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Abstract. MiniZinc is a solver-independent constraint modeling lan-
guage which is increasingly used in the constraint programming com-
munity. It can be used to compare different solvers which are currently
based on either Constraint Programming, Boolean satisfiability, Mixed
Integer Linear Programming, and recently Local Search. In this paper we
present a stochastic continuous optimization backend for MiniZinc mod-
els over real numbers. More specifically, we describe the translation of
FlatZinc models into objective functions over the reals, and their use as
fitness functions for the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) solver. We illustrate this approach with the declarative
modeling and solving of hard geometrical placement problems, motivated
by packing applications in logistics involving mixed square-curved shapes
and complex shapes defined by Bézier curves.

1 Introduction

MiniZinc [11] is a medium-level constraint modeling language which is becoming
a standard in the Constraint Programming community. It is high-level enough
to express most constraint problems easily, but low-level enough to be mapped
onto existing solvers easily and consistently. This mapping is done through a
flattening process which takes as input a MiniZinc instance and produces a
FlatZinc instance. FlatZinc is a low-level solver input language designed to be
easy to translate into the form required by a solver. It is chosen for that reason
as target language for MiniZinc.

Currently, there exist FlatZinc backends for Mixed Integer Linear Program-
ming (CPLEX, OR-tools1, SCIP, . . . ), Finite Domain Constraint Programming
solvers (Choco2, Eclipse3, Gecode4, JaCoP, Opturion-CPX5, Oscar, SICStus
prolog, . . . ), SAT solvers (MinisatID,. . . ) and recently Local Search (iZplus6,
Oscar-cbls [1]).

1 https://code.google.com/p/or-tools/
2 https://github.com/chocoteam/choco-parsers
3 http://eclipseclp.org/doc/bips/lib_public/flatzinc/
4 http://www.gecode.org/flatzinc.html
5 http://www.opturion.com/cpx
6 http://www.minizinc.org/challenge2014/descriptionizplus.txt
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Most of FlatZinc implementations are thus dedicated to discrete domains.
However, constraint optimization and decision problems over real numbers can
be expressed in MiniZinc with high generality. Curently, such continuous con-
straint problems can be solved either using Linear Programming backends, with
restrictions on the linearity of the constraints, or using interval arithmetic back-
ends (e.g. G12ic, Eclipse fzn ic).

In this paper, we study another kind of solver based on stochastic continuous
optimization for solving FlatZinc instances over real numbers, using namely the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6]. More specifi-
cally, we show how a FlatZinc instance over real numbers can be translated into
a fitness function which can be directly used by CMA-ES to compute approxi-
mate solutions to the problem. The transformation we describe is quite general
and applies virtually to any MiniZinc model over real numbers. The choice of
CMA-ES among other evolutionary or particle swarm optimization algorithms
is motivated by the absence of parameterization for this algorithm and by its
performances on hard problems.

For discrete domains, there has been related work on the design of high-level
constraint-based modeling languages for local search and genetic algorithms. The
seminal work of Van Hentenryck and Michel on Comet [10,7] showed how a finite
domain constraint model can be compiled into an objective function for local
search metaheuristics, such as Tabu search, with default neighborhoods derived
from the constraint model. In [1], Björdal et al. present a constraint-based local
search backend for MiniZinc and show that it produces competitive results on
the 2010 to 2014 MiniZinc challenges. In these systems, the local search solver
is limited to finite domain constraints and use neighborhoods derived from the
finite domains of the variables.

Here in the continuous domain, we illustrate our CMA-ES backend for FlatZ-
inc with the solving of hard geometrical placement problems which, to the best
of our knowledge, go beyond the state-of-the-art of declarative constraint mod-
eling and solving. As a matter of fact, the only FlatZinc implementations listed
on the MiniZinc web page that parse the FlatZinc instances presented in this
paper are those based on exact methods using interval arithmetic (i.e. Eclipse
fzn ic and G12ic) but none of them can find solutions in reasonable computation
time even for the examples presented here. In [9], we have already shown that
the non-overlap constraint between squares, cubes, rectangles, boxes, triangles,
polygons circles and spheres, can be associated with a measure of overlap be-
tween objects which can be used directly as a fitness function in CMA-ES for
packing mixed shapes in a bin, with an interesting trade-off between general-
ity and efficiency. The measure of overlap does not need to be the area of the
intersection (and should not if one object can be included in another) but can
be any measure equal to 0 in case of non-overlap, and capable of guiding the
continuous optimization solver by measuring progress toward satisfaction [4].
On a benchmark of consecutive sizes circle packing problems, we showed that
CMA-ES finds solutions at 2% of the best known costs obtained by running the
three global optimization methods reported in Castillo et al. [3]. In [12], Salas



and Chabert show that the overlap measures which were defined in an ad hoc
manner in [9], can be computed by interval methods in IBEX7 with a numeri-
cal algorithm that automatically measures the penetration depth of two objects
of virtually any shape defined by conjunction and disjunction of non-linear in-
equalities. In this paper, we give general MiniZinc definitions for the penetration
depths, or simpler overlap measures, between polygons, circles, and also complex
shapes defined by Bézier curves, motivated by packing problems in the cosmetic
and automotive industries. This illustrates the performance of MiniZinc-CMAES
in terms of both declarative modeling and efficient (yet suboptimal) resolution
of very hard geometrical packing problems with complex shapes and continuous
rotations.

The rest of the paper is organized as follows. In the next section, we present
the translation of a FlatZinc instance over real numbers in a fitness function
over the reals, and the interface to the CMA-ES solver. In Section 4 we describe
MiniZinc models of continuous packing problems involving continuous rotations,
mixed square-curved shapes and complex shapes defined by Bézier curves. There
we use some simple distance formulae for circles, Minkowski sums for the pene-
tration depth between polygons [5] and De Casteljau’s numerical algorithm for
linearizing Bézier curves. In Section 5, we report on the performance results
obtained through the compilation chain from MiniZinc, FlatZinc to CMA-ES,
on complex shape packing problems. Finally, we conclude on the general per-
spective opened by this MiniZinc backend for continuous optimization and novel
applications at the intersection of Optimization and Computer-Aided Design.

2 Compiling FlatZinc Instances over Real Numbers in
Real-valued Fitness Functions

In this section we describe our transformation of a FlatZinc instance containing
arithmetic and trigonometric constraints over float variables in a fitness function
which aggregates the costs of each constraint violation. This transformation is
at the heart of the continuous optimization backend.

2.1 Arithmetic expressions

The arithmetic expressions that constitute the constraint satisfaction problem
need be rebuilt from the FlatZinc instance, since arithmetic sub-expressions and
intermediary variables are introduced by the transformation from MiniZinc to
FlatZinc. The constraints that result from this transformation are split in three
groups:

1. inequality constraints, which are turned into costs,
2. arithmetic and trigonometric constraints, which always appear to be directed

and are turned into functional expressions,

7 http://www.ibex-lib.org
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3. and equality constraints, which can either be solved statically if there exists
a topological sort of the constraint graph that makes the constraint directed,
or turned into a cost otherwise.

Every variable X of the model is associated to an expression [X] defined as
[X] = X if X is one of the search variables, or as the arithmetic or trigonometric
expression deduced from the constraints on X. The notation is extended to float
constants, [f ] = f , and vectors of variables and/or float constants, i.e. for a
vector U = (X1, . . . , Xn), [U ] denotes the vector ([X1], . . . , [Xn]).

Concerning the first group, the inequality constraints in FlatZinc are either
strict or non-strict inequalities between linear expression of the form:

constraint float_lin_lt(U0 ,U1,K);
constraint float_lin_le(U0 ,U1,K);

where K is a constant, U0 is a vector of constant coefficient and U1 is a vector
of variables. The semantics is respectively U0 · U1 < K and U0 · U1 ≤ K
where · denotes the scalar product. The cost we associate to such an inequality
constraint c is

cost(c) = max(0, [U0] · [U1]−K)

where [U0] and [U1] are the expressions constructed from the arguments. For
strict inequality, one could refine the cost to

cost(c) =

{
1 + [U0] · [U1]−K if [U0] · [U1] ≥ K
0 otherwise

in order to ensure that the cost is null if and only if the constraint is satis-
fied. However, this is not necessary to guide the search for solutions since the
constraints a < b and a ≤ b are equivalent almost everywhere in a continuous
setting.

Concerning the second group, every float variable X of the model is consid-
ered as a search variable, except if it appears in the result position of one of the
following directed constraint:

constraint float_min(A, B, X);
constraint float_max(A, B, X);
constraint float_times(A, B, X);
constraint float_sqrt(A, X);
constraint float_cos(A, X);
constraint float_sin(A, X);

If X is in the result position of one of these constraints, then [X] is defined as
the expression that computes the associated value.

For the third group, FlatZinc linear equality constraints are of the form:

constraint float_lin_eq(U0 ,U1,K) :: defines_var(X) :: weight(w);

The FlatZinc compiler generates the annotation defines_var(X) which directs the
constraint from its arguments to its result, in the case where the constraint
results from a linear arithmetic expression. In that case, [X] is defined as the
expression that computes the linear combination.

For the equality constraints that result from reification, of the form:



constraint float_eq_reif(X,Y,B);
constraint float_lin_eq_reif(X,U,B);

we eliminate them statically if enough information is available. Otherwise, the
model is currently rejected.

It is worth noting that this minimal handling of reification is needed to cope
with the code generated by the MiniZinc compiler for partial functions like sqrt

, where the formal argument is unified with the actual argument only if the
function is defined for this argument. On the other hand, general reified equality
constraints impose integrity constraints on the boolean variables. Turning an
integrity constraint into a cost function causes rugged landscapes which may be
difficult to explore, although CMA-ES is also a pretty good solver in this case.
Since our benchmarks do not use reified constraints nor discrete variables, they
are currently out of the scope of our MiniZinc backend.

2.2 Cost aggregation

In our backend, the gathering of the cost functions can be tuned by using anno-
tations. First, each constraint can be annotated with a weight which will affect
the cost in the aggregation. By default, the weight of a constraint is 1.

annotation weight(float);

Second, every MiniZinc model contains one and only one solve instruction,
which gives the objective. The solve item can be annotated with one of the
following annotations which change the definition of the violation cost of the
whole constraints. By default, weighted_sum is assumed.

annotation weighted_sum;

violation cost =
∑
c

weight(c) · cost(c)

annotation fuzzy;

violation cost = max
c

weight(c) · cost(c)

annotation probabilistic;

violation cost = 1−
∏
c

(
1

1 + cost(c)
)weight(c)

Third, if the FlatZinc instance is a constraint satisfaction problem, the fitness
function is defined to be equal to the violation cost.

solve satisfy;

If the FlatZinc instance requires to minimize an expression e, the fitness function
is defined to be equal to α · (1 + violation cost) + e, where α is a coefficient large
enough to dominate e. Then α can be set with the following annotation applied
to the solve item.



annotation alpha(float);

By default, α = 1010.

3 Stochastic Continuous Optimization with CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES8) [6] is one
of the most powerful global optimization strategy for minimizing an objective
function over the reals in a “black-box” scenario, i.e. without assuming any prop-
erty about the objective function. This method is a multi-point method which
uses a population of configurations (here valuations of the FlatZinc search vari-
ables, e.g. packings defined by the coordinates and orientations of the objects)
to sample the search space, estimates the covariance matrix at each sampling,
determines the next move in the most promising direction (e.g. translations and
rotations of objects), and updates accordingly the multi-variate normal distri-
bution for the next sampling (i.e. mean value and covariance of the variables).

CMA-ES behaves in effect like a second-order method where the landscape
is estimated by sampling, according to some multi-variate normal distribution
of the variables, which is itself updated during search in the most promising
direction to adapt to the landscape, using an estimation of the second-order
moment, the covariance matrix. When the objective function does not improve,
CMA-ES can be restarted to find different local optima. We refer to [6] for more
details on that stochastic optimization algorithm.

One advantage of CMA-ES is that it requires very little parameter tuning.
All our benchmarks have been performed with the C implementation of CMA-
ES using the same parameter set: a population size of 100, an initial standard
deviation of 20 and a stopping criterion based on a difference less than 10−3 for
the fitness function.

CMA-ES thus tries to minimize an arbitrary function f : Rn → R, where n is
the dimension of the search space (i.e. the number of FlatZinc search variables).
The result is a vector x ∈ Rn such that f(x) is the smallest value encoun-
tered so far. The C implementation of CMA-ES expects that the function f
has the following interface: double f(double x[]). The FlatZinc-to-CMA-ES
back-end derives such a fitness function from the FlatZinc model according to
the transformations described in Section 2.

4 MiniZinc Models of Geometrical Placement Problems

The problems addressed in this section are taken from the industry of cosmetics
packaging. They consist of packing products with various shapes. In this applica-
tion the objective is to pack a given quantity of a product in a minimum number
of bins. The study of different forms in the industry of cosmetics packaging show
that convex approximations of objects give poor results but that the objects can

8 https://www.lri.fr/~hansen/cmaesintro.html
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be modeled using a combination of Bézier curves. Existing Constraint Program-
ming tools are limited and do not offer capabilities to solve such problems. We
show here how to model and solve such problems in MiniZinc.

4.1 Overlap Measures Between Objects

The overlap measure should guide the optimization procedure towards a geomet-
rical placement without overlap, i.e., ideally, the cost should decrease as long as
the placement gets closer towards a placement without overlap. φ-functions [4]
have been introduced for the same purpose of continuous optimization for geo-
metrical placement problems, using decompositions in half-planes, triangles and
circles. In this section, we describe three overlap measures for polygones and
complex shapes delimited by Bézier curves using the intersection area, the pen-
etration depth, or the sum of the pairwise distances between the intersection
points of the borders.

Intersection area. Object intersection area can be used as an overlap measure,
which could seem quite natural. However, this area can be costly to compute and
does not guide the optimization well. For example, when an object fully contains
another one, the overlap measure remains in a plateau for every possible position
where the contained object stays inside the container, giving no direction for
getting outside the overlap zone (figure 1). In pratice, we do not use this measure.

O1

O2

x(O2)

area(O1 ∩O2)

Fig. 1. Intersection area between two rectangles O1 and O2 in function of x(O2), with
a plateau when O2 is included in O1.

Penetration depth. The penetration depth is a common measure in computer-
aided design [2]: the penetration depth between two objects is the smallest norm
such that there exists a translation vector to apply to one of the two objects
such to lead to a placement where the two objects do not intersect.



The penetration depth between two circles (C1, r1) and (C2, r2) is trivial to
compute:

pd(C1, r1); (C2, r2)) = max(0, r1 + r2 − C1C2)

that is to say the difference between the sum of their radius and the distance
between their centers (figure 2). This distance was already used for circles in
[9,4].

C1

C2

r1r1

r2

Fig. 2. Penetration depth between two circles (C1, r1) and (C2, r2)

More generally, the penetration depth between two objects O1 and O2 is
equal to the distance between the origin (0, 0) and the complementary of the
Minkowski difference O1 	O2 = {p1 − p2 | p1 ∈ O1, p2 ∈ O2}.

pd(O1;O2) = min{‖u‖ | u /∈ O1 	O2}

Indeed, this distance is by definition the smallest norm such that there exists
a vector u such that u /∈ O1 	 O2, that is to say a vector such that for all
p1 ∈ O1, p2 ∈ O2, u 6= p1 − p2, thus we have O1 ∩ (O2 + u) = ∅.

The Minkowski difference of two polygons is a polygon, computable in a time
quadratic to the number of edges, and the Minkowski difference of two convex
polygons is a convex polygon, computable in a time linear to the number of
edges [5] (figure 3).

Note that the penetration depth only consider translations, whereas the
search space we consider for optimization may include rotation angles as ad-
ditional “dimensions”. [12] extends the Minkowski difference to consider object
rotations as well. This extension is difficult to interpret geometrically and makes
overlap measures depend on the choice of the origin for each object. We will
restrict ourselves to Minkowski difference in the Euclidean space.

Sum of the pairwise distances between the intersection points of the borders. For
the overlap measure between two objects O1 and O2 that have non polygonal
shapes like those delimited by Bézier curves, or for heterogeneous shapes (for
example, when mixing Bézier curves and polygons), we prefer to use another
measure simpler to compute: the sum of the pairwise distances between the
intersection points of the borders ∂O1 and ∂O2. We suppose that ∂(O1)∩∂(O2)



O1

O2

(0, 0)

Fig. 3. Minkowski difference between two pentagons O1 and O2. The penetration
depth between O1 and O2 is the distance between the origin and the border of the
Minkowski difference.

is a finite set, applying infinitesimal offsets if necessary.

spd(O1;O2) =
∑

pi,pj∈∂(O1)∩∂(O2)
i<j

‖−−→p1p2‖

There exist several methods to compute the intersections between two Bézier
curves numerically [13] (figure 4). We use a dichotomic search by using de Castel-
jau’s algorithm for splitting the curves. The dichotomic search can also be used
to compute numerically the intersections between Bézier curves and circles.

Fig. 4. Intersection points of the borders of two objects delimited by Bézier curves.

The intersections between a Bézier curve and a segment can be computed
algebraically. Indeed, by changing the frame, we can suppose without loss of
generality that the segment lays on the abscissa axis. The Bézier curve (p0, p1, p2)
intersects the axis for every parameter t, 0 ≤ t ≤ 1, such that (1− t)((1− t)yp0

+
typ1) + t((1− t)yp1

+ typ2) = 0: this is a second-order polynomial in t. For each
solution t0, it suffices to check that the abscissa (1− t0)((1− t0)xp0 + t0xp1) +
t0((1− t0)xp1 + t0xp2) belongs to the segment.

This measure does not fulfill the requirements of an ideal overlap measure: the
measure is null when one object is included in the other and is not monotonic
with respect to the penetration depth. However, it is locally monotonic in a
neighborhood around overlap-free placements: in the context of a local search,



by choosing an overlap-free initial placement (spreading the objects enough far
ones from the others), this measure experimentally appears to be sufficient to
preserve the overlap-freeness during the placement compaction process.

4.2 Continuous Packing Model

This section makes use of the overlap measures introduced above to express
MiniZinc models for continuous packing of circles, arbitrary polygons with ro-
tation and other complex shapes like rosettes delimited by Bézier curves. The
penetration depth is used as measure of overlap between two circles and between
two polygons, while the sum of distances between the intersection points is used
for every other pair of shapes.

Circles. The following predicate expresses the constraint that the two circles
((x1, y1), r1) and ((x2, y2), r2) do not overlap.

predicate non_overlap_circles(
var float: x1, var float: y1, var float: r1,
var float: x2, var float: y2, var float: r2) =
pow(x1 - x2, 2) + pow(y1 - y2, 2) > pow(r1 + r2, 2);

It is worth noticing that the inequality (x1−x2)2 + (y1− y2)2 > (r1 + r2)2 is
compiled into the cost function (r1+r2)2−(x1−x2)2−(y1−y2)2, which is mono-
tonic with respect to the penetration depth (r1+r2)−

√
(x1 − x2)2 − (y1 − y2)2,

introduced in the previous section.
We consider a benchmark of circle placement problems [3] where there are

n circles to place in a circular bin. The usual modelling [9] supposes that the
circular bin is centered on the origin. The following function compute for each
circle the minimum radius for the circular bin to contain the circle (x, y), r).

function var float: bounding_circle_radius(
var float: x, var float: y, var float: r) =
sqrt(pow(x, 2) + pow(y, 2)) + r;

The search variables are the positions of the circle centers.

int: n;
array[1 .. n] of var float: x;
array[1 .. n] of var float: y;

The circle positions are constrained to be non-overlapping.

constraint forall(i in 1..n,j in i+1..n)(
non_overlap_circles(x[i], y[i], radius(i), x[j], y[j], radius(j)));

The goal is to minimize the radius of the circular bin. Intermediary variables
are introduced to store the minimal bounding radius for each circle to circumvent
a limitation of the max function for arrays in MiniZinc that needs to know the
bounds of the arguments.

array[1 .. n] of var 0.0 .. 1000.0: bounding_radii;

constraint forall(i in 1 .. n)(
bounding_radii[i] = bounding_circle_radius(x[i], y[i], radius(i)));



constraint bounding_radius = max(bounding_radii);

solve minimize bounding_radius;

Fig. 5. Example of packing found by MiniZinc-CMAES for 18 circles of radii i−1/2 for
1 ≤ i ≤ 18 (circle packing benchmark of [3]).

It is worth noticing that applying min and max functions to overlap measures
allows Boolean combinations of geometrical shapes to be expressed. For instance,
the figure 6 shows a placement for 20 geometrical rosettes, where each rosette
R((x, y), r) is defined as the union of six intersections between pairs of circles:

R((x, y), r) =

6⋃
i=1

C((x+ cos(2 · i · π
6

) · r, y + sin(2 · i · π
6

) · r), r)

∩ C((x+ cos(2 · (i+ 2) · π
6

) · r, y + sin(2 · (i+ 2) · π
6

) · r), r)

Objects with rotations. The placement of each object in the subsequent examples
is described by three search variables: the position on the x axis, the position on
the y axis, and the rotation angle r.

set of int: position = 1 .. 3;
int: x = 1;
int: y = 2;
int: r = 3;

An object is described by a variable of type array[position] of var float, that is
to say an array of three variables. The constants x, y and r are used as projectors:
given an array object, components can be accessed as object[x], object[y] and object

[r]. (Note that MiniZinc has not yet support for records.)
Points are stored in an array of two coordinates. The points that describe

the shapes of an object are expressed in a frame relative to the given object
position and orientation. The function image_of_point defined below transforms
the coordinates of a point to the global frame.

set of int: coordinates = 1 .. 2;
function array[coordinates] of var float: image_of_point(



Fig. 6. Placement found by MiniZinc-CMAES for 20 geometrical rosettes, defined as
unions of circle intersections.

array[position] of var float: object ,
array[coordinates] of float: point

) = [
cos(object[r]) * point[x] - sin(object[r]) * point[y] + object[x],
sin(object[r]) * point[x] + cos(object[r]) * point[y] + object[y]

];

Object positions are stored in a matrix.

set of int: objects = 1 .. n;
array [objects , position] of var float: object_positions;

The following function returns the position of an object given its index.

function array[position] of var float: object_position(int: object) =
[object_positions[object , d] | d in position ];

Polygons. We consider pentagons with the following vertex coordinates (relative
to the object frame).

array [1..5, coordinates] of float: pentagon =
[| 2.2024586 , 58.90577
| 18.54966 ,8.594238
| 71.45033 ,8.594238
| 87.79755 ,58.90576
| 45.0 ,90.0 |];

These pentagons approximate the Bézier rosettes that we consider below:
the vertices join the ends of the petals (figure 7). It is not exactly the convex
hull since one petal goes outside the pentagon but it is close to (and the convex
hull of the rosette is not polyhedric). However, this approximation is sufficient
to observe the gain obtained in the placements by considering the precise Bézier
rosettes instead of such approximations.

We suppose that the following function computes the penetration depth be-
tween two (convex) polygons.



Fig. 7. The pentagon obtained by considering each petal’s end as a vertex is not a
correct approximation of a Bézier rosette.

function var float: penetration_depth_between_polygons(
array[int , coordinates] of var float: vertices0 ,
array[int , coordinates] of var float: vertices1

);

The Minkowski difference between two polygons can be expressed with arith-
metic constraints through reification: the constraint is cumbersome to write di-
rectly, but can be automatically generated, for example by a ClpZinc model [8].
Alternatively, the function can be implemented in the back-end as an auxiliary
C function, which is the case of our current implementation.

Fig. 8. Placement found by MiniZinc-CMAES for 29 pentagons

Bézier curves. The rosettes that we consider are delimited by the 10 following
quadratic Bézier curves (one curve by line, each curve is described by three
control points).

set of int: curves = 1 .. 10;
set of int: quadratic_bezier_control_points = 1 .. 3;
array [

1 .. card(curves) * card(quadratic_bezier_control_points),



coordinates] of float: curve_points =
[| 2.2024586 , 58.90577 | 16.01051 , 34.989525 | 31.150425 , 40.5
| 31.150425 , 40.5 | 17.211597 , 23.888353 | 18.54966 , 8.594238
| 18.54966 , 8.594238 | 42.69821 , 17.38359 | 45.0, 30.437695
| 45.0, 30.437695 | 52.512943 , 17.424889 | 71.45033 , 8.594238
| 71.45033 , 8.594238 | 73.003426 , 26.34613 | 58.84958 , 40.5
| 58.84958 , 40.5 | 82.6242 , 44.69211 | 87.79755 , 58.90576
| 87.79755 , 58.90576 | 70.514114 , 71.00775 | 53.55951 , 56.78115
| 53.55951 , 56.78115 | 63.23457 , 83.36317 | 45.0, 90.0
| 45.0, 90.0 | 29.181046 , 76.72632 | 36.44049 , 56.781155
| 36.44049 , 56.781155 | 18.055468 , 72.20802 | 2.2024586 , 58.90577 |];

We suppose that the following function computes the sum of the distances
between the intersections of two sets of curves. This function is implemented in
the back-end as an auxiliary C function.

function var float: sum_of_distances_between_bezier_intersection_points(
array[int , coordinates] of var float: curves0 ,
array[int , coordinates] of var float: curves1

);

Fig. 9. Placement found by MiniZinc-CMAES for 10 Bézier rosettes

Mixing Bézier curves and rectangles. For computing the overlaps between Bézier
curves and rectangles, we suppose that the following function computes the sum
of the distances between the intersections of a Bézier curve and a rectangle. This
function is implemented in the back-end (as an auxiliary C function), but the
arithmetic could be expressed in MiniZinc as well.

function var float:
sum_of_distances_between_bezier_and_polygon_intersection_points(

array[int , coordinates] of var float: curves ,
array[int , coordinates] of var float: vertices

);

The figure 10 shows a placement found for 16 Bézier rosettes and 16 rect-
angles. It is worth noticing that even if the optimization procedure has found
a non-trivial placement, for instance for the rectangles and the rosettes in the
bottom right of the figure, some visually obvious improvements of the placement
of the left rosettes are not found in this run of CMA-ES.



Fig. 10. Placement found by MiniZinc-CMAES for 16 Bézier rosettes and 16 rectan-
gles, in this run of CMA-ES which stays stick in a local minimum.

5 Evaluation Results of MiniZinc-CMAES

The following tables 1 and 2 summarize the performance obtained with MiniZinc-
CMAES, in terms of computation time, smallest area found, mean area and
variance of the area among 50 runs of CMA-ES. For every example, results are
averaged over 50 runs. All these results have been obtained with the default
parameters of CMA-ES described in Section 3. It is worth noticing that smaller
initial standard deviations tend to generate solutions with overlaps that the op-
timization fails to remove, and bigger standard deviations augment convergence
times. Total time is the sum of the computation times for all the 50 restarts: for
each problem, all the restarts have been computed in parallel on a cluster, one
problem per core.

Roses Total time (50 restarts) Mean time Smallest area found Mean area Variance (area)

10 17 min 32 s 21 s 25.266 27.303 1.893

11 31 min 13 s 37 s 27.369 29.692 1.585

12 41 min 18 s 49 s 28.761 32.511 3.675

13 1 h 1 min 39 s 1 min 13 s 32.936 34.987 2.648

14 1 h 17 min 37 s 1 min 33 s 33.816 37.714 2.926

15 1 h 43 min 19 s 2 min 3 s 37.233 41.085 3.57

16 2 h 6 min 57 s 2 min 32 s 39.729 43.86 5.891

17 2 h 26 min 23 s 2 min 55 s 41.883 46.113 5.947

18 3 h 11 min 20 s 3 min 49 s 43.582 49.123 13.828

19 3 h 47 min 24 s 4 min 32 s 46.74 52.594 10.769

20 5 h 8 min 42 s 6 min 10 s 49.006 54.89 8.579

Table 1. Computation time for placement of geometrical rosettes.



Shapes Total time (50 restarts) Mean time Best area Mean area Area variance

10 + 10 7 j 17 h 35 min 10 s 3 h 42 min 42 s 66 715.294 70 080.254 3.784 · 105

11 + 11 12 j 5 h 34 min 30 s 5 h 52 min 18 s 72 846.432 78 495.343 4.434 · 105

12 + 12 41 min 18 s 49 s 87 257.346 90 238.345 5.499 · 105

13 + 13 13 j 23 h 13 min 39 s 6 h 42 min 16 s 85 492.98 1.024 · 105 6.985 · 105

14 + 14 17 j 9 h 27 min 23 s 8 h 20 min 56 s 1.11 · 105 1.398 · 105 8.219 · 105

15 + 15 23 j 9 h 18 min 63 s 11 h 13 min 35 s 1.078 · 105 1.584 · 105 1.281 · 106

Table 2. Computation time for placement of mixed shapes: Bézier’s rosettes and
rectangles.

It is worth noticing that Eclipse and G12 with their interval constraint solvers
can parse the MiniZinc models of the previous section that do not use predicates
defined as auxiliary C functions in the back-end. However the performances are
very poor with results obtained only for 3 circles.

6 Conclusion

We have presented here a stochastic continuous optimization backend for MiniZ-
inc models over real numbers. We have shown the benefits of this approach using
the CMA-ES solver for continuous optimization on a series of geometrical place-
ment problems motivated by industrial applications in logistics, involving mixed
square-curve shapes, and also complex shapes defined by Bézier curves. Proba-
bly because of the novelty of these problems for complex shapes, we have not
identified benchmarks for comparing the techniques presented here, but in [9]
we showed that the solutions found with CMA-ES on circle packing were at just
2% of the best solutions found with dedicated solvers.

The declarative modeling in MiniZinc combined to the solving using the
transformation to CMA-ES described in this paper, does not come with any
significant overhead and provides fully declarative solutions to very hard geo-
metrical placement problems. The non-overlap constraint has a cost function
based on the penetration depths between objects, using Minkowski sums for
polygons, and a simpler measure of overlap for Bézier curves. A classical diffi-
culty in the definition of the error function of a conjunction of constraints is the
normalization of the error function for each constraint. This has been solved here
by letting the modeller specify in MiniZinc the cost function if different from the
default cost aggregation function (i.e. the sum of the costs).

The recourse to such a black-box optimization procedure for FlatZinc makes
sense especially in presence of non-linear constraints, and in absence of inte-
ger variables, but the transformation we have given of a FlatZinc model in
a non-negative real-valued cost function is quite general. We have focused on
continuous placement problems, but our MiniZinc/CMA-ES can be applied in
principle to any constraint model over real numbers. The examples taken here
from industrial problems in logistics, including objects defined by Bézier curves,



should contribute to open a new domain of application of constraint methods in
computational geometry, at the intersection of optimization and computer-aided
design.
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