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Abstract 
Motivation: Understanding the temporal behaviour of biological regulatory networks requires the 

integration of molecular information into a formal model. However, the analysis of model dynamics 

faces a combinatorial explosion as the number of regulatory components and interactions increases. 

Results: We use model-checking techniques to verify sophisticated dynamical properties resulting 

from the model regulatory structure in the absence of kinetic assumption. We demonstrate the power 

of this approach by analysing a logical model of the molecular network controlling mammalian cell 

cycle. This approach enables a systematic analysis of model properties, the delineation of model 

limitations, and the assessment of various refinements and extensions based on recent experimental 

observations. The resulting logical model accounts for the main irreversible transitions between cell 

cycle phases, the sequential activation of cyclins, and the inhibitory role of Skp2, and further empha-

sizes the multifunctional role for the cell cycle inhibitor Rb. 

Availability: The original and revised mammalian cell cycle models are available in the model reposi-

tory associated with the public modelling software GINsim (http://ginsim.org/node/189). 

Contact: thieffry@ens.fr 

Supplementary information: Supplementary data are available on the Bioinformatics website and 

on the dedicated model webpage. 

 

 

1 Introduction  

Proper understanding of the temporal behaviour of biological regulatory 

networks requires the integration of heterogeneous molecular and func-

tional data into formal models. Standard quantitative approaches (e.g., 

differential or stochastic equations) have been recurrently applied to 

address this issue, but they suffer from the chronic lack of reliable kinet-

ic information. In contrast, qualitative approaches based on Boolean 

algebra or generalization thereof (Glass & Kauffman, 1973; Thomas, 

1973) offer a flexible framework to delineate the main dynamical proper-

ties of complex biological regulatory networks. In this framework, 

dynamical behaviours are represented by transitions between discrete 

states of the system (see Chaouiya et al., 2012, for more details). 

Fauré et al. (2006) defined the first Boolean model for the core net-

work controlling mammalian cell proliferation and demonstrated that the 

logical framework enables the reproduction of important properties of 

the highly complex and coordinated system regulating the maintenance 

and preservation of distinct phases in the cell cycle. 

This model accounts for the existence of a cyclic behaviour character-

ized by the periodic activities of the cyclins, which drive the cell cycle 

through key transitions by enabling the phosphorylation of a number of 

substrates by their catalytic partners, the cyclin-dependent kinases 

(CDKs). Using a hybrid updating scheme relying on the definition of a 

http://ginsim.org/node/189
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limited number of priority classes, Fauré et al (2006) showed that the 

model dynamics includes two attractors, a stable state and a complex 

cycle, which can be associated with the quiescent state and cell cycling, 

respectively.  These authors further simulated a series of genetic pertur-

bations and compared them with published data, which revealed several 

limitations of their model. Since its publication ten years ago, this model 

has been widely used as a case study for various analytical methods and 

tools, but to the best of our knowledge its limitations have not been 

directly addressed, although new models for mammalian cell cycle have 

recently been published (Fumiã and Martins, 2013; Deritei et al. 2016). 

Here, we use a fully asynchronous updating strategy, which allows the 

consideration of alternative dynamics in the absence of kinetic data, and 

we rely on formal tools to analyse the resulting complex dynamics in 

more details. More precisely, we take advantage of powerful model-

checking techniques (Clarke et al., 1999) to verify the existence of 

specific sequences of states (or set of states) in the asynchronous trajec-

tories, formalising dynamical properties such as irreversible transitions 

between phases of the cell cycle. 

We combine an analysis of the asymptotic behaviour of the model, 

including the impact of reported perturbations (as in Fauré et al, 2006), 

with the application of model-checking techniques to verify the con-

sistency of the corresponding dynamics with biological observations. We 

thereby achieve a deeper understanding of the dynamical properties of 

the original model, as well as of model variants, and highlight their 

limitations. 

Then, based on an extensive review of the literature, we propose sev-

eral model improvements: refinement of the logical rules, consideration 

of multilevel variables, and introduction of a novel cell cycle regulator. 

We use model-checking techniques to assess the impact of each modifi-

cation on the dynamical properties of the model. 

The main features of the logical framework are summarised in Section 

2.1. The use of model-checking techniques is then described in Section 

2.2. The mammalian core cell cycle network is presented in Section 2.3. 

The results of our analysis of the original model are presented in Section 

3.1, while the rest of Section 3 is devoted to the assessment of the vari-

ous model improvements considered. 

2 Methods 

2.1 The logical modelling framework 

A logical model is defined by a regulatory graph, where each node 

represents a regulatory component, and is associated with discrete levels 

of activity (0, 1, and further integers when justified). Each arc represents 

a regulatory interaction between the source and target nodes, and is 

labelled with a threshold and a sign (positive or negative). The model is 

completed by logical rules (or functions), which assign a target value to 

each node for each regulator level combination. The resulting dynamics 

can be represented in terms of a state transition graph (STG), where the 

nodes denote the states of the system (i.e. vectors giving the levels of 

activity of all the variables), and the arcs represent state transitions (i.e. 

changes in variable values, according to the corresponding logical func-

tions) (for more details, see Chaouiya et al., 2012 and Abou-Jaoudé, 

2016). 

When concurrent variable changes are enabled at a given state, the 

resulting state transition depends on the chosen updating assumption. 

With a fully synchronous strategy, all variables are updated through a 

unique transition. This assumption leads to relatively simple transition 

graphs and deterministic dynamics. However, this approximation often 

leads to spurious cyclic attractors. 

On the other hand, the fully asynchronous updating assumption con-

siders separately all possible transitions and therefore allows the consid-

eration of alternative dynamics in the absence of kinetic data. The result-

ing dynamics is more difficult to evaluate. 

As in Fauré et al (2006), we use the logical modelling software GIN-

sim to analyse a model of the regulation of the mammalian cell cycle, in 

particular to identify the attractors and simulate different kinds of genetic 

perturbations (e.g. gain- or loss-of-function mutants) (Chaouiya et al., 

2012; http://ginsim.org).  

Furthermore, we rely here on model-checking techniques and the 

software NuSMV (http://nusmv.fbk.eu/) to analyse complex transition 

graphs and deepen our understanding of the biochemical circuits under-

lying such asynchronous dynamics. Noteworthy, the last public release 

of GINsim includes a function to export logical models into the NuSMV 

format. 

2.2 Dynamical analysis 

We refer to three kinds of properties to characterize the dynamics of a 

logical model and its consistency with biological observations. 

To reproduce the oscillatory expressions of proteins along the cell cycle, 

we require the existence of a cyclic attractor (terminal strongly connect-

ed component) in the STG with some constraints on the order of transi-

tions. 

Next, existing data on the effects of various experimental perturba-

tions (e.g. mutations) can be used to validate a dynamical model. Indeed, 

comparing the asymptotic behaviour of a model with or without a per-

turbation provides interesting insights into the structural properties of the 

system. The list of the main perturbations used to assess mammalian cell 

cycle models is provided in Table S1. 

Finally, with the help of model-checking techniques, one can easily 

verify the existence of specific sequences of states or set of states among 

the possible trajectories simulated with a given updating strategy (from 

deterministic trajectories with the synchronous updating to branching 

trajectories with the asynchronous updating). 

More precisely, model-checking techniques allows the formal verifi-

cation of specific dynamical properties and thereby the validation or 

refutation of a model (Clarke et al., 1999). The formalization of dynam-

ical properties can be done using a temporal logic language such as 

Computation Tree Logic (CTL). Several powerful model-checking tools 

are available to evaluate CTL specifications on discrete models. 

In this study, we use NuSMV, a symbolic model checker based on 

Binary Decision Diagrams that provides a description language to speci-

fy generic finite state machines (Cimatti et al., 2002). NuSMV has been 

widely used to check properties on discrete regulatory networks. Chabri-

er & Fages (2003) introduced symbolic model checking for systems 

biology using CTL formulae to verify reachability, checkpoints, and 

oscillation properties for a rule-based model derived from to the molecu-

lar map of the mammalian cell cycle proposed by Kohn (1999).  Later, 

Batt et al. (2005) tested conditions leading to a given state, imposing 

restrictions on sequences of events along the path. In (Batt et al., 2010), 

model checking with NuSMV was used to solve a parameter search 

problem for piecewise-affine differential equation models of regulatory 

networks in order to reproduce observed expression profiles. 

Approaches using extensions of standard CTL have been explored, 

such as Action Restricted CTL (ARCTL), to discriminate between 

variants of a logical model of T-helper cell differentiation, or to investi-

gate reachability properties between stable states subsequent to changes 

http://ginsim.org/
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of input conditions (Abou-Jaoudé et al., 2015). Another approach im-

plemented in the software ANTELOPE (Arellano et al., 2011) supports 

Hybrid CTL, an extension of standard CTL with a special binder tem-

poral operator, capable of selecting partly characterised states. 

So far, most uses of model checking for logical modelling focused on 

reachability properties, verifying the existence of a path between a set of 

initial states and a set of reachable states, with possible restrictions on 

the paths. Here, we use the model checker NuSMV to verify the exist-

ence or the absence of specific state transition paths corresponding to 

more sophisticated dynamical properties. More specifically, we use the 

following generic formula to verify the existence of a sequence [S1, S2, 

…, Sn-1, Sn], following any path starting from a state in S1: 

 

!E[ (S1) U (S2 & E[ (S2) U (S3 & … E[(Sn-1) U (Sn)]…)])]; 

 

where S1, S2 and S3 denote sets of states defined by constraints on some 

of the components of the model, while ! stands for the logical negation, 

E for the existence of a path, and U for the until operator. 

The negation is used here for two reasons. First, since a CTL temporal 

logic property φ holds if all initial states satisfy φ, testing whether its 

negation ¬φ holds verifies the absence of the specified sequence. Sec-

ond, a contradiction of ¬φ returns an example of transition path matching 

the prescribed sequence. 

In our study, some of the sequences considered are expected to exist 

in the asynchronous transition graph, whereas other sequences represent 

reactions occurring in an incorrect order, and the corresponding dynam-

ical property is then satisfied if the sequence does not exist in the asyn-

chronous STG (cf. Results). The list of sequence properties formalising 

observed dynamical properties on the cell cycle, and investigated with 

model checking, is defined in Table S2. The evaluation of each sequence 

with the symbolic model checker NuSMV takes less than one second on 

a quad-core laptop. 

In the logical framework, the asynchronous assumption relies on a 

branching definition of time, potentially resulting in different dynamics 

compatible with the same model. Experimentally-observed sequences of 

states are expected to exist in the asynchronous trajectories. Otherwise, 

the model can be safely rejected. In contrast, safety properties (verifying 

that incorrect sequences do not exist) do not invalidate the model if they 

are unsatisfied. Incorrect sequences of states that can be exhibited in the 

asynchronous trajectories do not necessarily indicate a default of the 

model structure, but might rather point to specific kinetic constraints, 

which could oppose such spurious trajectories. 

Nonetheless, satisfied safety properties represent interesting features 

of the model. Indeed, a property satisfied in the asynchronous transition 

graph could always be exhibited in some conditions. The cell cycle 

represents a particularly interesting case, because the maintenance and 

preservation of distinct phases is a highly complex and coordinated 

process. It is regulated by protein synthesis, phosphorylation (through 

the activity of cyclin-dependent kinases or CDKs) and protein degrada-

tion processes (involving ubiquitin ligases). We expect that characteristic 

dynamical properties, such as checkpoints and irreversible transitions, 

are robustly encoded in the structure of the corresponding regulatory 

network. Analysis of a logical model should reveal such properties, 

despite the absence of detailed kinetic information. 

We also show how this approach can aid in refining an existing mod-

el. Indeed, at each refinement step, model-checking techniques can be 

used either to verify correct regulation encoding, or, in the case of uncer-

tain encoding, to discriminate between alternative hypotheses. 

2.3 Logical model of the core network controlling 

mammalian cell cycle 

The cell cycle involves a succession of phases governing genome rep-

lication (S phase) and cell division (mitosis or M phase), separated by 

regulated irreversible transitions (checkpoints). Widely conserved among 

eucaryotes, the underlying core network has been modelled using differ-

ential equations for several species (Yeast, Xenopus, mammals), leading 

to novel insights into its organization and dynamical properties (see e.g. 

Novák & Tyson, 2004; Gérard & Goldbeter, 2009; Ferrel et al., 2011; 

Tyson & Novák, 2015; and references therein). However, extension and 

analysis of such differential models become really difficult as the num-

ber of experimentally identified components and interactions increases. 

This lead to the consideration of simpler, qualitative but nevertheless 

rigorous formal approaches, using discrete formalisms (see e.g. Li et al., 

2004; Bornholdt, 2008; Irons, 2009; Fauré et al., 2009; Mombach et al., 

2014). 

The present study is based on the first Boolean model of the mamma-

lian cell cycle (Fauré et al. 2006), which demonstrated that the logical 

framework enables the reproduction of important dynamical properties. 

Fauré et al. (2006) defined a Boolean model for the core network driving 

the entry of mammalian cells into cell cycle, based on the differential 

model proposed by Novák and Tyson in 2004. For proper logical rules, 

this model accounts for the existence of a quiescent stable state, as well 

as for a cyclic attractor characterized by the periodic activities of the 

cyclins, which drive the cell cycle through key transitions by enabling 

the phosphorylation of a number of substrates by their catalytic partners, 

the cyclin-dependent kinases (CDKs). Cyclin D (called CycD and corre-

sponding to an input in the model) is the main target of the growth 

factors that push a cell out of its quiescent state to enter the cell cycle. 

Cyclin E (CycE) regulates the transition between the G1 and S phases. 

Cyclin A (CycA) controls S phase and its progression into G2 phase. 

Finally, cyclin B (CycB) is in charge of the transition from G2 phase to 

mitosis and triggers the division of the cell. 

The model of Fauré et al. (2006) further includes the three main inhib-

itors of the cell cycle: the retinoblastoma protein Rb, the CDK inhibitor 

p27/Kip1 (called p27 hereafter), and the proteasome complex represent-

ed by its two co-activators Cdh1 and Cdc20. However, this seminal 

model considered CycD sufficient to completely inhibit p27 and Rb. 

Hence, these inhibitors were kept inactive along the whole cyclic attrac-

tor, whereas, according to experimental data, these factors should be 

active in G1 phase, and inactive in the rest of the cell cycle (Rivard et al., 

1996; Nelson et al. 1997). 

This model also accounts for the role of the E2 ubiquitin conjugating 

enzyme UbcH10, which participates in Cdh1 dependent degradation of 

CycA. This extension of the original differential model explains how the 

auto-ubiquitination of UbcH10 likely prevents CycA from degradation 

by the APC in G1 phase. 

Finally, Fauré et al. (2006) considered a list of documented perturba-

tions to validate their model. However, the simulations of several pertur-

bations did not match experimental observations. In particular, the effect 

of a loss-of-function of CycE was not adequately reproduced. 

3 Results 

In this study, we first investigate the asynchronous dynamics of the 

model of Fauré et al (2006) using model-checking techniques and per-

turbation analysis. We further rely on an extensive review of the litera-

ture to identify relevant novel information. Next, we systematically 



P.Traynard et al. 

assess tentative model refinements and extensions to improve matching 

with reported data. 

We model the potential roles of different phosphorylation states of Rb 

(Lundberg & Weinberg, 1998) through the use of a ternary node (i.e. 

taking the value 0, 1 and 2). We also assign a ternary node to p27 in 

order to account for its significant but incomplete degradation in the 

presence of CycD (in the absence of CycA and CycE). We further assess 

the inclusion of Skp2, an ubiquitin ligase complex subunit involved in 

the degradation of several proteins in the model, which links three key 

inhibitors of the cell cycle and constitutes an additional pathway by 

which Rb can arrest the progression of the cell cycle (Binné et al., 2007; 

Liu et al., 2008). The resulting regulatory graph is depicted in Figure 1, 

while the corresponding logical rules are listed in Table 1. 

 

Fig. 1. Regulatory graph for the revised mammalian cell cycle model. All nodes are 

Boolean (ovals), excepting Rb and p27 (rectangles), which are associated with ternary 

variables. CycD (purple) corresponds to an input (unregulated) node, while Skp2 (green) 

is newly considered in this study. Green and red arcs denote positive and negative 

interactions, respectively. Interactions involving thresholds higher than 1 are labelled 

accordingly. See Table 1 and text for the description of the modifications of the original 

model. 

3.1 Verification and limitations of the original model 

In their seminal study, Fauré et al. (2006) showed that the proposed 

model leads to two attractors: a stable state corresponding to the quies-

cent state (with CycD OFF), and a complex attractor corresponding to 

cell cycling (with CycD ON, with p27 and Rb OFF during the whole 

cycle). They further simulated various genetic perturbations, with en-

couraging results, although not fully consistent with published data. 

To check in more details the consistency of the model with our current 

knowledge on the sequential activation of the model components, we 

perform a refined analysis of the asynchronous dynamics. 

 

 

 

 

 

 

Table 1. Logical rules associated with each node of the mammalian cell cycle 

model (Figure 1). 

Node Target Logical function 

Cdc20 1 CycB 

Cdh1 1 (!CycA | (p27:1 & !Skp2) | p27:2) & (!CycB | p27) 

CycA 1 (E2F & !Rb | CycA) & (!UbcH10 | (!Cdh1 & !Cdc20 )) 

CycB 1 (!UbcH10 | !Cdc20) & !Cdh1 

CycE 1 E2F & !Rb 

E2F 1 !Rb & (!CycA | (p27:1 & !Skp2) | p27:2) & !(Cdc20 & CycB) 

p27 1 CycD & ((!CycB & (!CycA | p27) & (!CycE | (p27:2 & !CycA))) 

| !Skp2) 

 2 !CycD & ((!CycB & (!CycA | p27) & (!CycE | (p27:2 & 

!CycA))) | !Skp2) 

Rb 1 (CycD & !CycE & !CycA & !CycB) | (!CycD & p27 & CycE & 

CycA & CycB) | (CycD & (CycE | CycA | CycB) & p27) 

 2 (!CycD & !CycE & ((!CycA & !CycB) | p27)) |(!CycD & p27 & 

CycE & (!CycA | !CycB)) 

Skp2 1 !Cdh1 | !Rb 

UbcH10 1 !Cdh1 | (Cdh1 & UbcH10 & (CycA | Cdc20 | CycB)) 

The logical operators NOT, AND and OR are denoted by !, & and |, respectively.  

Changes in the model rules compared to those of the original model by Fauré et al 

(2006) are coloured in blue (in particular, Skp2 was not included in the original 

model). 

First, we define a set of constraints on the order of activation and inac-

tivation of the cyclins along the cell cycle. These constraints correspond 

to a sequence starting with a state associated with G1 (all cyclins OFF 

but CycD, and Cdh1 ON), followed by the sequential activation of CycE, 

CycA, and CycB, interspaced by the sequential inactivation of these 

three cyclins in the same order (see Table S2, sequence 1). 

This sequence of states can be refined to further account for the se-

quential activation of the other model components, excepting p27 and 

Rb, which remain inactive in the cyclic attractor of the model of Fauré et 

al. (2006) (Figure 2).  The resulting sequence encompasses 14 states, 

where the S, G2 and M phases correspond to the activation of CycE, 

CycA and CycB, respectively. Using model checking, we can verify that 

this sequence exists in the asynchronous state transition graph (for CycD 

= 1), showing that the asynchronous dynamics of the original model is 

compatible with experimental observations. 

However, the asynchronous graph further includes altered sequences 

contradicting observed phenotypes (see the asterisks denoting updating 

calls according to the original model in Figure 2). In particular, CycA 

could be activated first at the beginning of the cell cycle instead of CycE 

(Figure 2, state 2; Table S2, sequence 6). Similarly, there is no constraint 

on the order of the inactivations of CycA and CycB at the end of the cell 

cycle (Figure 2, state 10; Table S2, sequence 9). Furthermore, the activa-

tion of CycB, experimentally observed in late G2, can occur before the 

degradation of CycE, supposedly occurring in S phase (Figure 2, states 5 

and 6; sequence 8). And although this event is presumably irreversible, 

in the model, CycB can be reactivated soon after it is degraded at the end 

of mitosis, before the beginning of a new cycle (Figure 2, state 13; Table 

S2, sequences 5 and 7). These findings point toward structural or kinetic 

limitations of the model.  

Interestingly, the absence of commutation orders at some states re-

veals the existence of specific constraints in the asynchronous trajecto-

ries. For example, CycE is irreversibly inactivated at the G1/S transition 

(Figure 2, state 7; Table S2, sequence 3), while CycA is irreversibly 

inactivated at M phase (Figure 2, state 11; Table S2, sequence 4). This 

shows that the corresponding properties are encoded in the model struc-

ture without relying on kinetic properties. 
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Fig. 2. Single asynchronous sequence of states corresponding to the mammalian cell 

cycle according to the model of Fauré et al. (2006). This sequence encompasses 14 

successive states along the cell cycle, with active nodes (level 1) in blue and inactive 

nodes (level 0) in white. The asterisks denote updating calls for the corresponding 

components (columns) and states (rows), corresponding to possible alternative paths, 

based on the published logical rules. States 1, 3, 7, and 11 correspond to G1, S, G2 and M 

phases. 

3.2 Model refinement 

The CDK inhibitor p27 plays a critical role in several phases of the cell 

cycle, as well as in the maintenance of the quiescent state. It binds CycE 

and CycA, thereby inhibiting their activities. This inhibitory activity is 

modelled by opposite regulations on the targets of CycE and CycA. In 

contrast, the complex formed by p27 and CycD retains the activity of 

CycD. Since the cyclins are in competition for complexation with p27, 

the initial model considered a direct inhibition of p27 by CycD to reflect 

the sequestration of the inhibitor by CycD during the cell cycle. This 

causes p27 to be completely inactive in presence of CycD, while it is 

released and active in absence of the input (i.e. in the quiescent state). 

This approximation overlooks the role of p27 in the transition from G1 to 

S. In fact, the complete activation of CycE is a progressive process, 

slowed down by both Rb and p27, which are both negative regulators of 

CycE. Indeed, Rb binds to the transcription factor E2F, thereby inhibit-

ing its ability to activate the synthesis of CycE, whereas p27 directly 

binds to CycE:CDK2 complex and thereby blocks its activity. Rb and 

p27 are both phosphorylated by CycE, leading to the inactivation of Rb 

and to the proteasome-dependent degradation of p27. These factors are 

thus involved in a positive circuit enabling the full activation of the 

kinase and ultimately entry into S phase (Kotoshiba et al., 2005). 

In order to account for this mechanism, we associate a ternary node 

with p27 and distinguish two activation levels, in the presence versus the 

absence of CycD. We further modify p27 rule to better account for the 

inhibitory effect of CycE (Montagnoli et al., 1999) (cf. Table 1). 

Simulation of the updated model results in an asynchronous attractor 

with cycling p27 activity (values 0 and 1) in the presence of CycD (see 

Figure 3). The timing of p27 inactivation can be assessed by verifying 

the existence of a proper sequential activation path for CycE, CycA and 

p27, between phases G1 and S for the updated model (Table S2, se-

quence 11). Indeed, the activity of p27 is correctly constrained at the 

G1/S transition: it cannot be inactivated before the activation of its 

inhibitor CycE, while its inactivation is necessary for the activation of 

CycA (Table S2, sequences 12 and 13; States 2 and 4 in Figure 3). 

 

Fig. 3. Single asynchronous state transition sequence corresponding to a complete 

wild type mammalian cell cycle for the revised model shown in Figure 1, along with 

the logical rules provided in Table 1. This sequence encompasses 18 successive states 

along the cell cycle, with active nodes (level 1) in blue, and inactive nodes (level 0) in 

white. The asterisks denote updating calls for the corresponding components (columns) 

and states (rows) according to the rules listed in Table 1, corresponding to possible 

alternative paths. States 1, 3, 9, and 13 correspond to middle G1, S, G2 and M phases. 

Careful reconsideration of each regulation rule further led us to ques-

tion the inhibition of E2F by CycB (see also Deritei et al., 2016). Alt-

hough E2F has been shown to be inhibited by CycA through direct 

binding, this is not the case for CycB (Krek et al., 1994). However, Peart 

et al. (2010) have found that Cdc20, and to a lesser extend Cdh1, is 

responsible for degrading E2F in early mitosis, when E2F is freed from 

complexes with DP1. It has been proposed by Weis et al. (2014) that 

phosphorylation by CycB enables the release of E2F, exposing it to 

Cdc20. 

Combining the use of logical modelling and model-checking tech-

niques greatly facilitates the assessment of such hypotheses. Considering 

an inhibition of E2F by the conjunction of Cdc20 and CycB activities, 

we verify the ordering of cyclin activities (and thus correct mitosis exit) 

in the presence or absence of this novel interaction. In the absence of 

E2F inhibition by Cdc20, CycE can be synthesised before the degrada-

tion of CycB, which is not the case when this inhibition is taken into 

account (cf. Table S2, sequence 10; states 9 to 18 in Figure 3). Hence, 

the delay observed between CycB degradation after mitosis and CycE 

activation during G1-phase could be ensured by this mechanism. 

We further reconsider the potential role of Cdc20 in the activation of 

Cdh1. These two proteins take part in the anaphase-promoting complex 

(APC) and are activated sequentially during the G2 and M phases to 

promote the degradation of the mitotic cyclins A and B. Since Cdc20 

participates in the degradation of CycA, which inhibits Cdh1 by phos-

phorylation, there is an indirect activation of Cdc20 by Cdh1. As Cdh1 

has a broader spectrum than Cdc20, it completes CycA and CycB inacti-

vation, and further inactivates Cdc20 (Meyer & Rape, 2011). Using 

NuSMV, we could verify that the direct activation of Cdh1 by Cdc20 can 

be eliminated without impacting on relevant model properties (the 

resulting rule for Cdh1 is given in Table 1). 

3.3 Multiple forms and roles of Rb 

The protein Rb is a major cell cycle inhibitor and tumour suppressor. It is 

regulated by numerous stimuli, which are channeled through CDK 

regulation of Rb phosphorylation. The un-phosphorylated protein binds 
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to the transcription factor E2F, thereby acting as a growth suppressor and 

preventing progression through the cell cycle. When phosphorylated, Rb 

releases E2F, which activates the synthesis of CycE and CycA. Recent 

findings show that the phosphorylation of Rb is a progressive process 

(Henley et al., 2012). The phosphorylation of Rb begins in early G1 

phase, involving CycD:CDK complexes (Narasimha et al., 2014). This 

allows some E2F to be released and initiates the transcription and subse-

quent production of CycE. The CycE:CDK2 kinase activity then leads to 

hyper-phosphorylation of Rb. As the majority of phosphorylation sites 

on Rb need to be modified to abrogate E2F binding, different activities 

are associated with different phosphorylation levels of Rb, with CycE 

playing a key role in driving the cell cycle into S-phase. Later on, Rb is 

maintained in a hyper-phosphorylated state by CycA and CycB com-

plexes in S, G2, and M phases. 

Refining the description of Rb with a multivalued node was already 

suggested by Fauré et al. (2006). Hence, we introduce a ternary node for 

Rb, with the levels 0, 1 and 2 corresponding to the hyper-

phosphorylated, partly-phosphorylated and un-phosphorylated states 

respectively (the corresponding logical rules are defined in Table 1). The 

cyclins phosphorylate and inhibit Rb. In the absence of cyclins, Rb is un-

phosphorylated (level 2). CycD alone initiates the partial phosphoryla-

tion at the beginning of the cell cycle, and thus pushes Rb down to the 

level 1. It requires the assistance of another cyclin to complete this 

phosphorylation, forcing Rb down to the level 0, in the absence of p27. 

CycA and CycB have symmetrical roles, keeping Rb hyper-

phosphorylated during S, G2 and M phases. p27 binds to the 

CycA/E/B:CDK complexes and inhibits their kinase activities, thereby 

indirectly activating Rb. Although p27 can also bind CycD:CDK com-

plexes, it does not impair the corresponding kinase activity. A saturation 

of p27 inhibitory activity by the different cyclins is further considered in 

the corresponding logical rule (see Table 1). 

Interestingly, this model extension provides a mechanism explaining 

the requirement of CycE for cell cycle viability, as well as the sequential 

synthesis of CycE and CycA. The synthesis of both cyclins is activated 

by E2F, but their expressions peak in G1 phase and S phase, respectively 

(Lees et al., 1992; Wong et al., 2014). We model this sequential activa-

tion by considering differential effects of Rb depending on its phosphor-

ylation state. The complexation of Rb and E2F is modelled with a direct 

inhibition of E2F by Rb, along with negative regulations of E2F targets 

CycE and CycA (as in Fauré et al., 2006). Setting different thresholds of 

activity for these interactions, namely threshold 2 for E2F and CycE, and 

threshold 1 for CycA, ensures that the synthesis of CycA can be activat-

ed only when Rb is hyper-phosphorylated and E2F is completely re-

leased. 

The delayed synthesis of CycA relatively to the synthesis of CycE can 

be verified with NuSMV (Table S2, sequence 6; states 2 to 4 in Figure 

3). Indeed, the incorrect sequence with CycA activated before CycE no 

longer exists in the asynchronous STG of the revised model. Hence, our 

model provides an explanation for the observed sequential activation of 

CycE and CycA in the cell cycle, which relies on a robust mechanism 

involving the feedforward motif that drives the complete phosphoryla-

tion of Rb and the progression into S phase. 

The requirement of CycE for cell cycle viability might depend on cel-

lular context. CycE is known to participate in the phosphorylation of Rb 

(Weinberg, 1995). However, observations on CycE-deficient cells high-

light a crucial role of CycE in specific situations. Geng et al. (2003) 

reported that CycE-deficient cells can maintain active proliferation but 

are unable to reenter the cell cycle from the quiescent G0 state. Ohtsubo 

et al. (1995) further report that inhibition of CycE in G1 blocks the entry 

in S phase in human cells and further arrests the cell cycle. 

For CycE knock-out, the simulation of the original model did not re-

sult in cell cycle arrest, because the activity of CycA, which drives the 

cell cycle into G2 phase, was independent from CycE. In contrast, our 

modified model predicts an arrest of the cell cycle in phase G1, where 

CycA is inhibited by Rb (Table S1). This simulation emphasises the role 

of the circuit involving Rb, CycE and p27 in driving the cell cycle 

through the S phase and beyond. 

A similar perturbation was introduced in a recent study, where cancer 

cells are treated with a specific CycE/A inhibitor, resulting in a cell cycle 

arrest with an increased accumulation of p27 and hypo-phosphorylation 

of Rb (Dai et al., 2013). With the revised model, the simulation of a 

double perturbation of CycE and CycA leads to consistent results, while 

the same perturbation in the initial model leads to a cell cycle arrest with 

phosphorylated Rb (Rb=0) and no p27 accumulation (p27=0) (Table S1). 

3.4 Role of UbcH10 in mitosis 

The anaphase-promoting complex (APC) coordinates mitosis and G1 by 

sequentially promoting the degradation of key cell-cycle regulators. APC 

is represented in the model by Cdh1 and Cdc20. The degradation of 

several targets of either Cdh1 or Cdc20 is assisted by the ubiquitin-

conjugating enzyme 2C (UbcH10, also called UBE2C), a component of 

the ubiquitin proteasome system. 

While the initial model accounted for the fact that UbcH10 is neces-

sary for Cdh1-dependent degradation of CycA (Rape & Kirshner, 2004), 

UbcH10 might also be required for the destruction of mitotic cyclins and 

other mitosis-related substrates, including CycB (Rape et al., 2006). We 

encode this putative mechanism by updating the logical rule associated 

with the node CycB (cf. Table 1). Adding the intervention of UbcH10 for 

the degradation of CycB enables a consistent simulation of UbcH10 KO 

(Townsley et al., 1997). Indeed, using NuSMV, one can verify that there 

is no asynchronous sequence going through G2 and M phase (driven by 

CycA and CycB) in absence of UbcH10 (starting from an initial state 

corresponding to S phase) (Table S2, sequence 18), which is not the case 

for the model of Fauré et al. (2006). 

UbcH10 is probably also involved in Cdh1-dependent degradation of 

CycB. In the absence of definitive experimental data, we can test the 

impact of this mechanism on cell cycle dynamics by applying model-

checking techniques on model variants with alternative rules for CycB.  

In Table 1, we have retained the rule satisfying the largest number of 

constraints. 

3.5 Role of Skp2 

Within the logical framework, it is relatively easy to extend a model in 

order to consider novel regulatory components and interactions.  Recent 

evidence points to the existence of an E2F-independent proliferative 

control mechanism, which involves the F-box protein Skp2, a substrate 

recognition subunit of the SCF ubiquitin ligase complex that targets p27 

for degradation (Dick & Rubin, 2013). Briefly, Skp2 promotes the 

degradation of phosphorylated p27 by CycE and CycA associated CDKs. 

Rb binds to Cdh1 and thereby participates in the ubiquitin-mediated 

degradation of Skp2 (Binné et al., 2007; Liu et al., 2008). This mecha-

nism links the three key cell cycle repressors Rb, p27 and Cdh1, and 

provides an additional mechanism by which Rb can arrest the cell cycle. 

Consequently, we define a novel node representing Skp2 in the model, 

negatively regulated by Cdh1 and (non-phosphorylated) Rb, and inhibit-

ing p27. The presumptive correct sequence of states for the revised 

model is shown in Figure 3. 
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The performances of this revised model have been assessed by check-

ing the consistency between model perturbations and experimental data. 

In particular, Ji et al. (2004) described the partial penetrance of Rb 

mutation RbR661W, which impedes E2F repression, and effectively 

shuts down the Rb-E2F pathway. These authors further found that 

RbR661W retains the ability to arrest the cell cycle at the G1/S transi-

tion, with p27 accumulation. They verified that the ability of Rb to 

interact with Skp2-p27 was preserved in this mutant. In the logical 

framework, it is possible to model this subtle perturbation by specifically 

suppressing the regulation of E2F, CycE and CycA by Rb. 

In another experiment, p27 antisense treatment was shown to prevent 

G1 arrest by Rb, indicating that p27 is required for Rb-mediated G1 

arrest. This can be modelled by considering another model perturbation 

(knock-down of p27), with simulation results consistent with experi-

mental data (see Table 2). 

 

Table 2. Assessment of properties of the original and revised mammali-

an cell cycle model. 

 
Genetic 

perturbation 

Observed Phenotype Initial model Revised 

model 

RbR661W Viable cell cycle in the presence of 

growth factors, cell cycle arrest and p27 

accumulation in their absence. 

Inconsistent OK 

Rb induction Cell cycle arrest with present CycE and 

CycA 

Inconsistent OK 

p27 KO Cell cycle in absence of growth factors. Inconsistent OK 

Skp2 KO Cell cycle arrest or endoreplication with 

accumulation of cyclin E and p27. 

Skp2 absent OK 

Skp2 KO 

p27 KO 

Cell cycle in the presence of growth 

factors, cell cycle arrest accumulation of 

CycE in their absence. 

Skp2 absent OK but no 

accumulation 

of CycE 

 

Moreover, Skp2 specific perturbations have been reported, which can 

also be qualitatively reproduced with our model. In particular Skp2 KO 

has been shown to lead to severe proliferation defects, with accumulation 

of both CycE and p27 (Kotoshiba et al., 2014; Nakayama et al., 2000). 

Consistently, the simulation of this perturbation leads to a steady state 

with CycE and p27 both active (level 1). The rescue of Skp2 loss-of-

function by the deletion of p27 (Nakayama et al., 2004) is reproduced by 

the model, but does not account for CycE accumulation (see Table 2). 

Skp2 is known to degrade free CycE, but CycE complexed with 

CDK2 is protected from Skp2-dependent degradation (Nakayama et al., 

2000). In our model, the component CycE represents the complex 

CycE:CDK2, and the negative regulation of CycE by Skp2 is thus not 

taken into account. In this respect, our perturbation simulation results 

suggest an alternative mechanism by which CycE could be accumulated 

in Skp2 mutants, presumably involving p27 binding to CycE. The result-

ing complexes could inhibit CycE activity and arrest the cell cycle before 

the transition toward S phase. 

Finally, the updated model can be used to interrogate the regulation of 

Skp2 by E2F. The observation that E2F directly activates transcription of 

skp2 gene (Assoian & Yung, 2008) led us to analyse a model variant 

including a positive regulation by E2F opposing the inhibition by Rb. 

However, our model checking analysis of the dynamics of this variant 

suggests that further refinements would be needed to account for this 

interaction without loosening other necessary constraints. Indeed, alt-

hough this model variant allows Skp2 to oscillate in the cyclic attractor, 

we further observe a destabilisation of CycE and CycA.  Hence, further 

experimental details on Skp2 regulation and stability would be needed 

before integrating this interaction in our mammalian cell cycle model. 

4 Conclusions and prospects 

4.1 Model refinement 

Refining a model is an iterative process, during which it is important to 

check at each step that all relevant properties satisfied by the original 

model are preserved, while novel properties are further accounted for. In 

this study, we have refined a logical model of the mammalian cell cycle 

to account for recent data pointing to novel regulatory components and 

interactions. Each model update was evaluated using formal model-

checking techniques to assess the conservation of documented dynamical 

properties, in particular regarding the temporal ordering of cyclin activi-

ties, for the wild type cycle, as well as for various genetic perturbations. 

In this respect, we provide the complete lists of perturbations (Table S1) 

and dynamical properties (Table S2) evaluated on all model variants as 

supplementary material. Interestingly, the revised model matches several 

novel biologically relevant properties in comparison with the original 

one. 

However, a careful analysis of our refined model already points to 

some limitations. In particular, the timing of the degradation of CycB 

relative to the other cyclins is not fully determined (cf. State 12 in Figure 

3). This raises the question of what refinement could ensure the correct 

timing for CycB inactivation. Further experimental perturbation studies 

could point to possible mechanisms. For example, the use of stabilized 

cyclins in proliferating cells could help to conclude whether the degrada-

tion of CycE, CycA and CycB are necessary for the progression into the 

next phase. 

Another limitation of the model is the existence of two stable states 

corresponding to cell quiescence, differing in the level of CycA (level 0 

or 1), and due to the stability of CycA in the model in absence of all its 

regulators. The modelling of the regulation of CycA degradation (in free 

form versus CycA:CDK complex) clearly needs to be further refined. 

Finally, as mentioned above, we have still to refine the logical modelling 

of the regulation of Skp2 by E2F, which should preserve the correct 

temporal ordering of CycE and CycA activities. 

4.2 Prospects 

Our refined model takes into account the most notable components of the 

mammalian cell cycle network. However, this model should be further 

updated in the light of novel experimental data. Besides Skp2, several 

additional proteins have been involved in the regulation of the G2 phase, 

such as Aurora, Plk1, Emi1, which have not yet been considered in our 

model because their roles and regulation are still uncertain. These factors 

will be possibly incorporated in the model once more precise mechanis-

tic information becomes available. 

At some point, one could consider more subtle kinetic aspects to en-

force the fine temporal regulation of the cyclins, which would require 

more quantitative approaches. One straightforward possibility would be 

to use the software MaBoSS to perform stochastic simulations, relying 

on rough estimation of relative component transition rates (Stoll et al., 

2012). In this respect, the development version of GINsim includes a 

functionality enabling the export of logical models into MaBoSS format. 

Our model could also be refined to fit data concerning specific cell 

types, or to study the effect of multiple perturbations associated with 

cancer (e.g. Grieco et al., 2013; Mombach et al., 2014; Floback et al., 

2015; Remy et al., 2015). It can be used as a starting point for subse-

quent studies, using the model-checking approach delineated here in 

order to increment and assess successive model versions. In this respect, 
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we provided our current model in two computer readable formats (GIN-

sim format, including extensive annotations, along with an SBML export 

(http://ginsim.org/node/189). 
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