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Abstract

In this paper, we are concerned with the application of the recently introduced multi-
revolution composition methods, on the one hand, and two-scale methods, on the other
hand, to a class of highly-oscillatory evolution equations with multiple frequencies. The
main idea relies on a well-balanced reformulation of the problem as an equivalent mono-
frequency equation which allows for the use of the two aforementioned techniques.
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1 Introduction

This article is devoted to the numerical solution of highly-oscillatory problems (HOPs) by
multiscale methods. We consider the situation where a finite -strictly more than one- number
d > 1 of constant frequencies ω1 < . . . < ωd = 1, occur in the problem, and assume that
these frequencies are scaled with the inverse of a small parameter ε and are not all rational,
thus introducing simultaneous high-oscillations in the equations. More specifically, we shall
consider evolution equations of the form (with d ≥ 2)

u̇(t) =
1

ε

(
d∑
i=1

ωiAi

)
u(t) + g(u(t)), u(0) = u0 ∈ X, t ∈ [0, 1], (1)

where the linear operators Ai, i = 1, . . . , d, commute with each other and generate 2π-
periodic propagators τ 7→ eτAi , and where the function g is either a linear or a nonlinear
map from X to itself. Since we wish to focus on the obstacles induced by the presence of
several frequencies, we shall content ourselves here with ordinary differential equations posed
in X = Rn, though more general evolution equations could also be considered1 and will be
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1Let us note however that in the application to infinite-dimensional problems, the technique we introduce

here may raise difficulties that we will not comment on in this paper.
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indeed used as test case in the numerical experiment section 5. A fundamental assumption
throughout the paper is that the scaled vector of frequencies ω = (ω1, . . . , ωd−1, 1) has not all
its components in Q , that is to say that ω /∈ Qd

+. In the sequel, we shall assume in addition
the following

Assumption 1. Equation (1) admits a uniquely defined solution for all 0 < |ε| < ε0 ≤ 1 and
this solution remains in an open bounded set K ⊂ X for all (t, |ε|) ∈ [0, 1]×]0, ε0[.

Problem (1) is notoriously difficult to solve numerically: in order to achieve some accu-
racy, usual numerical schemes are forced to follow more and more oscillations as ε becomes
smaller and smaller, whereas the averaged dynamics is often what only matters in applica-
tions. Standard methods such as Lie-Trotter and Strang splittings, or compositions thereof,
suffer from severe step size restrictions, rendering them useless in practice for very small
values of ε. More elaborate schemes of Gautschi type overcome some of the limitations of
splitting techniques, but certainly not all of them (see [12], Chapter XII) and in particular
are subject to resonances. It is thus of paramount importance to design effective methods.

The mono-frequency problem (i.e. equation (1) with only one operator) has drawn much
attention in recent years and one has witnessed the introduction of several multiscale methods
able to produce outputs with equal accuracy and cost [4, 5, 6, 7, 9], irrespect of the stiffness
parameter 1/ε. For instance, two-scale methods (TSMs) [5], on the one hand, and multi-
revolution composition methods (MRCMs) [6], on the other hand, both permit to filter out the
oscillations in the solution and to capture the behavior of the underlying smooth equation.
These methods have been applied successfully in various contexts (ODEs but also PDEs
such as kinetic equations and Schrödinger equations) and have demonstrated their ability to
deliver uniformly good results in a wide range of ε-values, a property referred to as uniform
accuracy. In this work, our goal is to rewrite the original equation (1), which is multi-
frequency in essence, in such a way that the two aforementioned methods can be employed.
To this aim, we shall approximate all the frequencies simultaneously by rational numbers with
the same denominator. This strategy has already been successfully used in the context of
homogenisation methods by several authors [1, 19] and control of PDEs [14]. In our context,
it is fundamental for the diophantine approximation error to remain small -as compared to
the parameter ε- and simultaneously that this common denominator also remains small. The
strategy we use to balance these contradictory requirements is rather simple and will be
described in Section 2. However, it requires an ad-hoc estimate which falls within number
theory: its proof indeed requires continued fractions approximation for d = 2 and more
elaborate results from [17, 18] for d > 2. At this point, let us emphasize that the error
estimates we establish here are obviously not claimed to be a major breakthrough in the field
of best diophantine approximations. Nevertheless, they appear to be novel as drawn by the
specific point of view adopted here. This new formulation of the problem is then amenable
to mono-frequency averaging techniques and associated numerical methods.

In Section 2, we shall present the rationale of our technique and state an averaging result
in Section 3, which allows to consider problem (1) as a mono-frequency problem with a
rescaled parameter εβ for some2 0 < β < 1. Strikingly, the estimates obtained in this non-
fully-resonant scenario are qualitatively similar to those obtained by standard techniques (e.g.
by filtering with the flow of the harmonic oscillators, and applying the averaging estimates

2The exponent β explicitly depends on the dimension d of the frequency vector and will greatly influence
the efficiency of the numerical methods presented in Section 5.
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of C. Simo [21]). Section 4 will deal with the required error estimates for the simultaneous
approximation of the frequencies ωi. Special attention will be paid to the dimension d = 2,
as larger values of β can be obtained for specific values of ω1 (namely those which can be
written as a continued fraction with a bounded sequence of coefficients). The general situation
with d > 2 frequencies will also be explored in this section. Finally, Section 5 will present
numerical experiments for both MRCMs and TSMs. Their use in the present context will
also be explained. Note that we have added an Appendix which recalls the results of [8, 11]
used in this paper.

2 Motivations and method rationale

Since efficient numerical methods for mono-frequency HOPs are close at hand, the idea at the
core of this work consists in reformulating equation (1) as a one-frequency HOP. Note that
approximating simultaneously real numbers by rational ones with a common denominator in
highly-oscillatory problems is reminiscent of previous works in the literature on homogeni-
sation methods [1, 19] and on control of PDEs [14]. Moreover, simultaneous diophantine
approximation is per se a thoroughly studied problem and one may find in the literature
several famous related statements. However and up to our knowledge, none of them per-
fectly meets our requirements. In this section, we expose how this can be done appropriately
in our situation and then examine the overall expected computational gain, before further
commenting on existing classical results from the literature.

2.1 Rewriting the d-frequency system as a one-frequency system

We first notice that by rescaling the time (or equivalently ε), we may suppose that ωd = 1.
Anticipating its proof in next section, we now use the following statement: for almost all
ω ∈]0, 1]d with ωd = 1 and all 0 < α < 1/(d − 1), there exists a positive constant Cαω such
that

∀P ∈ [1,+∞[, ∃p ∈ Nd, s.t. pd ≤ P, p1 ∧ . . . ∧ pd = 1 and max
i=1,...,d

∣∣∣∣ωi − pi
pd

∣∣∣∣ ≤ Cαω
P 1+α

(2)

where we have denoted p = (p1, . . . , pd). The main idea of this work now consists in replacing
the frequencies ωi, i = 1, . . . , d by approximations

ωi ≈
pi
pd
, i = 1, . . . , d,

with the same denominator pd as in (2). Equation (1) can then be written in a -strictly-
equivalent form

u̇(t) =
1

εpd

(
d∑
i=1

piAi

)
u(t) +

1

ε

d∑
i=1

(
ωi −

pi
pd

)
Aiu(t) + g (u(t))

with ∥∥∥∥∥1

ε

d∑
i=1

(
ωi −

pi
pd

)
Aiu

∥∥∥∥∥
X

≤ Cαω
εP 1+α

(
d∑
i=1

‖Ai‖L(X)

)
‖u‖X . (3)

3



In order to get a mono-frequency highly-oscillatory problem of the form considered in [5, 6],
namely

u̇(t) =
1

µ
Au(t) + g̃(u(t)), t ∈ [0, 1], (4)

where t 7→ etA is 2π-periodic and g̃ is uniformly bounded for all sufficiently small ε, it thus
suffices to consider the rational approximations provided by (2) for P = ε−β with β := 1

1+α ,
so that

A =
d∑
i=1

piAi, g̃(u) = g(u) +
1

ε

d∑
i=1

(ωi −
pi
pd

)Aiu and µ = εpd.

We thus proceed as follows: given ε > 0, define P = P ε = ε−β and choose an integer
pd = pεd ≤ P and d− 1 integers pi = pεi satisfying estimate (2) and such that pd is minimum.
The parameter µ = µε = εpεd is then bounded by εP ε = ε1−β which is small as soon as ε is
(given that 0 < β < 1). It is then straightforward that (using that K̄ ⊂ X is compact, see
Assumption 1)

sup
u∈K̄
‖g̃‖ ≤ sup

u∈K̄
‖g‖+ Cαω

(
d∑
i=1

‖Ai‖L(X)

)
sup
u∈K̄
‖u‖ = O(ε0).

2.2 Expected computational speed-up

The “price to be paid”, in going from equation (1) to equation (4), stems from the fact that
the averaging parameter ε, intended to be small as it appears in (1), has been multiplied by

pd in (4). In the worst case, pd can be of size P , so that εpd is then of size ε
α

1+α . So to say,
in passing from (1) to (4), the highly-oscillatory character of the problem has slightly faded
away and the potential gain expected from multiscale methods has been reduced accordingly.
However, it appears that the use of MRCMs or TSMs still allows for a significant overall gain.
This can be seen as follows:

(i) on the one hand, if one solves the original equation (1)

u̇(t) =
1

ε

d∑
i=1

ωiAiu(t) + g(u(t)), t ∈ [0, 1],

by a direct method (say for instance a splitting method), then the smallest period of

intrinsic oscillations (that is to say 2πε, the period of e
t
ε
Ad given that ωd = 1 and ωi < 1,

i = 1, . . . , d − 1) needs to be meshed with a fixed number of steps (independent of ε),
say m. Altogether, the integration of (1) over the interval [0, 1] thus requires m/(2πε)
steps.

(ii) on the other hand, if one first reformulates equation (1) as

u̇(t) =
1

µ

d∑
i=1

piAiu(t) + g̃(u(t)) =
1

µ
Au(t) + g̃(u(t)), t ∈ [0, 1],

4



and then solves it by MRCMs or TSMs, then the solution has to be computed over
a fixed number, say M (independent of µ owing to the design of these methods), of

intervals of length 2πµ (the period of e
t
µ
A

). The integration over one period uses
pd ×m steps for the pd oscillations to be resolved as accurately as in the first case, so
that computing the solution requires M pdm steps.

The computational gain is thus the ratio

m/(2πε)

M pd m
= Const/(εpd)) ≥ Const ε−

α
1+α .

Since 0 < α < 1/(d − 1), it clearly depends on the number d of frequencies. The expected
gain is essentially of size Const/

√
ε for two frequencies and deteriorates with increasing d.

2.3 Further comments on diophantine estimates from the literature

The famous Dirichlet’s theorem on Diophantine approximation states that, given any vector
ω ∈]0, 1]d with ωd = 1, as in Subsection 2.1, and any natural number P ≥ 1, there exists
p ∈ Nd with pd ≤ P such that

max
i=1,...,d

∣∣∣∣ωi − pi
pd

∣∣∣∣ ≤ 1

pdPα
(5)

with α = 1/(d− 1). Its proof is a consequence of the pigeonhole principle and may be found
in textbooks on arithmetic [15, 3]. However, estimate (5) is not sufficient for our purpose: as
a matter of fact, the upper bound (3) is then weakened to∥∥∥∥∥1

ε

d∑
i=1

(
ωi −

pi
pd

)
Aiu

∥∥∥∥∥
X

≤ 1

εpdPα

(
d∑
i=1

‖Ai‖L(X)

)
‖u‖X ,

and thus requires in essence that (i) εpdP
α ≥ 1 while (ii) keeping µ = εpd small w.r.t. ε, say

of size εβ for some 0 < β < 1. In order to ensure the second condition, one has no option but
to choose εP = εβ, since no information is provided by Dirichlet’s theorem on the actual size
of pd, which may be close to 1 or quite the opposite, close to P . The inequality εpdP

α ≥ 1
then becomes pd ≥ εαβ−1, a condition impossible to guarantee given that αβ − 1 < 0.

Another well-known result for the d = 2 case, namely the Borel-Hurwitz theorem (see for
instance [15] or [19]), states that, given the irrationality of ω1, there exists an sequence of
fractions (pn,1/pn,2)n∈N with increasing denominators such that∣∣∣∣ω1 −

pn,1
p2,n

∣∣∣∣ ≤ 1√
5p2

2,n

.

At first glance, it appears to refine estimate (5) in this case. However, it does not provide
estimates on the growth of p2,n with n. In particular, it may happen that the sequence
(p2,n+1−p2,n)n∈N be unbounded, a scenario in which conditions (i) εp2

2,n ≥ 1 and (ii) µ = ε p2,n

small may be impossible to satisfy simultaneously.
The necessity of controlling the difference between consecutive common denominators

was precisely the driving motivation for using and deriving estimate (2), whose proof follows
mostly from standard results in arithmetic (see Subsection 4.2).
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3 An averaging result for multi-frequency HOPs

In this subsection, we now establish an averaging result similar to the early paper [21] or to
[11] which uses B-series.

3.1 Statement of the result

According to the discussion of Subsection 2.1, we henceforth explicitly indicate the depen-
dence on ε of pε = (pε1, . . . , p

ε
d), P

ε and µε = ε pεd, by upper indices and consider the change
of variables from X to itself

u 7→ χθ(u) = exp
( d∑
i=1

θiAi

)
u,

parametrized by θ = (θ1, . . . , θd) ∈ Td ≡ [0, 2π]d. Introducing

Gθ(v) = χ−θ

(
g (χθ(v))

)
and performing the change of variables u = χ t

µε
pε(v), the differential equation for v can be

written

v̇(t) = G t
µε

pε (v(t)) +
1

ε

d∑
i=1

(
ωi −

pεi
pεd

)
Ai v(t) := f εt

µε
(v(t)), v(0) = v0, (6)

where we have used the commutation of χθ and the Ai’s, and denoted

f ετ (v) = Gτpε(v) +
1

ε

d∑
i=1

(
ωi −

pεi
pεd

)
Ai v.

Note that since 1 is the greatest common divisor of pε1, . . . , p
ε
d, 2π is the smallest period of

the function τ 7→ Gτpε .
We wish to study the differential equation (1) in the open bounded K ⊂ Rn, as defined

in Introduction. Since the derivation of exponentially small error estimates in the averag-
ing procedure requires some analyticity assumptions, we further introduce, for ρ ≥ 0, the
extended set

Kρ = {v + w ∈ Cn : v ∈ K̄, ‖w‖ ≤ ρ}

where ‖ · ‖ denotes the euclidean norm on Cn as well as the induced subordinated norm for
matrices ofMn(C). Finally, we denote by ‖f‖ρ = supu∈Kρ ‖f(u)‖ the maximum norm on the
compact set Kρ. We are now ready to state the main hypothesis on the map (θ, v) 7→ Gθ(v):

Assumption 2. There exist R > 0 and an open set U containing KR such that, for all θ ∈ Td
the function v 7→ Gθ(v) can be extended to a map from U to Cn which is analytic at each
point v ∈ KR. Furthermore, the sum of the norms of the Fourier coefficients Ĝk, k ∈ Zd, of
G, is bounded, i.e.

M :=
∑
k∈Zd

‖Ĝk‖R < +∞.

6



Note that we have

Gτpε(v) =
∑
l∈Z

eilτ

 ∑
k∈Zd, k·pε=l

Ĝk(v)

 (7)

where the multi-indices k ∈ Zd in the inner-sum can be expressed under the form

k = x + Sy, x ∈ Zd, S ∈Md,d−1(Z), y ∈ Zd−1,

x and S being fixed values depending on l and pε, while y takes all values in Zd−1. The
series (‖Ĝk‖R)k∈Zd being summable, the inner series in Gτpε(v) are also convergent so that
the Fourier coefficients of Gτpε(v) can be expanded as the inner series in (7). To sum up, we
have

Gτpε(v) =
∑
l∈Z

eilτ Ĝεl (v) where Ĝεl (v) =
∑

k∈Zd, k·pε=l

Ĝk(v). (8)

Remark 3.1. For instance, for d = 2, we have

Gτpε(v) =
∑
l∈Z

eilτ

(∑
m∈Z

Ĝ(laε+mpε2,lb
ε−mpε1)(v)

)
where aε and bε are two integers such that aεpε1 + bεpε2 = pε1 ∧ pε2 = 1. All Fourier coefficients
Ĝk, k ∈ Z2, of Gθ(v) appear in this sum, but are gathered by blocks to form the Fourier
coefficients of Gτpε(v).

Theorem 3.2. Consider ω ∈]0, 1]d with ωd = 1, ωi < 1 for i = 1, . . . , d − 1 and 0 < α <
1/(d − 1) such that (2) holds for some constant Cαω . Suppose that G satisfies Assumption 2
and denote

M̃ := M + Cαω

d−1∑
i=1

‖Ai‖R.

Then, for any 0 < ε < ε0 and for any N ∈ N∗ such that

ε
α

1+αN ≤ c̃ :=
R

8M̃
,

there exists a near-identity (and periodic) change of variables

v = Φ
[ε,N ]
t/µε (V ) with Φ[ε,N ] : T×KR/2 → KR, µε = ε pεd,

transforming equation (6) into the equation

V̇ = F [ε,N ](V ) +R
[ε,N ]
t/µε (V ), V (0) = v0,

with averaged vector field F [ε,N ] : KR/2 → Cn and remainder R[ε,N ] : T×KR/2 → Cn satisfying
the following bounds

‖F [ε,N ] − f̂ ε0‖R/2 ≤
M̃

2
ε

α
1+α and ∀τ ∈ T, ‖R[ε,N ]

τ ‖R/2 ≤
5

(
ε
α

1+αN
c̃

)N
1− ε

α
1+αN
c̃

M̃. (9)
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In particular, taking N = N ε as the integer part of c̃/(eε
α

1+α ) ≥ 1, one has

∀θ ∈ T, ‖R[ε,Nε]
θ ‖R/2 ≤

5e2

e− 1
M̃ exp

(
− c̃

e
ε
−α
1+α

)
. (10)

Proof. Let 0 < ε < ε0 and consider pε satisfying (2) for P ε = ε−
1

1+α . We start from equation
(6)

v̇(t) = G t
µε

pε (v(t)) +
1

ε

d∑
i=1

(
ωi −

pεi
pεd

)
Ai v(t), v(0) = v0,

and consider for the time being µ = µε as a small parameter varying independently of ε,
while keeping ε fixed, i.e.

v̇(t) = f εt/µ(v(t)), v(0) = v0, t ∈ [0, 1], (11)

where

f ετ (v) = Gτpε (v) +
1

ε

d∑
i=1

(
ωi −

pεi
pεd

)
Ai v

is 2π-periodic owing to the choice of pε. In virtue of Assumption 2, the function f ετ has
Fourier coefficients

f̂ εl (v) =
∑

k·pε=l
Ĝk(v) for l 6= 0 and f̂ ε0 (v) =

∑
k·pε=0

Ĝk(v) +
1

ε

d∑
i=1

(
ωi −

pεi
pεd

)
Ai v

where k runs in Zd, so that

∑
l∈Z
‖f̂ εl ‖R ≤ Cαω

d−1∑
i=1

‖Ai‖R+
∑
l∈Z

∑
k·pε=l

‖Ĝk‖R ≤ M̃

where M̃ is independent of ε. Theorem 5.1 thus applies: For any N ∈ N∗ and any µ ∈ C
such that |µ|N ≤ c̃ := R

8M̃
, there exist a vector field V ∈ KR/2 7→ F [ε,µ,N ](V ), a 2π-periodic-

in-time change of variables (τ, V ) ∈ T × KR/2 7→ Φ
[ε,µ,N ]
τ (V ), and a 2π-periodic-in-time

remainder (τ, V ) ∈ T×KR/2 7→ R
[ε,µ,N ]
τ (V ), such that the solution of (6) reads

v(t) = Φ
[ε,µ,N ]
t/µ (V (t))

where V satisfies a differential equation of the form

V̇ (t) = F [ε,µ,N ](V (t)) +R
[ε,µ,N ]
t/µ (V (t)), V (0) = v0,

with the following bounds

‖F [ε,µ,N ] − f̂ ε0‖R/2 ≤
M̃

2
µ, ‖R[ε,µ,N ]

τ ‖R/2 ≤
5(µN/c̃)N

1− (µN/c̃)
M̃.

This result holds for all µ such that |µ|N ≤ c̃, so in particular for µ = µε = εpεd provided

εP εN = ε
α

1+αN ≤ c̃, thus leading to the bounds given in (9). Estimate (10) is then obtained
as in Theorem 5.1. �
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3.2 Conserved quantities in autonomous Hamitonian systems

In this section, we consider the situation of Section 3 in [11], that is to say the case of
Hamiltonian systems

u̇ = J−1∇uHε(u) (12)

where J is the canonical matrix

J =

(
0 Id
−Id 0

)
, Id ∈M(Rm),

and where the Hamiltonian is of the form

Hε(u) =
1

ε

( d∑
j=1

ωjIj(u)
)

+K(u) (13)

with ω a vector of frequencies as considered in this paper. Furthermore, the following as-
sumptions are satisfied:

(i) The functions Ij are in involution, i.e. for all i, j = 1, . . . , d, one has {Ii, Ij} = 0 where
the bracket used here is the Poisson bracket (see for instance [11]).

(ii) For all j = 1, . . . , d, the flow χ
[j]
τ of the differential system

d

dτ
χ[j]
τ (u) = J−1∇uIj(χ[j]

τ (u))

is 2π-periodic.

We then denote, for θ ∈ Td

χθ = χ
[1]
θ1
◦ χ[2]

θ2
◦ . . . ◦ χ[d]

θd

where the composition is commutative by virtue of the first assumption (i). In accordance
with [11] again, we shall work under the following hypothesis:

Assumption 3. There exist R > 0 and an open set U containing KR such that:

(i) for all j = 1, . . . , d, Ij can be extended to an analytic map on U ;

(ii) for each θ ∈ Td, K ◦χθ can be extended to a map from U to C which is analytic at each
point in KR.

Furthermore, the Fourier coefficients Ĥk, k ∈ Zd, of K ◦ χθ satisfy the following bound

M :=
∑
k∈Zd

‖Ĥk‖R < +∞.

We can now decompose the Hamiltonian just as we did for the vector field in previous
section and write

Hε(u) =
1

εpεd

( d∑
j=1

pεjIj(u)
)

+K(u) +
d∑
j=1

1

ε

(
ωj −

pεj
pεd

)
Ij(u) =

1

µε
Iε(u) +Kε(u)

9



with

Iε :=

d∑
j=1

pεjIj , Kε := K +

d∑
j=1

1

ε

(
ωj −

pεj
pεd

)
Ij ,

and where pε is chosen so as to satisfy (2) with P ε = ε−
1

1+α . Noticing that

Kε ◦ χθ = K ◦ χθ +

d∑
j=1

1

ε

(
ωj −

pεj
pεd

)
Ij

owing to assumption (i), it is clear that the Fourier coefficients Ĥε
l of Kε

τ := Kε ◦ χτpε can
be written as follows

Ĥε
l =

∑
k·pε=l

Ĥk for l 6= 0 and Ĥε
0 =

∑
k·pε=0

Ĥk +
d∑
j=1

1

ε

(
ωj −

pεj
pεd

)
Ij

where k runs in Zd. Under Assumption 3, we thus have

∑
l∈Z
‖Ĥε

l ‖R ≤ Cαω
d−1∑
j=1

‖Ij‖R +M := M̃

where M̃ is independent of ε. We can thus state the following theorem:

Theorem 3.3. Consider ω ∈ [0, 1]d with ωd = 1, ωi < 1 for i = 1, . . . , d − 1 and 0 < α <
1/(d−1) such that (2) holds for some constant Cαω . Suppose that K◦χθ satisfies Assumption 3
and let M̃ denote the quantity M̃ := M+Cαω

∑d−1
j=1 ‖Ij‖R. Then for any (ε,N) ∈]−ε0, ε0[×N∗

such that 0 < ε
α

1+α (N +1) ≤ 1
L̃

:= R2

8eM̃
, the vector field F [ε,N ] of Theorem 3.2 is Hamiltonian

with Hamiltonian K̃ [ε,N ] and there exists a modified invariant Ĩ [ε,N ] such

Hε =
1

εpεd
Ĩ [ε,N ] + K̃ [ε,N ]

where the three terms are “almost in involution” in the sense that

1. For all u ∈ K,

|{Hε(u), Ĩ [ε,N ](u)}| ≤
(
R

8e

)2 (
L̃ ε

α
1+α (N + 1)

)(N+1)
. (14)

2. Assume that L̃ε
α

1+α ≤ 1/(2e) and choose N = N [ε] as the integer part of L̃−1ε−
α

1+α e−1−
1. Then for all u ∈ K,

|{Hε(u), Ĩ [ε,N [ε]](u)}| ≤ M̃

8L̃
exp

(
− 1

eL̃ε
α

1+α

)
. (15)
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3.3 An illustrative example

As illustration, we consider the version of Fermi-Pasta Ulam problem discussed in [12] and
used as a test problem in [10], which is of the form (12) considered in Section 3.2. It concerns
a 10-dimensional Hamiltonian system with Hamiltonian function

Hε(u) =
λ

ε
I1(u) +

1

ε
I2(u) +K(u)

where λ =
√

2 and with

I1(u) =
1

2

(
u2

4

λ
+ λ u2

9

)
,

I2(u) =
1

2
(u2

1 + u2
6) +

1

2
(u2

2 + u2
7) +

1

2
(u2

3 + 4u2
8),

K(u) =
1

2
(u2

5 + u2
10) +

1

560
u2

6u
2
10 +

1

4900

(√
70

20
+ u6 + u7 +

5

2
u8 + u9

)4

.

Note that λ appearing in I1 is considered later on as a fixed value: it will not be replaced in
I1 by its approximation p1/p2. As a result, the resulting Hamiltonian system is clearly also
of the form (1) as can be seen by writing

u̇ =
λ

ε
A1u+

1

ε
A2u+ J−1∇uK, A1 = J−1∇2

uI1, A2 = J−1∇2
uI2

where the maps t 7→ etA1 and t 7→ etA2 are 2π-periodic. According to previous section, we
then split Hε into two parts

Hε(u) =
1

µε

(
pε1I1(u) + pε2I2(u)

)
+
(
K(u) +

(λ− pε1/pε2)

ε
I1(u)

)
,

=
1

µε
Iε(u) +Kε(u),

with µε = εpε2. The change of coordinates u = χ tpε

µε
(v) leads to the new Hamiltonian system

v̇ =
(λ− pε1/pε2)

ε
J−1∇vI1(v) + J−1∇vK tpε

µε
(v) where Kθ = K ◦ χθ.

Since the solution of an elementary 2-dimensional Hamiltonian system with Hamiltonian
1
2(x

2

ν + νy2) is given by x(t) = cos(t) x0 − ν sin(t) y0 and y(t) = (sin(t)/ν) x0 + cos(t) y0, the
expression of K(θ1,θ2)(v) is obtained by replacing in K(v), the coordinates as follows

v6 7→ sin(θ1) v1 + cos(θ1) v6 v7 7→ sin(θ1) v2 + cos(θ1) v7

v8 7→ (sin(2θ1)/2) v3 + cos(2θ1) v8 v9 7→ (sin(θ2)/
√

2) v4 + cos(θ2) v9

leading to

Kθ(v) =
1

2
(v2

5 + v2
10) +

1

560
(sin(θ1) v1 + cos(θ1) v6)2v2

10 +
1

4900
×(√

70

20
+ sin(θ1) v1 + cos(θ1) v6 + sin(θ1) v2 + cos(θ1) v7 +

5

2
(sin(2θ1)/2 v3 + cos(2θ1) v8)

+(sin(θ2)/
√

2) v4 + cos(θ2) v9

)4
.

11



Now, let us note that, according to Proposition 4.1 of Section 4 below, estimate (2) holds

with α = 1. Given that ε = 1/70, we can approximate
√

2 by 17/12 =
pε1
pε2

as inferred from

the sequence of so-called convergents

1,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
, . . .

for
√

2. We have indeed 5 < P ε = 1/
√
ε ≈ 8.366 < 12. Regarding the error∣∣∣∣√2− 7

5

∣∣∣∣ ≈ 0.0142 < 0.0143 ≈ 1

70
= ε,

resulting from the rational approximation we picked up, it is clearly less than εC1√
2

(indeed,

C1√
2
≤ 5

2 , see below).

4 Some useful error estimates on diophantine approximation

4.1 The case d = 2: rational approximation of a single irrational

We start by showing that, for some irrationals ω, there exists p = (p1, p2) ∈ (N∗)2 with
p2 ≤ P , such that an estimate of the following form∣∣∣∣ω − p1

p2

∣∣∣∣ ≤ C1
ω

P 2
(16)

holds true for some positive constant C1
ω depending on ω but not on P . If we consider the

continued fraction representations [a0; a1, a2, . . . , an] of a real ω for n = 0, 1, . . ., two situations
occur:

1. if ω ∈ Q, then there exists a finite representation, i.e.

ω = [a0; a1, a2, . . . , aj ]

for some j ∈ N. Note that if j > 0 then for all 1 ≤ i ≤ j, ai ≥ 1. Conversely, it is clear
that any finite continued fraction is rational.

2. if ω ∈ R\Q, then ω is obtained as the limit

ω = lim
n→∞

[a0; a1, a2, . . . , an]

and for all i ≥ 1, ai ≥ 1. Conversely, any infinite sequence (an)n∈N with ai ≥ 1 for all
i ≥ 1, defines an element of R\Q.

The bound (16) holds true either if ω ∈ Q or if ω ∈ R\Q and (an)n∈N is bounded.

Proposition 4.1. If either ω ∈ Q+ or ω ∈ R+\Q+ and (an)n∈N is bounded, then there exists
a positive constant C1

ω such that

∀P ∈ N∗, ∃p ∈ N2, s.t. p2 ≤ P, p1 ∧ p2 = 1 and

∣∣∣∣ω − p1

p2

∣∣∣∣ ≤ C1
ω

P 2
.

12



Proof. If ω ∈ Q+ then the estimate is trivially satisfied for a sufficiently large constant C1
ω.

Otherwise, the continued fraction [a0; a1, a2, . . . , ] defines for all n ∈ N two sequences of
positive integers (hn)n∈N and (kn)n∈N such that

∀n ∈ N∗, [a0; a1, a2, . . . , an] =
hn
kn

with hn ∧ kn = 1. (17)

It is known that (hn)n∈N and (kn)n∈N satisfy the recurrence relations (see for instance [15])

hn = anhn−1 + hn−2, h−1 = 1, h−2 = 0,

kn = ankn−1 + kn−2, k−1 = 0, k−2 = 1,

and the error estimates

1

kn(kn + kn+1)
<

∣∣∣∣ω − hn
kn

∣∣∣∣ < 1

knkn+1
. (18)

Since ω ∈ R+\Q+, then (kn)n∈N is strictly increasing (owing to an ≥ 1) and for all P ∈ N∗,
there exists kn such that kn ≤ P < kn+1. For this value of P , we have on the one hand

1

knkn+1
≤ 1

P 2

kn+1

kn
,

and on the other hand

k1

k0
= a1 ≤ Cmax and

kn+1

kn
≤ an+1 +

1

an
≤ Cmax + 1/Cmin for n ≥ 1,

so that one can take C1
ω = Cmax + 1/Cmin where Cmax and Cmin ≥ 1 are upper and lower

bounds of (an)n∈N∗ . �

Since for irrational solutions of quadratic polynomials with rational coefficients, the se-
quence (an)n∈N∗ is periodic, it is in particular bounded and (16) holds. For instance, we
have C1√

2
≤ 2 + 1/2 = 5/2 and C1

1+
√

5
2

≤ 1 + 1 = 2. In contrast, e has a continued fraction

with coefficients a2+3n = 2n + 2, so that we cannot establish the existence of C1
e with this

technique. Moreover, the existence of C1
ω can not be assumed for all reals ω, as the following

proposition shows:

Proposition 4.2. For any 0 < α ≤ 1, there exist real numbers ω ∈ R+/Q+ such that

lim sup
P→+∞

P 1+α min
(p1, p2) ∈ (N∗)2

p2 ≤ P

∣∣∣∣ω − p1

p2

∣∣∣∣
 = +∞

Proof. Let (an)n∈N be a sequence of integers satisfying an ≥ 2 for all n ∈ N∗, define (hn)n∈N
and (kn)n∈N by the recurrence relations

hn = anhn−1 + hn−2, h−1 = 1, h−2 = 0,

kn = ankn−1 + kn−2, k−1 = 0, k−2 = 1,

13



and consider the corresponding irrational defined by the continued fraction

ω = lim
n→+∞

[a0; a1, a2, a3, . . . , an] = lim
n→+∞

hn
kn
.

Since (kn)n∈N is strictly increasing, for any P ∈ N∗, there exists n such that kn ≤ P < kn+1.
It is known that the best rational approximation of ω with a denominator less or equal to P
is either hn/kn or a rational of the form

hn−1 + ahn
kn−1 + akn

with a satisfying an+1 ≥ a ≥ ban+1/2c and kn−1 + akn ≤ P . If rn+1 = ban+1/2c ≥ 1 and
P = kn−1 + rn+1kn − 1 ≥ kn, then the best rational approximation p1/p2 with p2 ≤ P is hn

kn
.

For this value of P , we thus have

P 1+α

∣∣∣∣ω − hn
kn

∣∣∣∣ > P 1+α

kn(kn + kn+1)
=

(kn−1 + rn+1kn − 1)1+α

kn(kn + kn+1)

and

(kn−1 + rn+1kn − 1)1+α

kn(kn + kn+1)
=

(kn−1 + rn+1kn − 1)1+α

kn(kn−1 + (an+1 + 1)kn)
≥ caαn+1k

α−1
n

for some c > 0 and for sufficiently large n. Taking δ + 1 = b1/αc+ 1 > 1/α and an+1 = kδn,
this gives

aαn+1k
α−1
n = kα(δ+1)−1

n ,

a sequence that tends to infinity when n tends to infinity. This completes the proof. �

Now, since inequality (16) is not satisfied for all reals, the question arises whether it is
true for almost all reals. Again, the answer is negative and one can additionally assert that
for almost every real, (16) is not satisfied3. However, the following proposition holds true:

Proposition 4.3. Let 0 < α < 1 be given. For almost every real ω ∈ [0, 1], there exists a
positive constant Cαω , such that

∀P ∈ [0,+∞[, ∃p ∈ N2, p2 ≤ P, p1 ∧ p2 = 1 and

∣∣∣∣ω − p1

p2

∣∣∣∣ ≤ Cαω
P 1+α

. (19)

Proof. Consider (hn(ω)/kn(ω))n∈N the series of convergents associated with ω ∈ (R+\Q+) ∩
[0, 1], i.e. hn(ω)/kn(ω) = [0; a1(ω), . . . , an(ω)] with

ω = lim
n→∞

[0; a1(ω), . . . , an(ω)].

Given η = 1−α
α > 0, define the sets (Sn)n∈N∗ by

Sn = {ω ∈]0, 1[, kn+1(ω) > kn(ω)1+η}.
3Since this is not the main focus of this paper, we shall not further elaborate on this question.
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If ω belongs to Sn, then there exists p1 (= hn(ω)) such that 1 ≤ p1 ≤ kn(ω) and satisfying∣∣∣∣ω − p1

kn(ω)

∣∣∣∣ < 1

kn(ω)kn+1(ω)
<

1

kn(ω)2+η
,

so that

µ(Sn) ≤
∑

p2≥δrn

∑
1≤p1≤p2

2

p2+η
2

≤ 2
∑

p2≥δrn

1

p1+η
2

where µ is the Lebesgue measure on R. As a matter of fact, for ω ∈ Sn, the strict inequality
kn+1(ω) > kn(ω) implies that an+1(ω) ≥ 1, so that for all 1 ≤ j ≤ n, aj(ω) ≥ 1 and

kn(ω) ≥ δrn with δ = 1√
5

and r =
√

5+1
2 > 1. Now, since η > 0, we thus have∑
n≥1

µ(Sn) < +∞,

and owing to Borel-Cantelli’s theorem

µ(lim sup
n

Sn) = 0.

As a consequence, for almost every ω ∈ [0, 1], ω /∈ lim supn Sn, that is to say, for almost every
ω ∈]0, 1[, there is only a finite number of indices n ∈ N∗ such that ω ∈ Sn. In other terms,
for almost every ω ∈]0, 1[, there exists j(ω) ∈ N∗ such that

∀n ≥ j(ω), kn+1(ω) ≤ kn(ω)1+η. (20)

Eventually, given ω satisfying (20), and P ≥ kj(ω), consider n ≥ j(ω) such that kn(ω) ≤ P <
kn+1(ω). Then we have∣∣∣∣ω − hn(ω)

kn(ω)

∣∣∣∣ < 1

kn(ω)kn+1(ω)
≤ 1

P
1+ 1

1+η

=
1

P 1+α
.

�

4.2 Simultaneous approximation of a vector of irrationals

Whenever more than one frequency have to be approximated, the situation is getting more
involved. The so-called problem of simultaneous rational approximation is notoriously more
difficult in dimension d ≥ 3 for essentially one key-aspect, namely the absence of a continued
fraction algorithm and of its associated relations. However, the result obtained in previous
proposition can be generalized without too much difficulty if we content ourselves with a
non-constructive sequence of best approximations, defined as follows (in the sequel, we write
r = d− 1 > 1 and ω̃ = (ω1, . . . , ωd−1) for a better readability) :

Definition 4.4. Let ω̃ ∈ [0, 1]r. The strictly positive integer q is said to be a best approxi-
mation of ω̃ if and only if

∀0 < k < q, min
p∈Zr

‖q ω̃ − p‖∞ < min
p∈Zr

‖k ω̃ − p‖∞

where p = (p1, . . . , pr).
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The proof of Proposition 4.5 uses three results that we now quote separately in anticipa-
tion:

• The so-called fundamental inequality, obtained by several authors (see for instance
[17, 18] for a slightly more general version than the one exposed here), which generalizes
the error estimate (18) for kn, states that, for ω̃ /∈ Qr

+, there exists a strictly growing
sequence of integers (qn)n∈N (the sequence of best approximations) such that

min
p∈Zr

‖qnω̃ − p‖r∞ ≤
1

qn+1
.

• For any ω̃ /∈ Qr
+, there exists a constant λ > 1 such that

∀n ≥ 0, qn ≥ λn. (21)

This result is a consequence of the stronger estimate derived in [17]: For any ω̃ /∈ Qr
+,

lim
n→+∞

inf(qn)1/n ≥ 1 +
1

2r+1
.

• The Borel-Cantelli’s theorem which states that for any sequence of sets An ⊂ Rd such
that ∑

n≥0

µ(An) < +∞

one has µ(lim supn→+∞An) = 0 where µ denotes here the Lebesgue measure on Rd.

Proposition 4.5. Let 0 < α < 1/r be given. For almost every real ω̃ in ]0, 1]r, there exists
a positive constant Cαω̃ , such that

∀Q ∈ [1,+∞[, ∃q ≤ Q, ∃p ∈ Nr s.t. p1 ∧ . . . ∧ pr ∧ q = 1, max
i=1,...,r

∣∣∣∣ω̃i − pi
q

∣∣∣∣ ≤ Cαω̃
Q1+α

.

Proof. For ω̃ /∈ Qr
+, consider the sequence (qn(ω̃))n∈N of best approximations and define for

η = 1/r−α
1−1/r+α > 0, the sets (An)n∈N by

An = {ω̃ ∈ [0, 1]r, ω̃ /∈ Qr
+, qn+1(ω̃) > qn(ω̃)1+η}.

If ω̃ belongs to An, then there exists p = (p1, . . . , pr) ∈ Nr such that for all i = 1, . . . , r,
0 ≤ pi ≤ qn(ω̃)− 1 and satisfying

min
i=1,...,r

∣∣∣∣ω̃i − pi
qn(ω̃)

∣∣∣∣ ≤ 1

qn(ω̃)q
1/r
n+1(ω̃)

<
1

qn(ω̃)
r+1+η
r

.

Any such ω̃ belongs to a ball (w.r.t. to the ‖ · ‖∞-norm) B(p/q, ρ) with radius ρ ≤
1/qn(ω̃)

r+1+η
r and center p/q such that p = (p1, . . . , pr), 1 ≤ pi ≤ q (i = 1, . . . , r), and,

owing to (21), q ≥ λn. Hence, we have

µ(An) ≤
∑
q≥λn

∑
1≤p1≤q

. . .
∑

1≤pr≤q

(
2

q
r+1+η
r

)r
≤
∑
q≥λn

qr

(
2

q
r+1+η
r

)r
≤ 2r

∑
q≥λn

1

q1+η
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where µ is the Lebesgue measure on Rr. Now, since η > 0 and λ > 1, we have∑
n≥0

µ(An) < +∞,

and by Borel-Cantelli’s theorem
µ(lim sup

n
An) = 0.

As in Proposition 4.3, for almost every ω̃ ∈]0, 1]r, there exists j(ω̃) ∈ N such that

∀n ≥ j(ω̃), qn+1(ω̃) ≤ qn(ω̃)1+η. (22)

Eventually, given ω̃ satisfying (22), and Q ≥ qj(ω̃), consider n ≥ j(ω̃) such that qn(ω̃) ≤ Q <
qn+1(ω̃). Then we have

min
p∈Nr

∥∥∥∥ω̃ − p

qn(ω̃)

∥∥∥∥
∞
<

1

qn(ω̃)q
1/r
n+1(ω̃)

≤ 1

Q
1
r

+ 1
1+η

=
1

Q1+α
.

�

Taking into account the shift r = d−1 and the fact that ωd is assumed to be 1, this proposition
proves our estimate (2).

5 Numerical experiments

In this section, we present some numerical experiments that show the efficiency of our strategy.
We shall consider two different problems and two different methods. The problems are, on the
one hand, the Fermi-Pasta-Ulam described in [12] and exposed in Section 5.1, and on the other
hand, a multi-component Schrödinger equation. As for the methods, we shall use, on the one
hand, the multi-revolution composition method (MRCM), introduced in [6], and on the other
hand, the two-scale method (TSM) introduced in [5]. Both methods have been originally
designed for mono-frequency problems and, in order to handle the two aforementioned test-
cases, we apply the strategy exposed in this paper. Let us briefly present the main ideas
underlying the two techniques:

(i) MCRMs: the flow corresponding to the integration over one period of time of a
differential equation of the form u̇ε = ft/ε(u

ε) (with f periodic in t/ε) is a near-identity
map ϕε : Rm → Rm. Computing the exact solution over N periods thus amounts to
computing the N -th iterate ϕNε of ϕε. The idea of MRCMs consists in approximating
ϕNε by a composition of the form

ϕNε = ϕα1H ◦ ϕ∗β1H ◦ · · · ◦ ϕαsH ◦ ϕ
∗
βsH +O(εp+1), H = Nε,

where ϕ∗ε := (ϕ−ε)
−1 and where p is made as high as possible by choosing appropriate

coefficients α’s and β’s (and letting them depend on N). Whenever s � N , the
computational effort is considerably reduced. In fact, a careful analysis shows that for
ε small enough, the overall cost is independent of ε, whereas it typically grows like 1/ε
for standard integration methods. Here, we shall use the fourth-order (p = 4) MRCM
of [6], where ϕε itself is approximated by a Strang splitting method.
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(ii) TSMs: in two-scale methods for u̇ε = ft/ε(u
ε), the solution is sought as the diagonal

τ = t/ε of an approximation of U ε(t, τ) satisfying the transport equation

∂tU
ε(t, τ) +

1

ε
∂τU

ε(t, τ) = fτ (U ε(t, τ)).

The main idea is then that the initial condition U ε(0, τ) can be chosen in such a way
that all derivatives of U ε(t, τ) remain bounded w.r.t. to ε up to some arbitrary order
p, thus allowing for the construction of uniformly accurate methods of order p− 1.
In this section, we shall consider the uniformly second-order method obtained in [5].

Both techniques have been designed for mono-frequency highly-oscillatory problems, the first
one (MRCM) in the context of ordinary differential equations and the second one (TSM) orig-
inally for kinetic equations and later on for the Schrödinger equation. In the aforementioned
situations, they are capable of delivering numerical approximations with constant accuracy
and constant cost w.r.t. ε in the limit where ε tends to zero. MRCMs are in addition prov-
ably geometric, while TSMs are not, even though they often behave likewise. The situation
is reversed as far as uniform accuracy is concerned: MRCMs are strictly speaking not uni-
formly accurate, while TSMs are. It is thus enlightening to study whether MRCMs preserve,
as predicted in this paper, the energy of Hamiltonian systems, and similarly to test whether
TCMs behave correctly. The other part of our tests aims at assessing the extent to which
TCMs remain uniformly accurate. The Strang method with tiny step-sizes is used here to
obtain a very accurate reference solution in all experiments. In comparison, both MRCMs
and TSMs become competitive for ε ≤ 10−4 with the FPU problem and ε ≤ 10−3 with the
system of coupled Schrödinger equations.

5.1 A Fermi-Pasta-Ulam system with two frequencies

In this subsection, we consider the Hamiltonian system with a finite degrees of freedom
q ∈ R5, p ∈ R5, borrowed from [12] and used in [10]:

H(p, q) = λ1

(
p2

1

2
+
q2

1

2

)
+

5∑
j=2

(
p2
j

2ε
+
λ2
jq

2
j

2ε

)
+ U(q),

U(q) =
δ2

8
q2

1q
2
2 + δ4

(√
70

20
+ q2 + q3 +

5

2
q4 + q5

)4

,

with
λ1 = 1, λ2 = λ3 = 1, λ4 = 2, λ5 =

√
2

and

δ = 1/70, q(0) = (1, 0.3δ, 0.8δ, 0.7δ,−1.1δ), p(0) = (−0.2, 0.6δ, 0.7δ, 0.8δ,−0.9δ).

Energy exchanges

We observe the evolution over a long time of the quantities

I1 = λ1

(
p2

1

2
+
q2

1

2

)
, Ij =

p2
1

2
+
λ2
jq

2
1

2
, j = 2, . . . , 5,

computed with three methods:
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– the Strang splitting method (Figure 1) with the time-step ∆t = 2π
16 ε; such a step makes

the approximation accurate enough to regard the solution as ’exact’. This is indeed our
reference solution.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

time

Strang splitting method

 

 

I1

I2

I3

I4

I5

I2+I3+I4

Figure 1: (FPU, d = 1) Energy exchanges, Strang splitting method

– the MCRM [6] of order 4, with N = 60 and with the micro time-step ∆t = 2π
16 q for

the micro-integrator over one period [0, 2π], which represents a computational gain of
a factor 10 compared to the direct Strang splitting method (Figure 2);
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Multirevolution composition method
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I3

I4

I5

I2+I3+I4

Figure 2: (FPU, d = 1) Energy exchanges, multirevolution composition method

– the TSM [5] of second-order, implemented with the implicit mid-point scheme (Figure
3), with the time-step ∆t = 2π

16 and 32 discretization points in the variable τ .

We take ε = 10−3 and, for the two latter methods, p = 41 and q = 29. It is apparent from
Figure 2 and Figure 3 that the energy exchanges are well reproduced by both the MRCM
and the TSM. In next section, we now investigate the accuracy of both methods.
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Figure 3: (FPU, d = 1) Energy exchanges, two-scale method

Accuracy of the MRCM

On Figure 4, we plot the error for the MRCMs of order 1, 2 and 4 of [6], as a function of the
macrostep H = qεN for two values of ε (ε = 4 × 10−5 and ε = 10−5). For varying ε, note
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Figure 4: (FPU, d = 1) Error versus macrostep for ε = 4× 10−5 (left) and ε = 10−5 (right)

that qε ≈
√
ε and that by choosing N ≈ 1/

√
ε the error remains essentially constant while

the computational cost grows like 1/
√
ε. This, of course, compares favorably with the 1/ε

increase observed for standard methods such as Strang.

Uniform accuracy of the two-scale method

The goal is here to observe the uniform second order accuracy of the TSM. The final time is
taken equal to 2π and the number of discretization points for the τ -variable is max(64, 16p).
The values of p and q in the approximation p

q of λ5 =
√

2, as well as the value of the remainder
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Err := 1
ε |
√

2− p
q |, are given in the following table: they are obtained by a continued fraction

algorithm.

ε 0.64 0.32 0.16 0.08 0.04 0.02 0.01 0.005 0.0025 0.00125 0.000625
p 1 1 3 3 7 7 7 17 17 17 41
q 1 1 2 2 5 5 5 12 12 12 29
Err 0.64 1.29 0.54 1.07 0.36 0.71 1.42 0.49 0.98 1.96 0.67

ε 3.12 ∗ 10−4 1.56 ∗ 10−4 7.81 ∗ 10−5 3.91 ∗ 10−5 1.95 ∗ 10−5 9.77 ∗ 10−6

p 41 99 99 99 239 239
q 29 70 70 70 169 169
Err 1.34 0.46 0.92 1.85 0.63 1.27

On the left picture of Figure 5, we plot the error as a function of the time-step ∆t, for
different values of ε and on right picture of Figure 5, the error as a function of ε, for different
values of the time-step ∆t. This is in perfect agreement with the predicted uniform accuracy
of the method. Note that the small peaks correspond to the highest values of the remainder
1
ε |
√

2− p
q |.
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Figure 5: (FPU, d = 1) Left: Error as a function of ∆t for ε = 2N × 10−2, with
N ∈ {6, . . . , 1, 0,−1, . . . ,−10}. Right: Error as a function of ε for ∆t = 2π/2N with
N ∈ {6, . . . , 16}

5.2 A Fermi-Pasta-Ulam system with three frequencies

In this subsection, we consider the same FPU system as in the above Subsection 5.1, but
with the frequencies

λ1 = 1, λ2 = λ3 = 1, λ4 =
π

2
, λ5 =

√
2.

Energy exchanges

We observe the evolution over a long time of the quantities

I1 = λ1

(
p2

1

2
+
q2

1

2

)
, Ij =

p2
1

2
+
λ2
jq

2
1

2
, j = 2, . . . , 5,
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computed with again the three methods:

– the Strang splitting method (Figure 6) with the time-step ∆t = 2π
16 ε;

– the MCRM [6] of order 4, with N = 60 and with the micro time-step ∆t = 2π
16q for

the micro-integrator over one period [0, 2π], which represents again a computational
speed-up of 10 compared to the direct Strang splitting method (Figure 7);

– the TSM [5], implemented with the implicit second-order mid-point scheme (Figure 8),
with time-step ∆t = 2π

16 and 64 discretization points in the variable τ . We observe a
computational speed-up of 2.5 compared to the Strang splitting method.

For these simulations, we have taken ε = 10−3 , and the rational approximations λ4 = π
2 ≈

110
70

and λ5 =
√

2 ≈ 99
70 , which give

1

ε

∣∣∣∣λ4 −
p4

q

∣∣∣∣ ≈ 0.63,
1

ε

∣∣∣∣λ5 −
p5

q

∣∣∣∣ ≈ 0.07.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.005

0.01

0.015

0.02

0.025

time

Strang splitting method

 

 

I1
I2
I3
I4
I5
I2+I3

Figure 6: (FPU, d = 2) Energy exchanges, Strang splitting method
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Figure 7: (FPU, d = 2) Energy exchanges, multirevolution composition method
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Figure 8: (FPU, d = 2) Energy exchanges, two-scale method

Uniform accuracy of the two-scale method

Again, we wish here to observe the uniform accuracy of the two-scale method. The final time
is 2π, the number of discretization points for the τ variable is max(64, 16q). The values of p4

p5 and q in the approximations p4
q and p5

q of λ4 = π
2 and λ5 =

√
2, as well as the remainder

1
ε |λ4− p4

q |+
1
ε |λ5− p5

q | are given in the following table. These values are those which minimize

this remainder under the constraint εq3/2 ≤ 1.

ε 0.64 0.32 0.16 0.08 0.04 0.02 0.01 5× 10−3 2.5× 10−3 1.25× 10−3

p4 2 3 3 8 11 11 11 53 80 110

p5 1 3 3 7 10 10 10 48 72 99

q 1 2 2 5 7 7 7 34 51 70

remainder 1.32 0.49 0.98 0.54 0.37 0.75 1.5 2.88 1.85 0.56
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ε 6.25× 10−4 3.12× 10−4 1.56× 10−4 7.81× 10−5 3.91× 10−5

p4 201 311 421 732 732

p5 181 280 379 659 659

q 128 198 268 466 466

remainder 1.02 0.52 0.86 0.89 1.78

On the left of Figure 9, we plot the error as a function of the time-step ∆t, for different
values of ε and on the right of Figure 9, the error as a function of ε, for different values of
the time-step ∆t.
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Figure 9: (FPU, d = 1) Left: error as a function of ∆t for ε = 2N × 10−2, with
N ∈ {6, . . . , 1, 0,−1, . . . ,−10}. Right: error as a function of ε for ∆t = 2π/2N with
N ∈ {6, . . . , 16}

5.3 Three coupled nonlinear Schrödinger equations

In this section, we consider a multi-component non-linear Schrödinger system posed in infi-
nite dimension, which models multi-component Bose-Einstein condensates. Roughly speak-
ing, harmonic oscillators are here replaced by Laplacian operators with periodic boundary
conditions. The interested reader may find more details on the physical aspects of the model
under consideration in references [2] and [13]. The important point therein is that differ-
ent components may have different “trapping” potentials and thus oscillate with different
frequencies. In this section, we shall use as test problem the following coupled system of
three non-linear Schrödinger equations, where the components u1, u2 and u3 are discretized
in x by trigonometric polynomials (accordingly Fast Fourier Transform (FFT) is used in our
numerical experiments):

i∂tu1(t, x) = −ω1

ε
∆u1(t, x) +

(
α11(x)|u1(t, x)|2 + α12(x)|u2(t, x)|2 + α13(x)|u3(t, x)|2

)
u1(t, x)

i∂tu2(t, x) = −ω2

ε
∆u2(t, x) +

(
α12(x)|u1(t, x)|2 + α22(x)|u2(t, x)|2 + α23(x)|u3(t, x)|2

)
u2(t, x)

i∂tu3(t, x) = −ω3

ε
∆u3(t, x) +

(
α13(x)|u1(t, x)|2 + α23(x)|u2(t, x)|2 + α33(x)|u3(t, x)|2

)
u3(t, x)
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on the interval [0, 2π], with periodic boundary conditions and the following set of coefficients:

ω1 = ω2 = 1, ω3 =
√

2, α11(x) = 2 cos(2x), α12 = α13 = α22 = α23 ≡ 1,

and with initial data

u1(0, x) =
1

2
+

4

10
e−ix, u2(0, x) =

1

4
+

4

10
eix, u3(0, x) =

1

4
+

6

10
eix.

Energy exchanges

We observe on Figures 10 and 11 the evolution of the total energy and of

Ij = ωj

∫ 2π

0
|∇uj |2dx,

computed by three methods, for ε = 10−4:

– the Strang splitting method with the time-step ∆t = 2π
32 ε;

– the MCRM [6] of order 4, with N = 60 and with the micro time-step ∆t = 2π
32q for the

micro-integrator over one period [0, 2π/q], which represents a computational gain of a
factor 10 compared to the direct Strang splitting method;

– the TSM [5], with micro time step T/128 and 2048 discretization points in τ . We
observe a computational gain of a factor 5 compared to the Strang splitting method.

For the three methods, we take 32 discretization points for the x variable.
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Figure 10: Energy exchanges for ε = 0.0001, computed with the Strang splitting method
(plain lines) and the MRCM (circles) with N = 60

Uniform accuracy the two-scale method

Finally, we check here the uniform accuracy of the two-scale method. The final time is 0.2,
the number of discretization points is 32 in x and 4096 in τ . The values of p and q in the
approximation p

q of
√

2 are the same as given in table of Subsection 5.1.
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Figure 11: Energy exchanges for ε = 0.0001, computed with the two-scale method
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Figure 12: Left: L2 error versus ∆t for ε = 2N × 10−2, with N ∈ {6, . . . , 1, 0,−1, . . . ,−6}.
Right: L2 error versus ε for ∆t = 2π/2N with N ∈ {9, . . . , 16}

Appendix

In order to keep the paper as self-contained as possible, we recall in this section the main
results of [8, 11] as used in the proof of the averaging results of Section 3. For the sake of
simplicity, we assume here that the norm on Cn is the Euclidean norm in accordance with
[11] and with Section 3.1.

Averaging of periodically forced problems

Consider a periodic highly-oscillatory differential equation of the form

v̇[ε,µ](t) = f εt/µ

(
v[ε,µ](t)

)
, v[ε,µ](0) = v0 ∈ Rn, t ∈ [0, T ], (23)

where the function (τ, v) 7→ f ετ (v) is assumed to be 2π-periodic in τ and where ε is a small
parameter with values in the interval J :=] − ε0, ε0[. We emphasize right away that no
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regularity of the function f ε in terms of ε is required, though all later boundedness
assumptions need to be uniform with respect to ε. The main assumption of the
averaging result derived in [8] requires the definition of the following Cn-extension of the
domain K ⊂ Rn in which we wish to study the differential equation4(23): for all ρ ≥ 0,

Kρ = {v + w ∈ Cn; v ∈ K̄, ‖w‖ ≤ ρ}.

Assumption 4. There exist R > 0 and an open set U containing KR, such that for any
ε ∈ J and any τ ∈ T, f ετ (·) can be extended to a map from U to Cn that is analytic on KR.
In addition, the Fourier coefficients f̂ εk , k ∈ Z, of f ε, satisfy the uniform (in ε) bound

∀ε ∈ J ,
∑
k∈Z
‖f̂ εk‖R ≤M

for some M < +∞ independent of ε.

As already noticed in [8], this assumption does not imply that f is differentiable with
respect to τ , only that f ε is jointly continuous in T×KR (and again not necessarily continuous
w.r.t. ε), and that

∀ε ∈ J , ∀τ ∈ T, ‖f ετ ‖R ≤M.

We are now in position to formulate Theorem 3.4 of [8].

Theorem 5.1. Suppose that f ε satisfies Assumption 4. Then for any ε ∈ J and for any
(µ,N) ∈ C × N∗ such that |µ|N ≤ c := R

8M , there exists a near-identity change of variables

v = Φ
[ε,µ,N ]
t/µ (V ) with Φ[ε,µ,N ] : T×KR/2 → KR transforming equation (23) into the equation

V̇ = F [ε,µ,N ](V ) +R
[ε,µ,N ]
t/µ (V ), V (0) = v0,

with averaged vector field F [ε,µ,N ] : KR/2 → Cn and remainder R[ε,µ,N ] : T × KR/2 → Cn
satisfying the following bounds

‖F [ε,µ,N ] − f̂ ε0‖R/2 ≤
M

2
|µ| and ∀τ ∈ T, ‖R[ε,µ,N ]

τ ‖R/2 ≤
5
(
|µ|N
c

)N
1− |µ|Nc

M.

Besides, if |µ| ≤ c/e and N = N [µ] is chosen as the integer part of c/(e|µ|) ≥ 1, then

∀τ ∈ T, ‖R[ε,µ,N [µ]]
τ ‖R/2 ≤

5e2

e− 1
M exp

(
− c

e|µ|

)
.

Conserved quantities in autonomous Hamiltonian problems

We consider here the more specific situation of an autonomous Hamiltonian problem

u̇[ε,µ] = J−1∇uH[ε,µ](u[ε,µ]), uε(0) = u0 ∈ X, (24)

4The domain K is usually defined as an open subset of Rn containing all solutions of (23) for all values of
t ∈ [0, T ], all sufficiently small values of µ and all values of ε.
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where n = 2m is now assumed to be even, J is the matrix

J =

(
0 Id
−Id 0

)
, Id ∈M(Rm),

and

H[ε,µ](u) =
1

µ
Iε(u) +Kε(u)

where the flow χ
[ε]
t of the Hamiltonian system

u̇ = J−1∇uIε(u)

is assumed to be 2π-periodic, independently of ε. Problem (24) can be reformulated by
performing the change of variables u = χεt/µ(v) so that v satisfies the differential equation

v̇[ε,µ] = f εt/µ(v[ε,µ]) = J−1∇vKε
t/µ(v[ε,µ])

where Kε
τ = Kε ◦ χετ for all τ ∈ T and all ε ∈ J .

Assumption 5. There exist R > 0 and an open set U containing KR, such that for any
ε ∈ J and any τ ∈ T, Kε

τ (·) can be extended to a map from U to Cn that is analytic on KR.
In addition, the Fourier coefficients Ĥε

k, k ∈ Z, of Kε
τ , satisfy the following uniform (in ε)

bound
∀ε ∈ J ,

∑
k∈Z
‖Ĥε

k‖R ≤M

for some M < +∞ independent of ε.

Theorem 5.2. Suppose that Kε satisfies Assumption 5. Then for any ε ∈ J and for any
(µ,N) ∈ C×N∗ such that |µ|(N + 1) ≤ 1

L := R2

8eM , the vector field F [ε,µ,N ] of Theorem 5.1 is

Hamiltonian with Hamiltonian K̃ [ε,µ,N ] and there exists a modified invariant Ĩ [ε,µ,N ] such

H[ε,µ] =
1

µ
Ĩ [ε,µ,N ] + K̃ [ε,µ,N ]

where the three terms are “almost in involution” in the sense that

1. For all ε ∈ J and all u ∈ K,

|{H[ε,µ](u), Ĩ [ε,µ,N ](u)}| ≤
(
R

8e

)2 (
L|µ|(N + 1)

)(N+1)
. (25)

2. Assume that L|µ| ≤ 1/(2e) and choose N = N [µ] as the integer part of L−1|µ|−1e−1−1.
Then for all ε ∈ J and all u ∈ K,

|{H[ε,µ](u), Ĩ [ε,µ,N [µ])(u)}| ≤ M

8L
exp

(
− 1

eL|µ|

)
. (26)
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[16] B. Grébert and C. Villegas-Blas, On the energy exchange between resonant modes in
nonlinear Schrödinger equations, Ann. I. H. Poincaré, Vol. 28, 2011.
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