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Energy evaluation using fast Fourier transforms (FFTs) enables
sampling billions of putative complex structures and hence revolu-
tionized rigid protein–protein docking. However, in current methods,
efficient acceleration is achieved only in either the translational or
the rotational subspace. Developing an efficient and accurate dock-
ing method that expands FFT-based sampling to five rotational co-
ordinates is an extensively studied but still unsolved problem. The
algorithm presented here retains the accuracy of earlier methods
but yields at least 10-fold speedup. The improvement is due to
two innovations. First, the search space is treated as the product
manifold SO(3)× (SO(3)∖S1), where SO(3) is the rotation group
representing the space of the rotating ligand, and (SO(3)∖S1) is
the space spanned by the two Euler angles that define the ori-
entation of the vector from the center of the fixed receptor to-
ward the center of the ligand. This representation enables the
use of efficient FFT methods developed for SO(3). Second, we
select the centers of highly populated clusters of docked struc-
tures, rather than the lowest energy conformations, as predic-
tions of the complex, and hence there is no need for very high
accuracy in energy evaluation. Therefore, it is sufficient to use a
limited number of spherical basis functions in the Fourier space,
which increases the efficiency of sampling while retaining the
accuracy of docking results. A major advantage of the method
is that, in contrast to classical approaches, increasing the number
of correlation function terms is computationally inexpensive,
which enables using complex energy functions for scoring.

protein docking | manifold | FFT

Determining putative protein–protein interactions using
genome-wide proteomics studies is a major step toward

elucidating the molecular basis of cellular functions. Under-
standing the atomic details of these interactions, however, re-
quires further biochemical and structural information. Although
the most complete structural characterization is provided by
X-ray crystallography, solving the structures of protein–protein
complexes is frequently very difficult. Thus, it is desirable to
develop computational docking methods that, starting from the
coordinates of two unbound component molecules defined as
receptor and ligand, respectively, are capable of providing a
model of acceptable accuracy for the bound receptor–ligand
complex (1–4). In view of the large number of putative protein–
protein interactions, the computational efficiency of docking is
also a concern.
Most global docking methods start with rigid body search that

assumes only moderate conformational change upon the asso-
ciation, accounted for by using a smooth scoring function that
allows for some level of steric overlaps (3). Rigid docking was
revolutionized by the fast Fourier transform (FFT) correlation
approach, introduced in 1992 by Katchalski-Katzir et al. (5).
The major requirement of the method is to express the in-
teraction energy in each receptor–ligand orientation as a sum of
P correlation functions, i.e., in the form

Eðα, β, γ, λ, μ, νÞ=
XP
p=1

Z
Rpðx, y, zÞT̂ðλ, μ, νÞD̂ðα, β, γÞLpðx, y, zÞdV ,

[1]

where Rp and Lp are defined on the receptor and ligand, respec-
tively, T̂ and D̂ denote translational and rotational operators, and
α, β, γ and λ, μ, ν are the rotational and translational coordinates.
To illustrate how such functions can be used for docking, con-
sider the very simple case with P= 1, Rp =−1 on a surface layer
and Rp = 1 on the core of the receptor, Lp = 1 on the entire
ligand, and Rp =Lp = 0 everywhere else. It is clear that this scor-
ing function, which is essentially the one used by Katchalski-
Katzir et al. (5), reaches its minimum on a conformation in which
the ligand maximally overlaps with the surface layer of the re-
ceptor, thus providing optimal shape complementarity. In later
FFT-based methods, the scoring function has been expanded to
include electrostatic and solvation terms (6, 7) and, more re-
cently, structure-based interaction potentials (8, 9), substantially
improving the accuracy of docked structures. As mentioned, in
all scoring functions, the shape complementarity term allows for
some overlaps, thereby accounting for the differences between
bound and unbound (separately crystallized) structures.
Most FFT-based methods (6–8, 10–12) define Rp and Lp on

grids, and use a 3D Cartesian FFT approach to accelerate the
sampling of the translational space. The method is based on the
idea that the energy function, given by Eq. 1, can be expressed in
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terms of the Fourier transforms rp of Rp and lp of Lp. Because the
translational operator applied to lp in the Fourier space is given by

Tðλ, μ, νÞlpðn,m, lÞ= e−2πi=Nðnλ+lμ+mνÞlpðx, y, zÞ, [2]

where i=
ffiffiffiffiffiffi
−1

p
, accounting for the orthonormality of Fourier

basis functions and interchanging the order of integration and
summation yield

Eðα, β, γ, λ, μ, νÞ=
XP
p=1

X
nlm

rpðn, l,mÞlpðα, β, γ, n, l,mÞe−2πi
N ðnλ+lμ+mνÞ,

[3]

which is the expression for the inverse Fourier transform of the
product of the Fourier images rpðn,m, lÞ and lpðα, β, γ, n, l,mÞ as
stated by the convolution theorem. Thus, for a given rotation,
E can be calculated over the entire translational space using
P forward and one inverse FFT. If N denotes the size of the
grid in each direction, then the efficiency of this approach is
OðN3logN3Þ compared with OðN6Þ when energy evaluations are
performed directly. Owing to the high numerical efficiency of the
FFT-based algorithm, it became computationally feasible, for the
first time, to systematically explore the conformational space of
protein–protein complexes evaluating the energies for billions of
conformations, and thus to dock proteins without any a priori
information on the expected structure of their complex.
Despite the usefulness of the above algorithm, using FFTs only

in translational space has three major limitations. First, FFTs on a
new grid must be computed for each rotational increment of the
rotating molecule; thus acceleration applies only to half of the
degrees of freedom (Fig. 1). Second, each term in the scoring
function requires a separate FFT calculation. Thus, accounting for
electrostatics, desolvation, and, particularly, pairwise interactions
substantially increases the required computational efforts. Third,
experimental techniques such as NMR Nuclear Overhauser effect
measurements and chemical cross-linking yield information on
approximate distances between interacting residues across the in-
terface, and this information can be used to perform the docking
subject to pairwise distance restraints. Unfortunately, each pairwise

distance restraint requires a new correlation function term.
Because the required computational effort is proportional to P,
the number of correlation functions in the energy expression,
the increasing complexity reduces the numerical advantage of the
FFT approach.
In principle, the above problems can be avoided by applying

the transforms first, and then moving the proteins in the Fourier
space without the need for recomputing the transforms. How-
ever, it is difficult to carry out rotations in the translational Fourier
space, and, thus, to perform rotations efficiently, it is natural to use
spherical coordinates. This approach was applied to crystallography
in the early 1970s by Tony Crowther, who realized that the rotation
function can be computed more quickly using the FFT, expressing
the Patterson maps as spherical harmonics (13). A few groups also
used this idea for the development of docking algorithms (14, 15).
Most notable is the Hex method of Ritchie and Kemp (14), which
represents protein shapes using Fourier series expansions of
spherical harmonic and Gauss–Laguerre polynomials. This repre-
sentation allows rotational searches to be accelerated by angular
FFTs, and it enables translations to be calculated analytically in the
Fourier basis (15). A similar approach has been developed by
Chacon’s group (16, 17), in which translations are calculated nu-
merically. However, both approaches were found to have lower
accuracy than traditional Cartesian FFT sampling (15). This may
be attributed to three main factors. Firstly, the energy functions
used were less detailed than in some of the Cartesian approaches.
In particular, we used only van der Waals and electrostatic terms
(15). Secondly, because the computational cost of the polar Fourier
translation matrices grows as OðN5Þ, the polar Fourier represen-
tation is limited to using relatively low order expansions, which
limits the achievable accuracy. Finally, the manifold structure of
the 5D rotational space was not fully considered, and this resulted
in a memory-intensive algorithm that mapped less efficiently onto
modern multiprocessor computer architectures than simple 1D
FFTs (18). Although we showed previously that the polar repre-
sentation allows an elegant 5D factorization of multiterm poten-
tials (15), previous efforts to exploit this property have, until now,
had limited success.
In this paper, we describe a fast manifold Fourier transform

(FMFT) algorithm that eliminates the above shortcomings and, on

Fig. 1. Schematic representation of FFT-based docking methods. In Cartesian FFT sampling (upper path), the ligand protein is translated along three Car-
tesian coordinates in Fourier space using the translational operator T. The translation must be repeated for each rotation of the ligand. In 5D FMFT docking
(lower path), the direction of the vector from the center of the receptor to the center of the ligand is defined by two Euler angles, and the ligand is rotated
around its center, resulting in the search space ðSOð3Þ∖SÞ× SOð3Þ. All rotations are performed in generalized Fourier space, where D denotes the rotational
operator. The only traditional search is the 1D translation along the vector between the centers of the two proteins.
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the average, results in a 10-fold decrease in computing time while
retaining the accuracy of the traditional Cartesian FFT-based
docking. As will be further emphasized, even more important is
that, using FMFT, the computational efforts required are essen-
tially independent of the number of correlation function terms
in the scoring function, thus enabling the efficient use of more
accurate but also more complex energy expressions, as well as
accounting for any number of pairwise distance restraints. De-
veloping the method, we took advantage of the generalization of
the Cartesian FFT approach to the rotational group manifold
SOð3Þ by Kostelec and Rockmore (19). The basis for using this
algorithm was recognizing that the 5D rotational search space can
be regarded as the product manifold SOð3Þ× ðSOð3Þ∖S1Þ, where
the rotation group SOð3Þ represents the space of the rotating li-
gand and ðSOð3Þ∖S1Þ is the space spanned by the two Euler angles
that define the orientation of the vector from the center of the
fixed receptor to the center of the ligand (Fig. 1 and Fig. S1). This
is important, because the algorithm by Kostelec and Rockmore
(19) can be easily extended to the SOð3Þ× ðSOð3Þ∖S1Þ manifold.
As already mentioned, a general shortcoming of using Fourier

decomposition in spherical spaces is the relatively slow conver-
gence of the series of spherical basis functions. Thus, using a
large number of terms reduces computational efficiency, whereas
truncating the series limits the accuracy of the energy values
calculated by the method. Therefore, a key factor explaining the
success of our manifold FFT docking method is that we select
the centers of highly populated clusters of low-energy docked
structures rather than simply low-energy conformations as pre-
dictions of the complex. Such clusters occur in low-energy regions
around the local minima in the conformational space. The size of
each cluster represents the width of the corresponding energy well,
and hence provides some information on entropic contributions
to the free energy. Model selection based on cluster size has been
used in our very successful docking server ClusPro and, in a sub-
stantial fraction of docking problems, enabled the identification
of the docked structure closest to the native complex (20). We
note that a similar clustering step is implemented in the protein
structure prediction program Rosetta (21). For a somewhat more
formal justification of the cluster-based approach to model se-
lection, we argue that, using FFT, we globally and systematically
sample the energy landscape of the interacting protein pair on a
grid, and hence we can calculate an approximate partition func-
tion of the form Z=

P
jexpð−Ej=RTÞ, where Ej is the energy of the

jth pose, and we sum over all poses. For the kth low-energy cluster,
the partition function is given by Zk =

P
jexpð−Ej=RTÞ, where the

sum is restricted to poses within the cluster. Based on these values,
the probability of the kth cluster is given by Pk =Zk=Z. However,
because the low-energy structures are selected from a relatively
narrow energy range, and the energy values are calculated with
considerable error, it is reasonable to assume that these energies do
not differ from each other, i.e., Ej =E for all j in the low-energy
clusters. This simplification implies that Pk = expð−E=RTÞ× ðNk=ZÞ,
and thus the probability Pk is proportional to Nk, where Nk is the
number of structures in the kth cluster. Therefore, we select the
centers of highly populated clusters of docked structures, rather
than low-energy conformations, as predictions of the complex.
Although neglecting the energy differences within the low-en-
ergy clusters seems to be arbitrary, the success of the ClusPro
server demonstrates that the approximation is valid in a large
fraction of cases. The significance of model selection based on
cluster size rather than energy values is that it does not require
very accurate energy evaluation, and hence, in FMFT, it is suf-
ficient to use a limited number of spherical basis functions in the
Fourier space, increasing numerical efficiency without notice-
able loss of docking accuracy.
The high efficiency of the FMFT algorithm enables solving

very demanding docking problems, way beyond what was con-
sidered feasible in the past. After demonstrating that the accuracy

of FMFT is comparable to that of the traditional Cartesian FFT-
based docking, we present here a few applications that require a
large number of docking calculations. Such problems include
docking ensembles of models obtained by NMR or homology
modeling, and exploring a large number of putative peptide con-
formations in peptide–protein docking. As will be described, an
additional and very favorable property of the FMFT algorithm is
that the required computational efforts are almost completely
independent of the number P of the correlation function terms in
the energy expression given by Eq. 1, and hence the method can
be efficiently used with scoring functions of arbitrary complexity.
In contrast, in the traditional FFT approach, the efforts are pro-
portional to P, and hence it is difficult to perform docking subject
to pairwise distance restraints, as each restraint gives rise to an
additional term in the scoring function. Using FMFT, we dem-
onstrate that this problem can be solved effectively without sig-
nificant increase in running times (Fig. S2).

Results and Discussion
FFT-Based Docking on 5D Rotational Manifolds.Here we demonstrate
that, by taking advantage of the special geometry of the space
characterizing molecular movement upon protein–protein associ-
ation, it is possible to construct an extremely efficient FFT-based
docking algorithm. We present the basic idea of this algorithm
as the generalization of the translational FFT method described
in the Introduction. Because we plan to work in the rotational
space, we change the Cartesian coordinates to polar coordinates
ðx, y, zÞ→ ðr, θ,ϕÞ, and consider the generalization of the Fourier
transform on the sphere

Rðr, θ,ϕÞ=
XN
nlm

rðn, l,mÞRnlðrÞdlmðcosθÞe−imϕ [4]

where RnlðrÞ are radial basis functions, rðn, l,mÞ are generalized
Fourier coefficients, dlmðcosθÞ are Legendre polynomials (22),
and N is the order of expansion used. Eq. 4 looks like a Fourier
transform, but e−imϕ is replaced by dlmðcosθÞe−imϕ, which shows
the non-Cartesian properties of the sphere (23).
Consider again the derivation of the convolution theorem (Eq.

1) but, this time, on the manifold ðSOð3Þ∖SÞ× SOð3Þ shown in the
lower path of Fig. 1. The translation of the ligand can be rep-
resented as the rotation of the receptor, followed by the trans-
lation of the ligand along the z axis,

Eðz, β, γ, α′, β′, γ′Þ=
XP
p=1

Z
T̂ð−zÞD̂ð0, β, γÞRpðρ, θ,ϕÞ

× D̂ðα′, β′, γ′ÞLpðρ, θ,ϕÞdV . [5]

Rotations of the receptor can be expressed as follows:

Dðα, β, γÞRðr, θ,ϕÞ=
X
nlm

RnlðrÞYlmðθ,ϕÞ
X
m1

Dl
mm1

ðα, β, γÞrðn, l,m1Þ,

[6]

where Ylmðθ,ϕÞ denotes spherical harmonics, and

Dl
mm′ðα, β, γÞ= e−imαdlmm′ðβÞe−im′γ [7]

are Wigner rotation matrices with dlmm1ðβÞ denoting Wigner
d functions, related to Jacobi polynomials (19). Eqs. 6 and 7 show
that the rotational operator in the rotational group SOð3Þ acts on
generalized Fourier coefficients the same way as the translation
operator acts on Fourier coefficients in the Cartesian space (Eq.
2), apart from the asymmetry of the middle angle β, which requires
special treatment. Describing the translation of the ligand along
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the z axis in the Fourier space is far from simple, and requires
updating a set of coefficients. However, it is only 1 degree of
freedom (as opposed to 3 degrees in the Cartesian space), and
hence it can be accomplished relatively efficiently (24). Now we
apply the translation operator and the rotation operator (Eq. 7) to
the integral in Eq. 5. Based on the orthonormality of the gener-
alized Fourier basis functions, interchanging the order of integra-
tion and summation yields

Eðz, β,−γ, α′, β′, γ′Þ

=
X

mm1m2
ll1

 X
nn1

X
p

  rpðn1, l1,m1Þlpðn, l,m2ÞT jmj
nln1 l1

ðzÞ
!

× dl1mm1
ðβÞdlmm2

ðβ′Þe−iðmα′+m1γ+m2γ′Þ.

[8]

Note that Eq. 8 is similar to Eq. 3 in Cartesian coordinates, with
the difference that, instead of a 3D inverse Fourier transform, we
have a generalized FMFT, which involves the Wigner d functions
dlmm1ðβÞ. However, the really important difference is in the order
of the transforms and the summation of correlation functions. In
Eq. 3, for each rotation of the ligand, we have to calculate the
Fourier transforms lpðα, β, γ, n, l,mÞ for each of the P components
of the ligand energy function separately, form the product with
the transform rpðn,m, lÞ of the pth component of the receptor
energy function, sum all terms, and take the inverse transform. In
contrast, according to Eq. 8, we calculate the sum of initial pre-
calculated generalized Fourier coefficients in the internal loop
only once, and perform all rotations in Fourier space rather than
calculating an FFT for each rotation. This allows us to calculate
multiple energy terms using a single FMFT for each translation.
Thus, as already emphasized, the computational efforts are es-
sentially independent of the number P of the correlation func-
tion terms in the energy expression. Because inverse manifold
Fourier transforms can be efficiently calculated by methods due
to ref. 19, this approach provides substantial computational ad-
vantage, particularly if P is high.

Execution Times. Execution times of the FMFT sampling algorithm
were measured by docking unbound structures of component pro-
teins in 51 enzyme–inhibitor pairs from the established Protein
Docking Benchmark (25) (Table S1). The times were compared with
those required for docking the same proteins using PIPER, a protein
docking program based on the Cartesian FFT approach (8). The
FFTW (Fastest Fourier Transform in the West) library (26) was
used for FFT calculations. All runs were performed using the stan-
dard PIPER scoring function, consisting of eight correlation function
terms. Execution times were measured on one or several Intel Xeon
E5-2680 processors. Using the FMFT algorithm, the average exe-
cution time was 15.39 min. In comparison, the average execution
time for the same set of proteins using PIPER was 232.15 min, in-
dicating that FMFT speeds up the calculations ∼15-fold. Using
parallel versions of the algorithms on 16 CPU cores, the average
execution times measured were 2.67 min and 20.19 min for FMFT
and PIPER, respectively, which shows about a 7.5-fold speedup.

Application 1: Constructing Enzyme–Inhibitor Complexes. The quality of
FMFT and PIPER results was determined by docking the same 51
enzyme–inhibitor pairs that we have used for comparing execution
times (Table S2). In both cases, the scoring function was the same
one normally used in PIPER for docking enzyme–inhibitor pairs,
and it consisted of attractive and repulsive van der Waals, Cou-
lombic electrostatics, generalized Born, and knowledge-based De-
coys As the Reference State terms, the latter representing nonpolar
solvation (27). The docking procedure for these cases was the
one normally used by PIPER (20). First, the conformational space
was sampled using either the FMFT or the PIPER protocol. After

docking, the 1,000 lowest energy poses were retained and clustered
using interface Cα rms deviation (RMSD) as the distance metrics
with a fixed 9 Å clustering radius. The clusters were ranked
according to cluster populations (i.e., number of poses in the clus-
ter), and the centers of up to 30 largest clusters were reported as
putative models of the complex (Table S2).
Fig. 2 A–C shows the results of docking. The number of hits

shown in Fig. 2A is the number of near-native poses, defined as
having less than 10 Å Cα interface RMSD (IRMSD) from the
native complex, generated by each of the two algorithms. Note
that IRMSD is calculated for the backbone atoms of the ligand
that are within 10 Å of any receptor atom after superimposing
the receptors in the X-ray and docked complex structures. We
found that the number of poses with less than 10 Å IRMSD is a
good measure of the quality of sampling of the energy landscape
in the vicinity of the native structure. Fig. 2 B and C shows the
properties of models obtained by clustering low-energy poses using
pairwise IRMSD as a distance metric. A large number of low-
energy poses typically yields a well-populated and thus highly ranked
near-native cluster, reported as one of the final models. Based on all
these results, FMFT and PIPER show comparable docking per-
formance, both in terms of the number of near-native structures
(Fig. 2A), the ranks of the clusters that define the final near-native
models (Fig. 2B), and the IRMSD (Fig. 2C) of these models.

Application 2: Docking Interacting Protein Domains. We further com-
pared FMFT and PIPER by docking interacting domains extracted
from proteins that are defined as “Other” type in the Protein
Docking Benchmark (25) (Tables S3 and S4). This problem is
generally more challenging than docking inhibitors to enzymes be-
cause the Other category includes complexes with highly variable
properties. Restricting consideration to individual domains elimi-
nates the additional problem that the domains in multidomain
proteins may shift relative to each other, affecting the docking re-
sults. Thirty cases representing domain–domain binding were se-
lected from the Others section of the Protein Docking Benchmark
(Table S4). Nineteen cases from this set represent binding of single-
domain proteins (or single domains taken from larger proteins), and
thus full protein structures were used for docking. In another 11
cases, receptor and/or ligand are composed of several domains, so
reduced representations of protein structures were prepared: Only
the binding domains were retained for docking, and the rest of the
structure was cleaved. Residue ranges for binding domains were
assigned according to structural classification of proteins (SCOP)
domain classification (28). To prevent possible association at intra-
protein domain–domain binding interfaces exposed by the cleavage,
additional repulsion grids were used in the docking procedure. These
were constructed by taking the backbone atoms of the original
structure lying within 10 Å (but not closer than 5 Å) of the binding
domain and placing repulsive spheres with 0.5-Å radius at the
positions of those atoms. The 5-Å lower bound to the distance
range specifying the thickness of this “repulsive padding” was in-
troduced to ensure that additional repulsion doesn’t affect binding to
the relevant portion of protein surface. During the docking process,
such repulsive padding grid was correlated with the standard re-
pulsive van der Waals grid of the binding partner. The docking
procedure overall was the same as that used for enzyme–inhibitor
targets, except that 1,500 low-energy poses were used for clustering,
generated from three docking runs (500 poses from each) performed
with differently weighted components of the scoring function (20).
Similarly to the results obtained for enzyme–inhibitor complexes,
FMFT and PIPER show comparable performance (Fig. 2 D–F and
Table S3). Although PIPER generates large numbers (>200) of near-
native structures for more complexes than FMFT, the number of
complexes with very few (<10) such near-native structures is sub-
stantially smaller using FMFT than using PIPER. Thus, FMFT shows
better performance for the more difficult-to-dock complexes (Fig.
2D). In addition, using PIPER, the number of models that are not
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ranked in the top 10 is much higher than using FMFT (Fig. 2E).
Based on these results, FMFT performs as well as PIPER.

Application 3: Accounting for Pairwise Distance Restraints. An impor-
tant consideration for selecting a docking method is the maximum
complexity of the scoring function that still allows for solving
problems with reasonable execution times. As mentioned, all FFT-
based approaches require the use of scoring functions that can be
written as sums of correlation functions. This is not a major limi-
tation, because such functions may include many commonly used
physics-based energy terms, such as steric repulsion, van der Waals
interaction, and Coulombic electrostatics. It has also been shown
that some energy terms that are not inherently correlation-based,
such as the widely used pairwise interaction potentials, can be ef-
ficiently approximated by a sum of several correlation functions
(27). Altogether, this makes the number of correlations a crucial
parameter, because this number effectively defines the com-
plexity of the scoring function in the particular sampling run.
One important task, especially demanding in terms of scoring

function complexity, is incorporating pairwise distance restraints,
based on known interactions between residue pairs, into the
docking procedure. Such restraints can be derived in a variety of
experiments, including NMR, cross-linking, and mutagenesis
assays (29). The restraints can be implemented as short-distance
attractive terms in the scoring function, but each will add a corre-
lation function term. As emphasized, in Cartesian FFT, the number
of transforms required is proportional to the number P of correla-
tion functions (Eq. 3), whereas, in FMFT, the number of transforms
is independent of P. To demonstrate this difference, we determined
the structure of the glucose-specific enzyme IIA (E2A)-histidine-
containing phosphocarrier protein (HPr) complex [Protein Data
Bank (PDB) entry 1GGR] (30) from the structures of its constitu-
ents in their unbound form (PDB entries 1F3G and 1POH) and 20
ambiguous interaction restraints (AIRs) based on NMR titration
data (29). The docking procedure was the one used for docking
enzyme–inhibitor pairs, but with 20 additional correlations
terms in the scoring function due to the restraints (29). Each re-
straint is specified as a residue in one of the proteins, and a set of

residues on the partner protein that are in contact with the first
residue, where “contact” means ≤3 Å distance between any two
atoms of the residue pair. To represent these restraints, receptor
and ligand correlation components were constructed by placing 3-Å
radius attractive spheres on the atoms of the particular residue on
the first protein and the attracted point “charges” on the atoms of
the interacting residues on the partner protein. Docking was per-
formed using both FMFT and PIPER. Incorporation of restraints
increased the population of the near-native cluster from 201 to 410,
which became the most populated cluster and thus provided the
putative model of the complex (Fig. 3 and Table S5) without any
significant change in the IRMSD of the cluster center (5.25 Å for
the unrestrained case versus 5.15 Å for the restrained). Adding the
restraints increased the number of correlation function terms in
the scoring function from 8 to 28. For PIPER, this resulted in a
proportional increase in execution time (from 96.15 min to
373.80 min). In contrast, running FMFT, the execution time barely
changed, from 12.32 min to 15.30 min. This result demonstrates that
FMFT can be used with very complex scoring functions (Fig. S2).

Application 4: Docking Ensembles of NMR Models. Multiple docking
runs may be required when one or both component proteins are
given as ensembles of structures, obtained by NMR experiments
or by extracting snapshots from molecular dynamics simulations.
Because accounting for multiple structures may substantially im-
prove docking results, the high efficiency of the FMFT method is
particularly useful. As an example, we considered calculating the
complex formed by the Escherichia coli Colicin E9 DNase domain
and its cognate immunity protein IM9. Four different X-ray struc-
tures of the unbound E9 DNase domain (chains B, C, D, and E of
PDB entry 1FSJ) were docked in a pairwise manner to 20 NMR
models of the IM9 protein (PDB entry 1E0H), thus performing 80
docking calculations. Unstructured termini of the receptor were
masked and didn’t contribute to the calculated energy scores. The
50 lowest energy poses were extracted from each of the 80 docking
runs and merged, yielding a total of 4,000 poses that were then
clustered as usual in PIPER. Fig. 4 A–C shows the docking results.
In short, merging the 50 lowest energy poses from each docking run,

Fig. 2. Results of docking enzyme–inhibitor and domain-domain pairs. Bar heights represent the number of docking cases that fall into an appropriate
category. (A) The number of hits among the 1,000 low-energy poses generated for enzyme–inhibitor complexes. (B) Ranking of final near-native models for
enzyme–inhibitor complexes. (C) Cα IRMSD of the final model for enzyme–inhibitor complexes (here only cases with both FMFT and PIPER producing a near-
native model were taken into account). (D) The number of hits among the 1,500 low-energy poses generated for domain–domain complexes. (E) Ranking of
final near-native models for domain–domain complexes. (F) Cα IRMSD of the final model for domain–domain complexes. As in C, only cases with both FMFT
and PIPER producing a near-native model were taken into account.
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followed by clustering, provided a 2.94-Å IRMSD model of the
complex ranked fifth, where the 1IBX structure of the native
complex was used for comparison when evaluating the accuracy
of results. To emphasize the advantage of ensemble docking, we
also docked a single pair of structures, chain B of 1FSJ and the
first NMR model of the ligand from the PDB file 1E0H. The
standard docking protocol was used, and we retained the 1,000
lowest energy poses for clustering. Docking the single pair, the best
near-native model obtained was ranked 13, and had the IRMSD
value of 3.45 Å. Thus, in the case of structural uncertainty of the
component proteins, ensemble docking can substantially improve
the results, and, in this type of application, the higher speed of
FMFT is a major advantage. Computational efficiency will be
particularly important for genome-wide analyses of protein–protein
interactions, but we think that, for such applications, it will be
necessary to better understand the docking of homology models
(see Application 5: Identification of Binding Sites by Docking Ho-
mology Models), because, generally, structures are not available for a
substantial fraction of proteins.

Application 5: Identification of Binding Sites by Docking Homology
Models. It has been shown that protein–protein interaction sites
can be found by determining the highly populated interfaces in
the ensemble of structures generated by global docking (31, 32).
We implemented this approach by clustering the “interfacial” atoms
in the low-energy docked poses. Although this method usually re-
quires structures of the component proteins, we extended the ap-
proach to proteins with yet undetermined structures by docking
multiple homology models. The extended method was applied to
determining the interface in the Nef–Fyn(R96I)SH3 complex (PDB
entry 1EFN). Ten models of the receptor (SH3 domain) and 2
models of the ligand (HIV-1 Nef protein) were constructed using
the MODELLER program (33) and based on homologous tem-
plates with 30–60% sequence identity (see Table S6 for the list of

templates used). All possible receptor–ligand model pairs were
docked using the approach developed for Other type of complexes
(20). From each of the 20 docking runs, we selected the 1,500/20 =
75 lowest energy poses that were merged and clustered using
RMSD as the distance metrics. The structures at the centers of
these clusters were used to define interface atoms as atoms located
within 5 Å of any atom of the partner protein. These interfacial
atoms were then subjected to bottom-up hierarchial clustering using
the Euclidian distance as the metrics. Clustering was terminated,
i.e., neighboring clusters were not merged, if the minimal distance
between a pair of their atoms was larger than the value of a sepa-
ration parameter. The resulting clusters were ranked according to
cluster population (i.e., the number of atoms in each cluster), and
the largest cluster was considered to be the most probable pre-
diction of the protein–protein interaction site. For comparison, we
also predicted the interaction site by docking a single pair of ho-
mology models based on the templates with the highest sequence
identity. In this case, a slightly larger value of the clustering sepa-
ration parameter was used (1.35 Å rather than 1.30 Å). This change
was due to the fact that a single docking run provided fewer in-
terfacial atoms for hierarchical clustering, resulting in clusters that
were too small. Therefore, the value of the cutoff parameter was
increased to ensure that the relative population of the largest cluster
was comparable to that obtained by merging the results from 20
docking runs. As shown in Fig. 4 D and E, docking of multiple
homology models of the component proteins increased the accuracy
of binding site prediction, compared with the result of using the
maximum sequence identity models alone.

Application 6: Docking Flexible Peptides. The difficulty in docking
short linear peptides is that their structure in solution is generally
unknown and may be ill-defined. One possible solution is to dock
a variety of peptide conformations, thus requiring multiple
docking runs. We have recently developed an algorithm based on
the use of structural templates extracted from the PDB with
sequences that matched the known sequence motif in the pep-
tide. These templates were docked individually using the FMFT
algorithm. From each run, a number of low-energy poses were
retained, the pooled peptide structures were clustered, and the
highly populated cluster centers were reported as final models as
in all applications of our docking algorithm.
Here we demonstrate this algorithm by docking the ace-

PQQATDD peptide to the tumor necrosis factor receptor-associ-
ated factor 2 (TRAF2). For this peptide, the PXQ motif sequence
known from the literature was extended to length 7 (PXQXXDD)
and used to extract 316 structural templates from the PDB data-
base. These templates were then used to model the target peptide.
The models were aligned and clustered using the backbone RMSD
as the distance measure, with 0.5 Å as the fixed clustering radius.
Peptide structures corresponding to the centers of the 25 most-
populated clusters were docked to the unbound receptor structure
(chain A of PDB entry 1CA4).
The 250 lowest energy poses were retained from each docking

run. The poses were merged and clustered using backbone RMSD
as a distance measure with 3.5 Å as the fixed clustering radius.
Cluster centers were ranked according to cluster populations and
reported as final models. Docking results were evaluated using the
backbone RMSD from the structure of the peptide in the native
complex (chain A of PDB entry 1CZY). A near-native model of
the protein–peptide complex was ranked fourth and had the back-
bone RMSD of 3.3 Å from the conformation in the X-ray structure
(Table S7 and Fig. 5A). Note that docking only the most fre-
quently occurring structural template provides less accurate
models, as demonstrated in Fig. 5 B and C.

Conclusions
Extending the classical 3D Cartesian implementation of the FFT
correlation approach to perform rotations in Fourier space without

Fig. 3. Docking of E2A and HPr proteins. (A) Model defined by the most
populated cluster obtained without restraints. (B) Model defined by the
most populated cluster obtained with restraints. A set of cyan cylinders
represents one of the 20 restraints. (C) IRMSD versus energy score for
docking without restraints. (D) IRMSD versus energy score for docking with
restraints. Incorporation of experimental restraints substantially increased
the population of the near-native cluster.
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the need for recalculating the transforms has been a long-out-
standing and extensively studied problem. The main difficulty in
developing such methods is that, to achieve numerical efficiency,
one can use only a moderate number of spherical basis functions to
span the search space, and this may reduce the accuracy of energy
evaluation. However, because we base model selection on the
population of low-energy clusters rather than on energy values,
minor deviations in energy generally do not affect the accuracy of
final models. Here we present an elegant manifold FFT imple-
mentation of 5D search that is more than 10-fold faster than the
traditional 3D approach. A major advantage of the method is that
adding correlation function terms in the scoring function is com-
putationally inexpensive, and hence the method works efficiently
with very complex energy evaluation models, possibly including
pairwise distance restraints that are difficult to deal with in tradi-
tional FFT-based docking. The improved efficiency implies that we
can solve new classes of docking problems, including the docking of
large ensembles of proteins rather than just a single protein pair,
docking homology models, and flexible peptides that may have a
large number of potential conformations. We note that the beta
version of a code implementing the FMFT algorithm can be
downloaded from https://bitbucket.org/abcgroup_midas/fmft_dock/,
thus providing an opportunity for testing and using the method. In
addition, we are in the process of adding FMFT as a new option to
the server.

Materials and Methods
This section summarizes the implementation of the FMFT approach. For the
mathematical details of the algorithm, see SI Materials and Methods.

The procedure starts with receptor- and ligand-associated components of
each correlation term of the energy function being represented as sets of
coefficients rðn, l,mÞ, lðn, l,mÞ that appear in the expansion shown as Eq. 4.
Here 1≤n≤N, 0≤ l≤n− 1, and −l≤m≤ + l, where N governs the order at
which the series is truncated. These coefficients, together with the trans-
lation range to be sampled (i.e., minimal and maximal distances between
protein centers, calculated from the geometrical properties of the proteins),
are submitted as input parameters to the program performing the FMFT-
based sampling. To improve efficiency, two stages of FMFT sampling are
being executed: The first one, performed with a maximal coefficient order
N= 20 on a small FFT grid, is computationally inexpensive and provides a
crude approximation of the energy landscape, which is then used to focus
the search to the translation range potentially containing the energy min-
ima, whereas the second one is executed with N= 30 on a full-sized FFT grid
but performs the sampling only in the refined translation range, thus saving
computational resources.

The actual sampling stage can be described as follows: After loading the input
parameters, the program starts to iterate the allowed translation range in steps
of 1 Å. For each translation step, the

P
nn1

P
prpðn1, l1,m1Þlpðn, l,m2ÞT jmj

nln1 l1
ðzÞ

product of coefficients and translation matrix elements is calculated, followed by

a manifold FFT, which provides the values of energy score for all receptor–ligand
orientations corresponding to a fixed distance between the centers of the two
proteins. The resulting samples are located on the ðβ, γ, α′, β′, γ′Þ Euler angle grid
with dimensions of 30 × 59 × 59 × 30 × 59 (or 16 × 30 × 30 × 16 × 30 for the low-
order scan). K (on the order of 1,000 for a typical sampling run) lowest energy

Fig. 4. Docking of structural ensembles. (A) Sampling the interaction energy landscape using a single E9 DNase domain structure and the first NMR model of
IM9. The docking does not capture any near-native energy minimum. (B) Consensus energy values from the 80 pairwise dockings of four different X-ray
structures of the E9 DNase domain to 20 NMR models of the IM9 protein. (C) Cartoon representation of the four E9 DNase domain and 20 IM9 structures used
for docking, superimposed on the structure of the native complex (gray shade). (D) Binding site identification for the Nef–Fyn(R96I)SH3 complex obtained by
docking the highest sequence identity models alone. (E) Using multiple homology models of the receptor and the ligand to identify the binding site for the
Nef–Fyn(R96I) SH3 complex results in a more specific prediction.

Fig. 5. Docking of the ace-PQQATDD peptide to TRAF2. (A) Bound structure
of the peptide (red) and the 3.3-Å model, ranked fourth (cyan). (B) Peptide
backbone RMSD versus scoring function when docking the most common
structural template alone. (C) Peptide backbone RMSD versus scoring func-
tion when using all 25 templates. Docking the ensemble substantially im-
proves the results, and yields samples with less than 4.0-Å backbone RMSD.
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samples are retained for each translation step. After the entire translation range
is processed, the low-energy samples from individual translation steps are
merged and resorted by energy value to select the K lowest energy samples that
are presented as the final results.

It is important to note here that the sampling of the S2 × SOð3Þ manifold [in
practice probed as ðSOð3Þ∖S1Þ× SOð3Þ], provided by the equispaced sampling of
Euler angles, is inherently nonuniform. This becomes a significant problem if one
seeks to obtain statistical information about the energy landscape of protein in-
teraction, for example, to construct the partition function of the system. To battle
this nonuniformity, a special procedure is used for the selection of low-energy
scores. Specifically, once the 5D array of energy scores for a single translation step
is acquired, the program starts selecting lowest-scoring conformations and ex-

cluding the samples corresponding to the surrounding region from further con-
sideration. Here the “surrounding region” is defined as the subset of elements
fðx, yÞjxðβ, γÞ⊂ S2, yðβ, γ, α′, β′, γ′Þ⊂ SOð3Þg of the S2 × SOð3Þmanifold, for which
ðdistS2 ðx, xminÞ<ΔÞ∧ðdistSOð3Þðy, yminÞ<ΔÞ, where Δ is a cutoff parameter chosen
to be 6.0°, which is slightly less than the grid step of 360°=59= 6.1°. This pro-
cedure ensures that the sampling explores a substantial fraction of the confor-
mational space rather than producing structures very close to each other.
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