work. In this work, we mainly focus on formalizing and
characterizing the properties justifying the correctness of the SSA
destruction, leaving compilation time and memory usage as sec-
ondary objectives. First, using Coq forced us to rely on purely func-
tional data structures that are not optimal, often introducing a loga-
rithmic factor in the algorithms, e.g., when using tree data struc-
tures instead of hash tables. We also occasionally compute data
structures that could be virtualized. For example, Boissinot et al. [5]
and Sreedhar et al. [17] propose techniques to introduce copies only
when they are really needed, instead of introducing them first, and
eliminating them a posteriori. In some cases, we implement non
optimal algorithms. In particular, coalescing class computation and
validation are currently quadratic in the size of the classes. How-
ever, there exist linear algorithms to check for interference between
two classes of variables. For example, Boissinot et al. [5] propose
such an algorithm that relies on a specific ordering of variables in
classes. to A future step for improving our destruction could be to
formalize such an algorithm. Another example is the liveness com-
putation: it is currently done by a standard dataflow analysis, but
as shown by Boissinot et al. [4], in the particular case of SSA, it is
possible to use a more specific computation that exploits structural
properties of SSA, and that gives better results on memory usage,
while staying competitive in terms of compilation time.

The SSA destruction we study in this work is done prior to
register allocation. While this strategy is the most frequent in real
world compilers, others approaches have been proposed. In par-
ticular, Hack et al. [14] propose to perform register allocation di-
rectly on the SSA form. But spilling can lead to a variable need-
ing to be reloaded at several points in the program, thus break-
ing the unique definition property of SSA, and requiring an on-

the-fly re-conversion to SSA. While this approach is interesting, it
seems currently hard to adopt in a formally verified compiler such
as CompCertSSA.
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