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Abstract

The Initial-Boundary Value Problem for the heat equation is solved by using a new
algorithm based on a random walk on heat balls. Even if it represents a sophisticated
generalization of the Walk on Spheres (WOS) algorithm introduced to solve the Dirich-
let problem for Laplace’s equation, its implementation is rather easy. The definition
of the random walk is based on a new mean value formula for the heat equation. The
convergence results and numerical examples permit to emphasize the efficiency and
accuracy of the algorithm.

Key words: Initial-Boundary Value Problem, heat equation, random walk, mean-value
formula, heat balls, Riesz potential, submartingale, randomized algorithm.
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1 Introduction

In this paper, we study the Initial-Boundary Value Problem (IBVP) associated to the heat
equation and develop a new method of simulation based on the Walk on Moving Sphere
Algorithm (WOMS). The main objective is to construct an efficient approximation to the
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solution of the IBVP. The solution is a C1,2 function u satisfying







∂tu(t, x) = ∆xu(t, x), ∀(t, x) ∈ R+ ×D,
u(t, x) = f(t, x), ∀(t, x) ∈ R+ × ∂D,
u(0, x) = f0(x), ∀ x ∈ D,

(1.1)

where f is a continuous function defined on R+×∂D, f0 is continuous on D and D denotes a
bounded finitely connected domain in R

d. For compatibility reasons we have also f(0, x) =
f0(x).

The foundation stone of our work is the probabilistic representation for the solution of
a partial differential equation. Suppose that we are looking for the solution u(t, x) of some
PDE defined on the whole space Rd. Under suitable hypothesis we can use the classical
form u(t, x) = E[f(t, Xt)] where (Xt)t∈R+ is a stochastic process, satisfying a stochastic
differential equation, and f a known function. In order to approximate u(t, x), the Strong
Law of large Number allows us to construct Monte Carlo methods once we are able to propose
an approximating procedure for the stochastic process (Xt)t∈R+ .

The problem is more difficult when considering problems with boundary conditions. Nev-
ertheless if some regularity is provided we can also find a probabilistic approach. A generic
representation, for the solution of the Dirichlet problem in a domain D (the solution does
not depend on time), is

u(x) = E

[

f(XτD) exp

(

−
∫ τD

0

k(Xs)ds

)

−
∫ τD

0

g(Xt) exp

(

−
∫ t

0

k(Xs)ds

)

dt

]

,

where f, g, k are given functions, X0 = x and τD = inf{t ≥ 0; Xt ∈ ∂D}. We refer to
several classical books for more details [1, 10, 8, 13]. The problem is hard to address as, in
order to give an approximation, we need to approach the hitting time, the exit position and
sometimes even the path of the process Xt up to exit the domain D.

In particular situations we need to characterize either the hitting time τD or the exit
position XτD , and these problems reveal quite difficult. The main goal of our work is to
handle a more complex situation by unearthing numerical algorithms for the couple (τD, XτD)
itself.

To fix ideas and present a brief history, consider the simple Dirichlet problem for Laplace’s
equation in a smooth and bounded domain D ⊂ Rd:

{

∆u(x) = 0, ∀x ∈ D
u(x) = f(x), ∀x ∈ ∂D.

We recall the associated probabilistic representation: u(x) = Ex[f(XτD)] where (Xt, t ≥ 0)
here stands for the d-dimensional Brownian motion starting in x. The original idea in order
to approximate u(x) by using the walk on spheres algorithm (WOS) goes back to Müller
[12]. The idea consists in constructing a step by step Rd-valued Markov chain (xn, n ≥ 0)
with initial point x0 := x which converges towards a limit x∞, x∞ and XτD being identically
distributed. Let us roughly describe (xn): first, we choose S0 the largest sphere centered in
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Figure 1: WOS algorithm

x0 and included in D. The first exit point x1 from the sphere S0 for the Brownian motion
starting from x0 has an uniform distribution on ∂S0 and is easy to sample.

The construction is pursued with the new starting point given by x1 (see Figure 1). The
algorithm goes on and stops while reaching the boundary ∂D. In order to avoid an infinite
sequence of hitting times the stopping criteria of the algorithm includes a ε test: we stop
the Markov chain as soon as δ(xn, ∂D) ≤ ε (δ represents here the Euclidean distance in Rd).
Convergence results depending on ε and on the regularity of ∂D can be found in Müller
[12] and Mascagni and Hwuang [11]. Generalization of this result to a constant drift, by
means of convergence theorems for discrete-time martingales, was proposed in the work of
Villa-Moralès [16], [17]. Binder and Braverman [2] gave also the complete characterization
of the rate of convergence for the WOS in terms of the local geometry of D. Other elliptic
problems have been studied by Gurov, Whitlock and Dimov [9].

If needed, we can also approach the boundary hitting time by using the explicit form of
its probability distribution function. However, a real difficult leap appears when we want to
move from the simulation of Xt to the simulation of (t, Xt). For example, if the domain is a
sphere then XτD can be simulated by the uniform random variable on the ∂D while τD has
an explicit pdf function which is not suited for numerical approaches as it depends on the
Bessel function.

In previous works [5], [3], [4] the authors discussed the connexion between the hitting
times of the Bessel process and Brownian ones and introduced a new technique for approx-
imating both the hitting time and the exit position. These previous studies on the hitting
time form the foundation of our current work. We propose a new algorithm, involving a
random walk on heat balls belonging to the domain [0, t] × D (see [6] p.53 for a definition
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Figure 2: Markov chain (Tn, Xn)n≥0

of the heat ball) which approaches (τD, XτD) in general domains. Thus we obtain a method
for approximating the solution of the equation (1.1). Let us mention at this stage that
Sabelfeld [15] already described a random walk (τn, Yn)n≥0 for solving the Initial-Boundary
Value Problem for the heat equation. His approach is essentially different: first of all his
random walk is valued only on the boundary [0, t] × ∂D and secondly the main argument
is based on solving an integral equation of the second kind rather than using Monte-Carlo
techniques. A nicely written description of the method can be find in [14]. Let us just note
that such algorithm which permits to evaluate u(t, x) is less accurate for large time t or non
convex domains D.

Let us now introduce the main results concerning the algorithm Random Walk on Heat
Balls which approximates (τD, XτD), X being a d-dimensional Brownian motion. We just
introduce first some preliminary notations: we recall that δ(x, ∂D) is the Euclidean dis-
tance between the point x and the boundary of the domain and introduce the function
α(u, v) = min(u, e

2d
δ2(v, ∂D)). In the following, (Un)n≥1 stands for a sequence of indepen-

dent uniformly distributed random vectors on [0, 1]⌊d/2⌋+1, ΠU
n denote the product of all its

coordinates, (Gn)n≥1 is a sequence of independent standard Gaussian r.v. and (Vn)n≥1 a
sequence of independent uniformly distributed random vectors on the unit sphere of dimen-
sion d, centered on the origin. We assume these three sequences to be independent. Let us
define:

Rn+1 :=
(

ΠU
n+1

)2/d

exp
{

− (1− 2

d
⌊d
2
⌋)G2

n+1

}

and construct a sequence (Tn, Xn)n≥0 by the following procedure (Figure 2).

4



ALGORITHM

Initialisation: Fix ε > 0. The initial value of the sequence (Tn, Xn) is (T0, X0) = (t, x).
Step n: The sequence is defined by recurrence as follows: for n ≥ 0,

{

Tn+1 = Tn − α(Tn, Xn)Rn+1,

Xn+1 = Xn + 2
√

α(Tn, Xn)ψd(Rn+1)Vn+1, where ψd(t) =
√

t log(t−d/2).

Stop If α(Tn, Xn) ≤ ε then Nε = n

1. If δ2(XNε , ∂D) ≤ 2εd
e

then choose Xε ∈ ∂D such that δ(XNε, Xε) = δ(XNε , ∂D) and
define Tε := TNε .

2. If δ2(XNε, ∂D) > 2εd
e

then set Tε = 0 and Xε := XNε.

Algorithm outcomes: We get thus (Tε, Xε) and Nε the number of steps.

We propose an approximation of the solution to (1.1) by using the definition:

uε(t, x) = E(t,x)[f(Tε, Xε)1{Xε∈∂D}] + E(t,x)[f0(Xε)1{Xε /∈∂D}], for (t, x) ∈ [0, T ]×D.

We will prove the convergence of this approximation in Proposition 4.1:

Convergence result. Let us assume that the Initial-boundary Value Problem (1.1) admits
an unique C1,2([0, T ]× D)-solution u, defined by (3.3). We introduce the approximation uε

given by (4.2). Then uε converges towards u, as ε → 0, uniformly with respect to (t, x).
Moreover there exist κT,D(u) > 0 and ε > 0 such that

|u(t, x)− uε(t, x)| ≤ κT,D(u)
√
ε, ∀ε ≤ ε0, (t, x) ∈ [0, T ]×D.

An important result, based on the construction of a submartingale related to the Riesz
potential, completes the convergence of the algorithm:

Efficiency result. Let D ⊂ B(0, 1) be a 0-thick domain. The number of steps Nε, of the
approximation algorithm, is almost surely finite. Moreover there exist constants C > 0 and
ε0 > 0 both independent of (t, x) such that

E[Nε] ≤ C| log ε|, for all ε ≤ ε0.

The material is organized as follows. In the second section we present mean value properties
for the heat equation which plays a central role in the definition of the algorithm. The third
section constructs the Random Walk on Heat Balls used to solve the Initial-Boundary Value
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Problem. In Section 4, we introduce the stopping procedure of the algorithm and prove the
convergence result. The rate of the algorithm is also analyzed. We end up the paper with
numerical results for two particular domains. These illustrations corroborate the accuracy
of the algorithm.

2 A mean value property associated to the heat equa-

tion

In this section we will discuss the link between solutions of the heat equation and a particular
version of the mean value property. This link is also an essential tool in the study of the
classical Dirichlet problem.

Let us first note that due to the time reversion, the solution of the Initial-Boundary Value
Problem for the heat equation is directly related to the solution of the Terminal-Boundary
value problem for the backward heat equation (heat equation with negative diffusion). Due
to this essential property, we are going to first present a mean value property for the backward
heat equation and then deduce a similar property for the heat equation.

Let A be an open non empty set of R+ × R
d.

Definition 2.1. A function h : A 7→ R is said to be a reverse temperature in A if h is a
C1,2-function satisfying

∂th(t, x) + ∆xh(t, x) = 0, ∀(t, x) ∈ A. (2.1)

Proposition 2.2. Let A ⊂ R+ × Rd be a non empty open set. If a function h is a reverse
temperature in A then it has the following mean value property:

h(t, x) =
1

2πd/2

∫∫

(s,y)∈]0,1[×Sd

1

s
h(t + αs, x+ 2

√
αψd(s)y)ψ

d
d(s) dσ(y) ds, (2.2)

where Sd is the d-dimensional sphere of radius 1, σ is the Lebesgue measure on Sd and

ψd(t) =
√

t log(t−d/2), t ∈]0, 1[. (2.3)

Equation (2.2) is satisfied for any α > 0 such that [t, t + α] × B(x, 2
√

αd/(2e)) ⊂ A.

Here B(x, r) stands for the Euclidean ball centered in x of radius r, i.e. B(x, r) = {x ∈
Rd s.t. ‖x‖ ≤ r}.

The mean value formula (2.2) is quite different and more general than the classical formula
associated to the heat equation (see, for instance, Theorem 3 on page 53 in [6]). Nevertheless,
after some transformations on (2.2), it is possible to obtain the classical mean value property.
These transformations consist in time reversion and integration with respect to a particular
probability distribution function with compact support. These main ideas appear implicit
in the proof of Proposition 2.4, the details being left to the reader.
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Proof. Let a ∈ R+ be defined by a = αd/2Γ(d/2)2d/2−1 and let us consider the associated
function

ψa,d(t) :=

√

2t log

(

a

Γ(d/2)td/22d/2−1

)

.

We introduce (Wt, t ≥ 0) a standard d-dimensional Brownian motion and define by τa,d the
following hitting time

τa,d = inf{t ≥ 0 : ‖Wt‖ = ψa,d(t)}.

Let us just notice that this hitting time is bounded by α =
(

a
Γ(d/2)2d/2−1

)2/d

and its distri-

bution function is given by Proposition 5.1 in [3]

pa,d(t) =
1

2at
ψda,d(t), 0 ≤ t ≤ α. (2.4)

Furthermore the exit locationWτa,d is uniformly distributed on the sphere of radius ψa,d(τa,d).
Let us consider h a reverse temperature on A. By Itô’s formula, we obtain

h(t + τa,d, x+
√
2Wτa,d) = h(t, x) +

∫ τa,d

0

∂th(t + s, x+
√
2Ws) ds

+
√
2

∫ τa,d

0

∂xh(t+ s, x+
√
2Ws) dWs

+

∫ τa,d

0

∆xh(t+ s, x+
√
2Ws) ds.

If a is small enough, then (t + τa,d, x+
√
2Wτa,d) ∈ A a.s. Using the fact that h is a reverse

temperature in A, in particular, the continuity of ∂xh is known, we can prove that the
stochastic integral introduced in the Itô formula is a martingale. Hence the stopping time
theorem leads to

h(t, x) = E[h(t + τa,d, x+
√
2Wτa,d)].

By (2.4), we get

h(t, x) =
1

σ(Sd)

∫ α

0

∫

Sd

h(t+ u, x+
√
2ψa,d(u)y)

1

2au
ψda,d(u) dσ(y) du.

We introduce the change of variable u = αs, such that s ∈]0, 1[, and observe that ψa,d(αs) =√
2αψd(s) where ψd is defined by (2.3). We get

h(t, x) =
1

σ(Sd)

∫ 1

0

∫

Sd

h(t+ αs, x+
√
2ψa,d(αs)y)

1

2as
ψda,d(αs) dσ(y) ds

=
1

σ(Sd)

∫ 1

0

∫

Sd

h(t+ αs, x+ 2
√
αψd(s)y)

2d/2αd/2

2as
ψdd(s) dσ(y) ds.

Using both the explicit expression of αd/2 and the classical formula σ(Sd) = 2πd/2/Γ(d/2)
leads to (2.2).
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The reverse statement of the preceding result can also be proved. The first step consists
in the following

Proposition 2.3. If h satisfies the mean value property (2.2) and is a C1,2-function for

any (t, x) ∈ A and α > 0 such that [t, t + α] × B(x, 2
√

αd/(2e)) ⊂ A, then h is a reverse
temperature in A.

Proof. Let us consider the function H : [0,
√
α]→ R defined by

H(r) = h(t + r2s, x+ 2rψd(s)y),

for any (s, y) ∈ [0, 1]× Sd. Using the Taylor expansion, we get

H(
√
α) = H(0) +H ′(0)

√
α +

α

2
H ′′(0) + o(α) (2.5)

where o(α) is uniform with respect to both s and y variables. The derivatives of H can be
computed explicitly and we get:

H(0) = h(t, x), H ′(0) = 2ψd(s)

d
∑

j=1

∂xjh(t, x)yj,

H ′′(0) = 2s∂th(t, x) + 4ψ2
d(s)

∑

1≤i,j≤d

∂2xixjh(t, x)yiyj.

Applying the mean value property to both sides of (2.5), we obtain

d
∑

j=1

∂xjh(t, x)A
0
j + ∂th(t, x)A1 +

∑

1≤i,j≤d

∂xixjh(t, x)Ai,j = o(α), (2.6)

where

A0
j =

2
√
α

Γ(d/2)

∫∫

(s,y)∈[0,1]×Sd

1

s
ψd+1
d (s)yj dσ(y) ds,

A1 =
α

Γ(d/2)

∫∫

(s,y)∈[0,1]×Sd

ψdd(s) dσ(y) ds,

Ai,j =
2α

Γ(d/2)

∫∫

(s,y)∈[0,1]×Sd

1

s
ψd+2
d (s)yiyj dσ(y) ds.

By symmetry arguments, we have A0
j = 0 and Ai,j = 0 for i 6= j. Let Xd be a random

variable whose probability distribution function is

pd(t) =
1

Γ(d/2)t
ψdd(t)1[0,1](t).
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Let us just notice that pd(t) = αpa,d(αt), pa,d being defined by (2.4). Then Xd = e−G

where G is a random variable which has the gamma distribution of parameters (d + 2)/2
and 2/d. In particular, Xd has the same distribution as (U1 . . . U(d+2)/2)

2/d if d is even (here
(Ui)i∈N is a sequence of standard uniform independent random variables) and Xd has the
same distribution as (U1 . . . U⌊d+2⌋/2)

2/de−G
2/d if d is odd (here G is a standard Gaussian r.v.

independent of the sequence (Ui)i). Therefore if d is even, we deduce

A1 = αE[Xd] = αE[U
2/d
1 ]E[U

2/d
2 ] . . .E[U

2/d
(d+2)/2] = α

( d

d+ 2

)(d+2)/d

.

For the odd case,

A1 = αE[Xd] = αE[U
2/d
1 ]E[U

2/d
2 ] . . .E[U

2/d
⌊d+2⌋/2]E[e

−G2/d] = α
( d

d+ 2

)⌊d+2⌋/d

E[e−G
2/d].

Let us now compute Ai,i for 1 ≤ i ≤ n. First we observe that

∫

Sd

y2i dσ(y) =
1

d

d
∑

j=1

∫

Sd

y2jdσ(y) =
1

d
.

So using a convenient change of variable, we get

Ai,i =
2α

dΓ(d/2)

∫ 1

0

1

s
ψd+2
d (s) ds =

2α(d+ 2)

d2Γ(d/2)
Γ((d+ 2)/2)

∫ 1

0

1

Γ((d+ 2)/2)
t(d+2)/d 1

t
ψd+2
d+2(t) dt

= α
d+ 2

d
E[X

(d+2)/d
d+2 ] = α

(

d

d+ 2

)(d+2)/d

if d is even,

and Ai,i = α
(

d
d+2

)⌊d+2⌋/d
E[e−G

2/d] if d is odd. So we note that for any d ∈ N∗, we proved
that

A0
j = 0, Ai,j = δijA1,

where δij is the Kronecker’s symbol. Equation (2.6) leads therefore to (2.1).

In order to prove the equivalence between the notion of reverse temperature and the mean
value (MV) property defined in (2.2), we prove that the MV formula implies the regularity
of the solution. This is the case when the dimension of the space is large enough. Intuitively
the regularity increases as the dimension of the space increases.

Proposition 2.4. Let d > 4 and let h be a bounded function, defined on an open set A and
satisfying the mean value property (2.2). Then h is a C1,2(A,R)-function.

In the historical proof of the regularity associated to the Laplace operator (Proposition
2.5 in [10]), the key argument is to introduce a convolution with respect to a C∞-function
with compact support. For the heat equation, one needs to handle quite differently and will
not be able to prove regularity of infinite order in any case.
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Proof. Let us assume that h : A → R is a bounded function satisfying the mean value
property for α small enough, smaller than some αM > 0. We introduce a C∞(R+,R+)-
probability distribution function function k whose support is included in [αm, αM ] with
0 < αm < αM . Rewriting the straightforward equality

∫ ∞

0

k(α)h(t, x) dα = h(t, x)

leads to the following mean value property

h(t, x) =
1

2πd/2

∫∫∫

(α,s,y)∈R+×]0,1[×Sd

k(α)h(t+ αs, x+ 2
√
αψd(s)y)

ψdd(s)

s
dσ(y) ds dα. (2.7)

In order to do calculation, it is more convenient in this situation to use spherical coordinates
in Sd; for y ∈ Sd we define (θ1, . . . , θd−1) by

y1 = cos(θ1), yk =
k−1
∏

j=1

sin(θj) cos(θk), for 2 ≤ k ≤ d,

where θ1, . . . , θd−2 ∈ [0, π], θd−1 ∈ [0, 2π] and θd = 0. The change of measure is therefore
given by

dσ(y)←→ sind−2 θ1 . . . sin
2(θd−3) sin(θd−2)dθ1 . . .dθd−1.

Let us now consider another system of coordinates (u, z1, . . . , zd) replacing (α, s, θ1, . . . , θd−1)
and given by:

u = αs, z1 = 2
√
αψd(s) cos(θ1), zk = 2

√
αψd(s)

k−1
∏

j=1

sin(θj) cos(θk), for 2 ≤ k ≤ d,

we recall that θd = 0 by convention. Let us just observe that

‖z‖2 = 4αψ2
d(s) = 4αs log(s−d/2) = 4u log(s−d/2).

Hence s = exp
(

−‖z‖2

2du

)

and α = u exp ‖z‖2

2du
. The Jacobian determinant of the change of

variable is equal to:

Jac :=
∂(u, z1, z2, . . . , zd)

∂(α, s, θ1, . . . , θd−1)

= (2s
√
αψ′

d(s)−
√
αψd(s))(2

√
αψd(s))

d−1 sind−2 θ1 . . . sin
2(θd−3) sin(θd−2)

= −d 2d−2αd/2sψd(s)
d−2 sind−2 θ1 . . . sin

2(θd−3) sin(θd−2).

The mean value property therefore becomes:

h(t, x) =
1

2πd/2

∫∫

(u,z)∈R+×Rd

k(ue
‖z‖2

2du )h(t+ u, x+ z)
‖z‖2e(2−d) ‖z‖

2

4du

d 2dud/2+1
dz du. (2.8)
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Let us just note that, for the particular choice k(x) = d
2
r−d/2 xd/2−11{‖x‖≤r2/(4π)} with r > 0,

we obtain the classical mean value formula presented in the statement of Theorem 3 p. 53
in [6]. Of course in this case the condition on the smoothness of k is not satisfied.

Since α > 0 if and only if u > 0 and since the support of k belongs to R∗
+, we can replace

the integration domain R+×Rd by Rd+1. The formula (2.8) can be written as the following
convolution integral

h(t, x) =

∫

Rd+1

h(u, z)w(u− t, z − x)dz du, (t, x) ∈ A, (2.9)

where

w(t, x) :=
k(te

‖x‖2

2dt )

2πd/2
‖x‖2e(2−d) ‖x‖

2

4dt

d 2dtd/2+1
, (t, x) ∈ R

d+1. (2.10)

In fact, the support of the function w is compact due to k whose support belongs to [αm, αM ].
The aim is now to deduce the regularity property of h from that of w.

Step 1. Regularity with respect to the time variable.
For any (t0, x0) ∈ A, we choose a small neighborhood of the form ]t0 − η, t0 + η[×B(x0, η)
which is contained in A and we are going to prove that h is C1 with respect to the time
variable in this neighborhood.

Let us denote by α := (u− t)e
‖z−x‖2

2d(u−t) then

∂α

∂t
= −

(

1− ‖z − x‖
2

2d(u− t)
) α

(u− t) = −
(

1− ‖z − x‖
2

2d(u− t)
)

e
‖z−x‖2

2d(u−t) . (2.11)

Introducing g : R→ R+ defined by g(x) = (d2d+1πd/2)−1 k(x)x1−d/2 which is a C∞ function
with compact support due to the regularity of the function k and since the support of k does

not contain a small neighborhood of the origin, we obtain w(u − t, z − x) = g(α) ‖z−x‖2

(u−t)2
.

Hence

∂w

∂t
(u− t, z − x) = ‖z − x‖2

(

g′(α)

(u− t)2
∂α

∂t
+

2g(α)

(u− t)3
)

= ‖z − x‖2
(

− g′(α)

(u− t)2
(

1− ‖z − x‖
2

2d(u− t)
) α

(u− t) +
2g(α)

(u− t)3
)

. (2.12)

Let us fix x ∈ Rd. We can observe that both (t, u, z) 7→ w(u − t, z − x) and (t, u, z) 7→
∂w
∂t
(u−t, z−x) are continuous for t 6= u that is for (u, z) belonging to R×Rd \({t}×Rd) (the

complementary set is negligible for the Lebesgue measure). Moreover, due to the compact
support of k, for any ε > 0 small enough, there exists a constant κε > 0 such that

‖z − x‖2 ≤ 2d(u− t) log(αM/(u− t)) ≤ κε(u− t)1−ε. (2.13)

Hence (2.12) implies the existence of C0, C1 and C2 independent of z, u and t such that
∣

∣

∣

∣

∂w

∂t
(u− t, z − x)

∣

∣

∣

∣

≤ C0

(

1

‖z − x‖6/(1−ε)−2
+

1

‖z − x‖8/(1−ε)−4

)

1{0≤u≤C1}1{‖z−x‖≤C2}

(2.14)
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for any (t, x) in ]t0 − η, t0 + η[×B(x0, η) ⊂ A. The right hand side of (2.14) is integrable as
soon as the space dimension satisfies d > 4. Since h is a bounded function the Lebesgue the-
orem permits to apply results involving differentiation under the integral sign. The function
h is therefore C1 with respect to the time variable.

Step 2. Regularity with respect to the space variable.
The computation is quite similar as in the first step. We have:

∂w

∂xi
(u− t, z − x) = −(zi − xi)

(u − t)2
(g′(α)α‖z − x‖2

d(u− t) + 2g(α)
)

, 1 ≤ i ≤ d,

and

∂2w

∂xi∂xj
(u− t, z − x) = α(zi − xi)(zj − xj)

d(u− t)3
{

g′′(α)α + g′(α)

d(u− t) ‖z − x‖2 + 4g′(α)

}

+
1

(u− t)2
{

g′(α)α

d(u− t) ‖z − x‖
2 + 2g(α)

}

δij .

The second derivative is a continuous function on Rd+1 \ {u = t}. Since g is C∞ with a
compact support, we know that α is bounded and therefore, using (2.13), we obtain the
following bound:

∣

∣

∣

∣

∂2w

∂xi∂xj
(u− t, z − x)

∣

∣

∣

∣

≤ C0

(‖z − x‖4
(u− t)4 +

‖z − x‖2
(u− t)3 +

1

(u− t)2
)

1{0≤u≤C1}1{‖z−x‖≤C2}

≤ C0

(

1

‖z − x‖8/(1−ε)−4
+

1

‖z − x‖6/(1−ε)−2
+

1

‖z − x‖4/(1−ε)
)

1{0≤u≤C1}1{‖z−x‖≤C2}.

(Here C0 is just a generic constant: the values can change from one computation line to
the following one). The conclusion is based on the same argument presented in Step 1: the
boundedness of h permits to conclude that h is C2 with respect to the space variable as soon
as d > 4.

Let us note that the heat equation and the Laplace equation have some similar properties.
In particular, solutions of these equations are automatically smooth. More precisely, if
u ∈ C1,2(A,R) and is a reverse temperature then u ∈ C∞(A × R+,R) (see for instance
Theorem 8 page 59 in [6]). In fact, as soon as the dimension d is large enough (d > 4), the
mean value property implies the smoothness as an immediate consequence of Proposition
2.4.

All results presented so far in this section have an important advantage, they can be
adapted to other situations for instance by looking backward in time, or equivalently time
reverting. This observation permits to study properties of the heat equation.

Definition 2.5. A function h : A 7→ R is said to be a temperature in A if h is a C1,2-function
satisfying the heat equation:

∂th(t, x)−∆xh(t, x) = 0, ∀(t, x) ∈ A. (2.15)

12



By Proposition 2.2, Proposition 2.3 and Proposition 2.4, we obtain the following:

Theorem 2.6. 1. Let A ⊂ R+ × Rd be a non empty open set. If a function h is a
temperature in A then it has the following mean value property:

h(t, x) =
1

2πd/2

∫∫

(s,y)∈]0,1[×Sd

1

s
h(t− αs, x+ 2

√
αψd(s)y)ψ

d
d(s) dσ(y) ds, (2.16)

where Sd is the d-dimensional sphere of radius 1, σ is the Lebesgue measure on Sd and
ψd is defined in (2.3). Equation (2.16) is satisfied for any α > 0 such that [t− α, t]×
B(x, 2

√

αd/(2e)) ⊂ A.

2. If h satisfies the mean value property (2.16) and is a C1,2-function for any (t, x) ∈ A
and α > 0 such that [t− α, t]×B(x, 2

√

αd/(2e)) ⊂ A then h is a temperature in A.

3. For d > 4, any bounded function h is a temperature iff it satisfies the mean value
property (2.16).

3 Solving the Initial-Boundary Value Problem

This section deals with existence and uniqueness for solutions of the Initial-Boundary Value
Problem (1.1) in a bounded domain D. These results are deeply related to the existence of a
particular time-discrete martingale: we define Mn := (Tn, Xn) a sequence of R+ ×D-valued
random variables. In order to define this sequence we introduce δ(x, ∂D) the Euclidean
distance between the point x and the boundary of the domain. We also introduce the
function α given by:

α(u, v) = min
(

u,
e

2d
δ2(v, ∂D)

)

. (3.1)

Let us consider:

• (Un)n≥1 a sequence of independent uniformly distributed random vectors on [0, 1]⌊d/2⌋+1.
We denote by ΠU

n the product of all coordinates of Un.

• (Gn)n≥1 a sequence of independent standard Gaussian r.v.

• (Vn)n≥1 a sequence of independent uniformly distributed random vectors on the unit
sphere of dimension d, centered on the origin.

Further, we assume that these three sequences are independent. We define by Fn the natural
filtration generated by the sequences (Un), (Gn) and (Vn). Let F0 note the trivial σ-algebra.
Let us introduce:

Rn+1 :=
(

ΠU
n+1

)2/d

exp
{

−
(

1− 2

d
⌊d
2
⌋
)

G2
n+1

}

.
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The initial value of the sequence (Tn, Xn) is then (T0, X0) = (t, x) and the sequence is defined
by recurrence as follows: for n ≥ 0,

{

Tn+1 = Tn − α(Tn, Xn)Rn+1,

Xn+1 = Xn + 2
√

α(Tn, Xn)ψd(Rn+1)Vn+1.
(3.2)

Let us first note that, due to the definition, the sequence (Tn, Xn) belongs always to the
closed set [0, t]×D: the sequence is therefore bounded. Moreover as soon as Mn reaches the
boundary of [0, t]×D its value is frozen.

Lemma 3.1. If h belongs to C1,2([0, t] × D) and if it is a temperature in [0, t] × D, then
Mn := h(Tn, Xn) is a bounded F-martingale.

Proof. Since h is a continuous function on a compact set, it is bounded. Therefore the
stochastic processMn itself is bounded. We obtain

E[Mn+1|Fn] = E[h(Tn+1, Xn+1)|Fn] =: H(Tn, Xn),

where

H(u, v) = E

[

h
(

u− α(u, v)Rn+1, v + 2
√

α(u, v)ψd(Rn+1)Vn+1

)]

.

Since the pdf of Rn+1 is given by fR(s) = 1
Γ(d/2)

ψd
d(s)

s
1[0,1](s) and since Vn+1 is uniformly

distributed on the sphere, we obtain:

H(u, v) =
1

Γ(d/2)σ(Sd)

∫∫

(s,y)∈]0,1[×Sd

1

s
h(t− α(u, v)s, x+ 2

√

α(u, v)ψd(s)y)ψ
d
d(s) dσ(y) ds.

If h belongs to C1,2([0, t] × D) and if it is a temperature in [0, t] × D, then Theorem 2.6
implies the mean value property. Hence H(u, v) = h(u, v). We deduce easily that

E[Mn+1|Fn] = h(Tn, Xn) =Mn a.s.

Lemma 3.2. The process Mn = (Tn, Xn) converges almost surely as n → ∞ to a limit
(T∞, X∞) that belongs to the set {0} × D ∪ ]0, t[×∂D.

Proof. Let us consider the function h(t, x) = xi the i-th coordinate of x ∈ Rd. We observe
that h is a temperature and belongs to C1,2(R+,R

d). By Lemma 3.1, we deduce thatMn :=
h(Tn, Xn) = Xn(i), the i-th coordinate of Xn, is a bounded martingale therefore it converges
a.s. towards X∞(i). Since all coordinates converge we deduce that Xn → X∞ a.s.
Moreover since Tn is a non-increasing sequence of non negative random times, it converges
a.s. towards a r.v. T∞ which belongs to [0, t]. The sequence (Tn, Xn) belongs to the closed
set [0, t]×D, consequently its limit belongs to the same set.
Let us change the starting point of the Markov chain by replacing (t, x) by (T∞, X∞) we
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obtain a constant Markov chain Mn = (T∞, X∞) for all n ≥ 0. Let us assume that this
limit does not belong to {0} × D ∪ ]0, t[×∂D then α(T∞, X∞) > 0 a.s. We deduce that
M1 6= M0 a.s. for this new Markov chain since their first coordinates are different a.s.
This fact obviously cannot be satisfied by a constant Markov chain, therefore (T∞, X∞) ∈
{0} × D ∪ ]0, t[×∂D.
Proposition 3.3. (uniqueness) Set T > 0. Let u be a C1,2([0, T ] × D)-function satisfying
the Initial-Boundary Value Problem (1.1) and continuous with respect to both variables on
[0, T ]×D. Then u is unique and given by the expression

u(t, x) = E(t,x)[f(T∞, X∞)1{X∞∈∂D}] + E(t,x)[f0(X∞)1{X∞ /∈∂D}], for (t, x) ∈ [0, T ]×D.
(3.3)

Proof. By Lemma 3.1, the process Mn is a bounded martingale. Moreover Lemma 3.2
implies that (Tn, Xn) converges to (T∞, X∞). Since u is a continuous function, we deduce
thatMn converges a.s. and in L2 towards u(T∞, X∞). In particular, the martingale property
leads to

u(t, x) = E[u(T∞, X∞)].

In order to conclude it suffices to use the initial and boundary conditions. Indeed Lemma
3.2 ensures that (T∞, X∞) belongs to the set {0} × D ∪ ]0, t[×∂D.

We refer to Friedman [7] for the existence of a solution to the Initial-Boundary Value
Problem (1.1). More precisely, if the following particular conditions are fulfilled:

• f and f0 are continuous functions such that f(0, x) = f0(x),

• the domain has an outside strong sphere property,

then there exists a smooth solution u to (1.1): u ∈ C∞(R+ × D,R). This statement results
from a combination of Theorem 9 page 69 and Corollary 2 page 74 in [7].

4 Approximation of the solution for an Initial-Boundary

Value Problem

The aim of this section is to contruct an algorithm which approximates u(t, x), the solution
of an Initial-Boundary Value Problem when (t, x) is given. For the Dirichlet problem such
an algorithm was introduced by Müller [12] and is called the Random Walk on spheres. We
are concerned with the heat equation instead of the Laplace equation and therefore propose
an adaptation of this algorithm in order to consider also the time variable. The algorithm
is based on the sequence of random variables Mn = (Tn, Xn) defined by (3.2).
We introduce a stopping rule: let ε > 0 be a small parameter, we define Nε the stopping
time:

Nε := inf{n ≥ 0 : α(Tn, Xn) ≤ ε}, (4.1)

where α is given by (3.1).
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1. If δ2(XNε, ∂D) ≤ 2εd
e

then we choose Xε ∈ ∂D such that

δ(XNε , Xε) = δ(XNε, ∂D)
and we denote by Tε := TNε .

2. If δ2(XNε, ∂D) > 2εd
e

then we set Tε = 0 and Xε := XNε.

We are now able to give an approximation of the solution to (1.1) by using the definition:

uε(t, x) = E(t,x)[f(Tε, Xε)1{Xε∈∂D}] + E(t,x)[f0(Xε)1{Xε /∈∂D}], for (t, x) ∈ [0, T ]×D. (4.2)
Proposition 4.1. Let us assume that the Initial-boundary Value Problem (1.1) admits an
unique C1,2([0, T ]×D)-solution u, defined by (3.3). We introduce the approximation uε given
by (4.2). Then uε converges towards u, as ε→ 0, uniformly with respect to (t, x). Moreover
there exist κT,D(u) > 0 and ε > 0 such that

|u(t, x)− uε(t, x)| ≤ κT,D(u)
√
ε, ∀ε ≤ ε0, (t, x) ∈ [0, T ]×D.

Proof. Using the definition of u (resp. uε) in (3.3) (resp. (4.2)), we obtain:

|u(t, x)− uε(t, x)| = |E[u(T∞, X∞)]− E[u(Tε, Xε)]|.
Since n 7→ u(Tn, Xn) is a bounded martingale and since Nε is a finite stopping time, we can
apply the optimal stopping theorem leading to

|u(t, x)− uε(t, x)| = |E[u(TNε, XNε)]− E[u(Tε, Xε)]| ≤ κ̂T,D(u)E
[

max(|TNε − Tε|, |XNε −Xε|)
]

where

κ̂T,D(u) := sup
(t,x)∈[0,T ]×D

max
{
∣

∣

∣

∂u

∂t
(t, x)

∣

∣

∣
,
∣

∣

∣

∂u

∂x
(t, x)

∣

∣

∣

}

.

Taking into account the two different situations δ2(XNε, ∂D) > 2εd
e

or δ2(XNε, ∂D) ≤ 2εd
e
, we

deduce that

max(|TNε − Tε|, |XNε −Xε|) ≤ max
(

ε,

√

2εd

e

)

.

The statement follows with the particular choice κT,D(u) = κ̂T,D(u)
√

2d
e
.

Let us now focus our attention on the number of steps needed by the algorithm (3.2)
before stopping. In order to present the main result, we need some particular properties on
the domain D.
In the sequel, we shall assume that D is a 0-thick domain, that is: there exists a constant
C > 0 (so-called the thickness of the domain) such that

Hd(B(x, r) \ D) ≥ Crd, ∀r < 1, ∀x ∈ ∂D. (4.3)

Here Hd(S) denotes the d-dimensional Hausdorff content of the set S. This property is
namely satisfied by
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• convex domains;

• domains satisfying a cone condition;

• bounded domains with a smooth boundary ∂D.

We observe that the assumption is quite weak. For such domains, we can prove the following
rate of convergence.

Theorem 4.2. Let D ⊂ B(0, 1) be a 0-thick domain. The number of steps Nε, of the
approximation algorithm, is almost surely finite. Moreover there exist constants C > 0 and
ε0 > 0 such that

E[Nε] ≤ C| log ε|, for all ε ≤ ε0. (4.4)

The proof of this result is an adaptation of the classical random walk on spheres [2].
Nevertheless the dynamics of both coordinates of the random walk on spheres (Tn, Xn)n≥0

being definitively different, this adaptation requires a quite tedious effort. In particular, we
need to introduce a particular submartingale, based on the random walk, whose properties
permit to prove the rate of convergence.

4.1 Submartingale related to the Riesz potential

We consider in this section the 0-thick domain D which is included in the unit ball of Rd

(assumption of Theorem 4.2). We introduce the set M of all Borel measures µ supported
inside B(0, 2) and outside of D, satisfying the following condition:

µ(B(x, r)) ≤ rd, ∀x ∈ R
d, ∀r > 0. (4.5)

Let us define the so-called energy function U :

U(x) = sup
µ∈M

Uµ(x),

where Uµ stands for the Riesz potential of the measure µ, that is,

Uµ(x) =

∫ ∞

0

µ(B(x, r))

rd+1
dr. (4.6)

The definition of U obviously implies that U(x) ≥ 0 for any x ∈ Rd.

Remark 4.3. Binder and Bravermann [2] gave several properties of this energy function.
We just recall some of them:

1. Since the set of measuresM is weakly∗-compact, there exists a family of measures µx,
belonging toM, such that U(x) = Uµx(x). This property will play a crucial role in the
proof of Proposition B.2.
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2. The energy function U is subharmonic in D. Consequently, due to the construction
of the random walk (Tn, Xn) which is based on uniform random variables on moving
spheres, the process (U(Xn))n≥0 is a submartingale with respect to the filtration gener-
ated by (Tn, Xn)n≥0:

Fn := σ{T1, . . . , Tn, X1 . . . , Xn}.
Hence

E[U(Xn+1)|Fn] ≥ U(Xn) a.s. (4.7)

3. Easy computations on the Riesz potential permits to prove that

U(x) ≤ log
3

δ(x, ∂D) +
1

d
, ∀x ∈ D. (4.8)

In particular, we obtain an important property of the submartingale (U(Xn))n≥0:

If U(Xn) ≥ log
3

ε
+

1

d
than δ(Xn,D) ≤ ε. (4.9)

These properties, of the energy function U , permit to sketch the proof of the convergence
in the classical random walk on spheres case. Indeed we know that U(Xn) is a submartingale
and the algorithm stops before U(Xn) becomes too large. So, it suffices to focus the attention
on the time needed by the submartingale to exceed some given large threshold.

In the algorithm described by (3.2), a large value of U(Xn) is not sufficient to ensure that
the stopping rule has been reached. Indeed the stopping procedure depends on both space
and time variables, through the condition: α(Tn, Xn) ≤ ε. That’s why we need to adapt the
classical study by considering a martingale based on the Riesz potential but taking also into
account the decreasing time sequence (Tn)n≥0.

Let us define the modified energy function on R+ × Rd by

U(t, x) = max
{1

2
log

(

3

t

)

, U(x)
}

. (4.10)

This function will play a similar role as the energy function (in the classical case). In
particular, if we apply U to the sequence (Tn, Xn), we obtain a submartingale with nice
properties.

Lemma 4.4. We define Un := U(Tn, Xn). Then the process (Un)n≥0 is a F-submartingale.

Proof. First we can notice that

Tn+k ≤ Tn ⇒ log
3

Tn+k
≥ log

3

Tn
.
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By Jensen’s inequality (see Lemma A.1) and using the submartingale property (4.7) of
U(Xn), we obtain

E

[

Un+1

∣

∣

∣
σ(Tn, Xn)

]

= E

[

max
{1

2
log

3

Tn+1

, U(Xn+1)
}
∣

∣

∣
σ(Tn, Xn)

]

≥ E

[

max
{1

2
log

3

Tn
, U(Xn+1)

}
∣

∣

∣
σ(Tn, Xn)

]

≥ max
{1

2
log

3

Tn
,E[U(Xn+1)|σ(Tn, Xn)]

}

≥ max
{1

2
log

3

Tn
, U(Xn)

}

= Un.

We deduce that (Un) is a submartingale as announced.

In order to describe an upper-bound for the sequence E[U2
n], we first point out an in-

equality relating U(t, x) to the function α(t, x), which plays an essential role in the algorithm
(3.2).

Lemma 4.5. There exists a constant κ > 0 (depending only on the space dimension d) such
that

U(t, x) ≤ κ− 1

2
log(α(t, x)), ∀(t, x) ∈ R+ ×D. (4.11)

Proof. On one hand, the definition of α(t, x) in (3.1) implies that e
2d
δ2(x, ∂D) ≥ α(t, x) and

consequently

log
3

δ(x, ∂D) ≤
1

2
log

9e

2d
− 1

2
logα(t, x).

Using the property (4.8), we obtain

U(x) ≤ −1
2
logα(t, x) +

1

2
log

9e

2d
+

1

d
.

On the other hand, the definition of α(t, x) also implies

1

2
log

3

t
≤ 1

2
log

3

α(t, x)
=

log 3

2
− 1

2
logα(t, x).

Combining both inequalities, we deduce that U(t, x) = max{1
2
log(3/t), U(x)} satisfies (4.11)

with κ := max{1
2
log 3, 1

2
log 9e

2d
+ 1

d
}.

An immediate consequence of Lemma 4.5 is an L2-bound of Un, n fixed.

Proposition 4.6. Let (T0, X0) = (t, x). There exist two constants C1 and C2 such that,

E[U2
n] ≤ (C1 + C2n)

2, for n ≥ κ− 1

2
log(α(t, x)).

Here κ stands for the constant defined in Lemma 4.5.
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Proof. Let us first recall that Un := U(Tn, Xn). Due to the definition of the function U , we
observe that U(x) ≥ 0 for any x ∈ Rd and consequently U(t, x) ≥ 0 and Un ≥ 0. Due to
Lemma 4.5, we shall focus our attention on logα(Tn, Xn).
First we notice that (3.2) leads to

Tn = Tn−1 − α(Tn−1, Xn−1)Rn ≥ Tn−1(1−Rn).

Hence

− log(Tn) ≤ − log(Tn−1)− log(1− Rn) ≤ − log(α(Tn−1, Xn−1))− log(1−Rn). (4.12)

Moreover by (3.2),

δ(Xn, ∂D) ≥ δ(Xn−1, ∂D)− 2
√

α(Tn−1, Xn−1)ψ(Rn).

By its definition, α(t, x) ≤ e
2d
δ2(x, ∂D), and we obtain

δ(Xn, ∂D) ≥ δ(Xn−1, ∂D)
(

1−
√

2e

d
ψ(Rn)

)

,

and therefore

− log
( e

2d
δ2(Xn, ∂D)

)

≤ − log(α(Tn−1, Xn−1))− 2 log
(

1−
√

2e

d
ψ(Rn)

)

. (4.13)

Let us define Wn := −2 log
(

1−
√

2e
d
ψ(Rn)

)

− log(1−Rn). Combining (4.12) and (4.13) we

finally obtain

− log(α(Tn, Xn)) ≤ − log(α(Tn−1, Xn−1)) +Wn ≤ − log(α(t, x)) +
n

∑

k=1

Wk. (4.14)

Let us just note that (Wn) is a family of independent and identically distributed random
variables and (t, x) is the starting position of the algorithm. Let us recall that Un ≥ 0. We
obtain

E[U2
n] ≤ E

[(

κ− 1

2
log(α(Tn, Xn))

)2]

≤ E

[(

κ− 1

2
log(α(T0, X0)) +

n
∑

k=1

Wk

)2]

≤ 2
(

κ− 1

2
log(α(t, x))

)2

+ 2E
[(

n
∑

k=1

Wk

)2]

≤ 2
(

κ− 1

2
log(α(t, x))

)2

+ 2Var
(

n
∑

k=1

Wk

)

+ 2E
[

n
∑

k=1

Wk

]2

≤ 2
(

κ− 1

2
log(α(t, x))

)2

+ 2nVar(W1) + 2n2(E[W1])
2

≤ 2nVar(W1) + 2n2(E[W1]
2 + 1),

due to the hypothesis n ≥ κ − 1
2
log(α(t, x)). So Lemma A.2 implies the statement of the

Proposition 4.6: the upper-bound is quadratic with respect to n.
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Let us now point out a lower-bound for the expected value of the submartingale: (E[Un])n≥0.

Proposition 4.7. There exist two constants C3 ∈ R and C4 > 0, such that

E[Un] ≥ C3 + C4n, n ≥ 1. (4.15)

Proof. Since (Un)n≥0 is a submartingale we know that (E[Un])n≥0 is a non-decreasing se-
quence, but we need even more. In fact, due to the following lower-bound:

Un ≥
1

4
log

3

Tn
+

1

2
U(Xn) =: Vn,

it suffices to point out the existence of a constant L0 > 0 such that

E[Vn+1]− E[Vn] ≥ L0, ∀n ≥ 0. (4.16)

In order to compute such a lower-bound, we consider two cases: either α(Tn, Xn) = Tn (event
denoted by Tn) or α(Tn, Xn) 6= Tn (event denoted by T n).
Step 1. First case: α(Tn, Xn) = Tn. Then the definition of the random walk (3.2) implies
that

Tn+1 = Tn − α(Tn, Xn)Rn+1 = Tn(1− Rn+1) on Tn.
Hence

log
3

Tn+1
= log

3

Tn
− log(1− Rn+1) on Tn.

Let us denote by L1 = −1
4
E[log(1 − R1)] > 0. Since U(Xn) is a submartingale (U being

subharmonic in D), we get

E

[

Vn+11Tn

]

= E

[1

4
log

3

Tn+1

1Tn

]

+
1

2
E

[

E[U(Xn+1)|Fn]1Tn
]

≥ E

[1

4
log

3

Tn
1Tn

]

+ L1P(Tn) +
1

2
E

[

U(Xn)1Tn

]

≥ E

[

Vn1Tn

]

+ L1P(Tn). (4.17)

Step 2. Second case: α(Tn, Xn) 6= Tn. Let us recall that the random walk satisfies: Xn+1 =
Xn+2

√

α(Tn, Xn)ψd(Rn+1)Vn+1 where Rn+1 is a continuous random variable whose support
is the whole interval [0, 1] and whose distribution does not depend on n. Observe also that

ρ(Rn+1) :=

√

2e

d
ψd(Rn+1)

is also a continuous random variable with support [0, 1]. In other words, on the event
α(Tn, Xn) 6= Tn and given Rn+1 = r, the (n + 1)-th step of the random walk is exactly the
same as the (n + 1)-th step of the classical random walk on spheres (see the Appendix B)

21



with radius β = ρ(r), for which we can obtain some lower-bound. So using Proposition B.2,
we obtain

E

[

Vn+11T n

]

= E

[1

4
log

3

Tn+1
1T n

]

+
1

2
E[U(Xn+1)1T n

]

≥ E

[1

4
log

3

Tn
1T n

]

+
1

2
E

[

E[U(Xn+1)|σ(Rn+1, Tn, Xn)]1T n

]

≥ E

[1

4
log

3

Tn
1T n

]

+
1

2
E[(U(Xn) + L1{δ/4<1−ρ(Rn+1)<δ/2})1T n

]

≥ E

[

Vn1T n

]

+
L

2
P({δ/4 < 1− ρ(Rn+1) < δ/2} ∩ T n) (4.18)

= E

[

Vn1T n

]

+ L2P(T n), (4.19)

where L2 = L
2
P(δ/4 < 1 − ρ(R1) < δ/2), Rn+1 and (Tn, Xn) being independent. Finally

taking the sum of (4.17) and (4.18), we obtain (4.16) with L0 = min(L1, L2) > 0.

We end here the preliminary results concerning the submartingale (Un)n≥0. We are now
ready to deal with the rate of convergence of the random walk on moving spheres.

4.2 Rate of convergence of the algorithm

Let us consider the algorithm (Tn, Xn)n≥0 given by (3.2) and stopped as soon as α(Tn, Xn) ≤
ε. We assume that the starting position satisfies (T0, X0) = (t, x) ∈ R+×D. Then the mean
number of steps is bounded and the bound depends on | log ε|.
Proof of Theorem 4.2. If the starting position (t, x) satisfies α(t, x) ≤ ε then the algorithm
stops immediately (Nε = 0 a.s.) and the statement is satisfied. From now on, we assume
that α(t, x) > ε.

Step 1. A remark on the stopping rule. The statement of Theorem 4.2 concerns Nε, see (4.1),
the first time the random walk (Tn, Xn)n≥0 hits a ε-neighborhood of the boundary. Let us
introduce another stopping rule concerning Un := U(Tn, Xn), U being defined by (4.10):

N ′
ε := inf

{

n ≥ 0 : Un ≥ log
3

ε
+

1

d

}

.

Let us now point out that Nε ≤ N ′
ε a.s. for ε small enough (more precisely, we need ε ≤ 2d

e
).

Indeed, let us consider the first case: U(Xn) ≥ log 3
ε
+ 1

d
, then (4.9) implies that δ(Xn, ∂D) ≤

ε. Moreover, due to the condition ε ≤ 2d
e
, we get e

2d
δ2(Xn, ∂D) ≤ ε and therefore

α(Tn, Xn) ≤ ε.
On the other side, if 1

2
log 3

Tn
≥ log 3

ε
+ 1

d
≥ 1

2
log 3

ε
then Tn ≤ ε and finally α(Tn, Xn) ≤ ε.

So we deduce that Un ≥ log 3
ε
+ 1

d
implies that α(Tn, Xn) ≤ ε. In the sequel, we will find an

upper-bound for the mean value of N ′
ε.
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Step 2. The aim of the second step is to prove the existence of an integer η ∈ N and a
constant p < 1 both independent with respect to the starting position of the random walk
(T0, X0) = (t, x) and independent of the parameter ε such that

P(N ′
ε > η⌊− log ε⌋) ≤ p, (4.20)

for ε small enough. Let us note that the complementary event satisfies, by definition,

P(N ′
ε ≤ η⌊− log ε⌋) ≥ P(Uk ≥ βk),

where k = η⌊− log ε⌋ and βk = log 3+ 1+ 1
d
+ k/η. We deduce that there exists a particular

choice of the integer η such that, for ε small enough, βk < αk := (C3 + C4k)/2 where C3

and C4 are defined in Proposition 4.7. So it is sufficient to find a lower-bound of P(Uk > αk)
which should be positive when k is large. By Proposition 4.6, there exist two constants C1

and C2 such that

E[U2
n] ≤ (C1 + C2n)

2, for any n ≥ κ− 1

2
log(α(t, x)).

Due to the condition on the initial position α(t, x) > ε, the previous inequality is satisfied
for n ≥ ⌊− log ε⌋ when ε is small enough. In particular, it is satisfied for n = k = η⌊− log ε⌋.
We obtain

E[Uk] = E

[

Uk1{Uk≤αk}

]

+ E

[

Uk1{Uk>αk}

]

> C3 + C4k. (4.21)

Then by an application of (4.15) and the Cauchy-Schwarz inequality, we get

αk +
√

E[U2
k]
√

P(Uk > αk) > C3 + C4k.

Therefore, due to the upper-bound of the second moment,

αk + (C1 + C2k)
√

P(Uk > αk) > C3 + C4k.

We deduce

P(Uk > αk) ≥
1

4

(

C3 + C4k

C1 + C2k

)2

>
1

5

(

C4

C2

)2

,

for k large enough that is ε small enough. This implies the existence of the constant p > 0
in (4.20).

Step 3. Upper-bound of E[N ′
ε]. Due to the first step it is sufficient to obtain an upper-bound

of E[N ′
ε] in order to prove the statement of the theorem. Such a result is essentially based

on the Markov property of the sequence (Tn, Xn)n≥0: the second step implies in particular
that

P(N ′
ε > kη⌊− log ε⌋) ≤ pk, ∀k ≥ 1.
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Hence

E[N ′
ε] ≤

∑

k≥1

kη⌊− log ε⌋P
(

N ′
ε ≤ kη⌊− log ε⌋

∣

∣

∣
N ′
ε > (k − 1)η⌊− log ε⌋

)

×P(N ′
ε > (k − 1)η⌊− log ε⌋)

≤ η⌊− log ε⌋
∑

k≥1

kpk−1 =
η| log ε|
(1− p)2 .

5 Examples and numerics

The aim of this section is to illustrate the random walk on spheres algorithm introduced in
Section 4. Let us focus our attention on the numerical approximation of the solution to the
value problem:







∂tu(t, x)−∆xu(t, x) = 0, ∀(t, x) ∈ R+ ×D,
u(t, x) = f(t, x), ∀(t, x) ∈ R+ × ∂D,
u(0, x) = f0(x), ∀ x ∈ D,

(5.1)

for particular domains D. First we shall present results obtained for the hypercube D =]0, 1[d

and secondly the half of a sphere D = {x ∈ R
d : ‖x‖ < 1, x1 > 0}. Of course these

toy examples are not directly related to concrete situations in physics but they permit to
emphasize the efficiency of the algorithm. Their advantage relies in the easy computation of
the distance to the boundary. For more general situations, only this part of the procedure
has to be modified and can sometimes become quite painful.

5.1 Hypercube

Let us first introduce the functions which take part to the boundary conditions. We choose
a function with the following simple expression

f(t, x) = et
d
∏

i=1

xi(1− xi)1]0,1[(xi), x ∈ D, ∀t ≥ 0. (5.2)

Setting f0(x) = f(0, x), we observe that both the compatibility and the continuity conditions
are obviously satisfied. In this particular case, we have already pointed out, in the previous
sections, that there exists a unique (smooth) solution to the Initial-Boundary Value Problem
which can be approximated using the algorithm of moving spheres.

The solution can be approximated by uǫ defined by (4.2), the error being directly related
to the parameter ǫ. Since uǫ(t, x) is the expectation of a random variable, we shall use a
Monte-Carlo method in order to obtain an estimated value. Hence
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uεN(t, x) =
1

N

N
∑

k=1

f(Tε,k, Xε,k)1{Xε,k∈∂D} +
1

N

N
∑

k=1

f0(Xε,k)1{Xε,k /∈∂D}, (5.3)

where (Tε,k, Xε,k)k≥0 is a sequence of independent and identically distributed couples of ran-
dom variables, the distribution being defined at the begining of Section 4. The difference
between u(t, x) and uεN(t, x) actually relies on both the error described in Proposition 4.1
of order

√
ε on one hand and the classical error of Monte Carlo methods of order N−1/2 on

the other hand (the confidence interval depends as usual on the standard deviation of the
underlying random variable).
First let us present uεN(t, x) for a particular point: the center of the hypercube (x =
(0.5, . . . , 0.5) is the default setting in all this subsection) letting the time cross the whole
interval [0, 2].

Figure 3: uεN(t, x) versus t for N = 1 000, ε = 0.001, d = 3.

We present at the same time the associated Monte-Carlo 95%-confidence interval (Figure
3). Let us just notice that the choice N = 1 000 is not motivated by some computational
facilities but rather to produce a clear picture, the confidence interval becoming very small
for larger values of N . Of course the numerical method permits to observe directly the
distribution of the random variable

Zε = f(Tε, Xε)1{Xε∈∂D} + f0(Xε)1{Xε,k /∈∂D},

which drastically changes as time elapses (Figure 4 and 5).

In our example, small values of Zε are more frequently observed for small time values than
for large ones. Such behaviour of the random variable is not linked to the particular boundary
conditions we introduced, but relies on the following general argument. The random variable
Zε is obtained due to a stopping procedure onMn = (Tn, Xn) defined by (3.2). The sequence
is stopped as soon as either Xn is ε-close to the boundary ∂D (we call this event stop due
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Figure 4: Histogram of the distribution of 10 000 random variables Zε for various values of
t: t = 0.05 (left), t = 0.1 (right) ε = 0.001, d = 3.

Figure 5: Histogram of Zε for d = 3 (left) and d = 10 (right), t = 4, ε = 0.001.

to space constraint) or Tn is ε-close to 0 (stop due to time constraint). Then it seems quite
obvious that stops due to time constraint are more likely to occur when t becomes small (see
the proportion in Figure 6 left).

Let us now comment the algorithm efficiency by focusing our attention on the number of
steps. The distribution of this random number depends on several parameters: the dimension
d, the parameter ε and finally the choice of (t, x) (see histogram Figure 6 – right – for
a particular choice of parameters). We have pointed out an upper bound for the average
number of steps in Theorem 4.2. The numerics permit to present different curves illustrating
all the dependences: the logarithm growth with respect to the parameter ε, the surprising
behavior when the space position x varies and the influence of the dimension (Figures 7 and
8). Let us notice that this algorithm is especially efficient (see the small number of steps)
even in high dimensions.
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Figure 6: Proportion of stops due to space constraint versus t for 10 000 trials, ε = 0.001,
d = 3 (left); histogram of the number of steps t = 1, ε = 0.001, d = 3.

Figure 7: Averaged number of steps versus n for ε = 0.5n and x the center of the hypercube
(left), averaged number of steps versus u for x = (u, u, u) and ε = 0.001. In both situations:
10 000 trials, d = 3, t = 1.
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Figure 8: Averaged number of steps versus the dimension d, ε = 0.001, 10 000 trials, t = 1.
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5.2 Half sphere

All the studies developed in the hypercube case can also be considered for the half sphere.
We introduce particular boundary conditions:

f(t, x) = (1 + cos(2πt))‖x‖, ∀x ∈ D, ∀t ≥ 0, (5.4)

with f0(x) = f(0, x). Similarly as above, we present:

• the approximated solution uεN(t, x) for the default value x = (0.5, 0 . . . , 0) and for t
varying in the interval [0, 4] (Figure 9),

• the distribution of the Monte Carlo underlying variable Zε for different values of t and
different dimension values d (Figures 10 and 11),

• different curves illustrating the influence of the parameter ε, the starting position x
and the dimension d on the averaged number of steps (Figures 12 and 13)

Figure 9: uεN(t, x) versus t for N = 1 000, ε = 0.001, d = 3.

Figure 10: Histogram of the distribution of 10 000 random variables Zε for various values of
t: t = 0.01 (left), t = 0.05 (right) ε = 0.001, d = 3.
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Figure 11: Histogram of Zε for d = 3 and t = 1 (left), for d = 10 and t = 0.01 (right), both
with ε = 0.001.

Figure 12: Averaged number of steps versus n for ε = 0.5n and x = (0.5, 0, 0) (left), averaged
number of steps versus u for x = (u, 0, 0) and ε = 0.001. In both situations: 10 000 trials,
d = 3, t = 1.

Figure 13: Averaged number of steps versus the dimension d, ε = 0.001, 10 000 trials, t = 1.
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A Technical results

We first start with Jensen’s inequality:

Lemma A.1. Let X and Y be two random variables and A a σ-algebra, then

E[max(X, Y )] ≥ max(E[X ],E[Y ]) and E[max(X, Y )|A] ≥ max(E[X|A],E[Y |A]).

Proof. We shall just prove the first inequality. The proof of the second one is similar. We
get

E[max(X, Y )] = E[E[max(X, Y )|X ]] ≥ E[max(X,E[Y |X ])].

Since max(X,E[Y |X ]) ≥ X , we deduce that E[max(X,E[Y |X ])] ≥ E[X ]. On the other
side max(X,E[Y |X ]) ≥ E[Y |X ] and therefore E[max(X,E[Y |X ])] ≥ E[E[Y |X ]] = E[Y ].
Combining both inequalities leads to the result.

Let us now present properties concerning a particular probability distribution arising in
the random walk on moving spheres.

Lemma A.2. Let W := −2 log
(

1−
√

2e
d
ψd(R)

)

−log(1−R) where the function ψd is defined
by (2.3) and R is a random variable with the following probability density function:

fR(s) =
1

Γ(d/2)

ψdd(s)

s
1[0,1](s) =

1

sΓ(d/2)

(

s log(s−d/2)
)d/2

1[0,1](s).

Then W has its two first moments (denoted byM1 andM2) bounded.

Proof. Let us first note that W is a non-negative random variable, since R and
√

2e
d
ψd(R)

are [0, 1]-valued. If we denote Wa = −2 log
(

1 −
√

2e
d
ψd(R)

)

and Wb := − log(1 − R), then
it suffices to prove that E[W 2

a ] <∞ and E[W 2
b ] <∞.

E[W 2
b ] =

∫ 1

0

fb(s) ds with fb(s) =
(log(1− s))2
sΓ(d/2)

(

s log(s−d/2)
)d/2

.

Let us observe that fb(s) tends to 0 as s → 0 and in a neighborhood of 1, fb(s) ∼ C1(1 −
s)d/2(log(1− s))2 where C1 > 0 is a constant. We deduce that fb is integrable on the whole
interval [0, 1] which implies that E[W 2

b ] <∞. For Wa we get

E[W 2
a ] =

∫ 1

0

fa(s) ds with fa(s) =
4 log2

(

1−
√

2e
d
s log(s−d/2)

)

sΓ(d/2)

(

s log(s−d/2)
)d/2

.

In a neigborhood of 0, we have fa(s) ∼ C2s
d/2(log s)d/2+1, in a neighborhood of 1, we observe

fa(s) ∼ C3(1−s)d/2+1 and finally in a neigborhood of 1/e, fa(s) ∼ C4 log
2 |s− 1

e
|. We deduce

that fa is integrable on the whole interval [0, 1] and E[W 2
a ] <∞.
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B Improvements for the classical random walk on spheres

In this section, we focus our attention to the classical random walk on spheres. We consider
an 0-thick domain D, see the definition developed in (4.3), and the Euclidean distance to
the boundary d(x) = δ(x, ∂D). The random walk is then defined as follows:

• we start with an initial condition X0 and fix two parameters ε > 0 and β ∈]0, 1[.

• While d(Xn) > ε, we construct

Xn+1 = Xn + βd(Xn)γn (B.1)

where (γn) stands for a sequence of independent random variables uniformly distributed
on the unit sphere in R

d.

We adapt here several results of [2] to our particular situation. Let us recall that U is the
energy function defined by (4.10) which is based on the set of measuresM, defined by (4.5),
and on the Riesz potential. Since D is a 0-thick domain, the following Lemma holds.

Lemma B.1. There exist two constants δ > 0 and η > 0, such that: for any y ∈ D (we
define x the closest point of y belonging to the boundary) and any measure µ ∈M, we have:

1. either U(z) > Uµ(z) + 1 whenever ‖z − x‖ < δd(y) and d(z) > δ/4 d(y)

2. or µ(B(y, 2d(y))) ≥ ηd(y)d.

This lemma, which is quite general and is not directly linked to the random walk, has an
important consequence on it (for the proof of Lemma B.1, see [2]).

Proposition B.2. Let us consider δ the constant of Lemma B.1 and the random walk
(Xn)n≥0 defined by (B.1) with β ∈]1− δ/2, 1− δ/4[. Then there exists a constant L > 0 such
that the sequence Un := U(Xn) satisfies

E[Un+1 − Un|Un] > L, ∀n ≥ 0.

In [2], the authors consider a general random walk defined by (B.1). They prove that
there exist an interger k and a constant L > 0 such that E[Un+k − Un|Un] > L. Here we
adapt the proof by introducing a particular condition on the parameter β which permits in
fact to set k = 1.

Proof. Let us consider Xn. Due to the weak compactness of the set of measures M (see
Remark 4.3), there exists a measure µ ∈M such that

Un = U(Xn) = Uµ(Xn).

For this particular measure, either the first or the second point of the previous lemma are
satisfied.
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Step 1. Let us assume that the first point is satisfied that is, U(z) > Uµ(z) + 1 when
‖z − x‖ < δd(y) and d(z) > δ/4 d(y). Since Uµ(Xn) is a submartingale, we get

E[Un+1 − Un|Xn] = E[Un+1 − Uµ
n+1|Xn] + E[Uµ

n+1 − Uµ
n |Xn]

≥ E[Un+1 − Uµ
n+1|Xn]

≥ P

(

‖Xn+1 − xn‖ < δd(Xn), d(Xn+1) > (δ/4)d(Xn)
∣

∣

∣
Xn

)

,

where xn is the closest point of Xn on the boundary ∂D. We denote by un = xn−Xn

d(Xn)
which

belongs to the unit sphere. Using the definition of the random walk and the particular choice
of the parameter β, we get immediately

d(Xn+1) > (1− β)d(Xn) > δ/4d(Xn),

and

‖Xn+1 − xn‖ = d(Xn)‖un − βγn‖ ≤ d(Xn)
(

(1− β)‖γn‖+ ‖γn − un‖
)

= d(Xn)(1− β + ‖γn − un‖) < d(Xn)(δ/2 + ‖γn − un‖). (B.2)

Let us recall that un is a unit vector. Then we define the set Γun of points u belonging to
the unit sphere of dimension d such that ‖u− un‖ < δ/2. Let us just note that Γun is a non
empty open set. We observe that P(γn ∈ Γun) =: p > 0 for any n ≥ 0 and does not depend
on un due to rotational invariant of the distribution. Furthermore, for any γn ∈ Γun , (B.2)
implies that ‖Xn+1 − xn‖ < δd(Xn). Therefore

E[Un+1 − Un|Xn] ≥ P

(

‖Xn+1 − xn‖ < δd(Xn), d(Xn+1) > (δ/4)d(Xn)
∣

∣

∣
Xn

)

≥ P(γn ∈ Γun) = p > 0.

Step 2. The second case concerns the condition

µ(B(y, 2d(y))) ≥ ηd(y)d.

By the Green formula, for a C2-smooth function h,

E[h(Xn+1)|Xn]− h(Xn) =

∫

S(Xn,βd(Xn))

h(y)dσ(y)− h(Xn)

=

∫ βd(Xn)

0

r1−d
∫

B(Xt,r)

∆h(y)dV (y) dr.

Since ∆Uµ(y) = 2(d+ 2)
∫∞

0
µ(B(y,r))
rd+3 dr outside the support of the measure µ (consequently

Uµ is a C2-function in the domain D), then, for any y satisfying ‖y−Xn‖ ≤ βd(Xn), we get

∆Uµ(y) ≥ 2(d+ 2)µ(B(Xn, 2d(Xn)))

∫ ∞

(2+β)d(Xn)

dr

rd+3
=

2µ(B(Xn, 2d(Xn))

((2 + β)d(Xn))d+2

≥ 2η

(2 + β)d+2
d(Xn)

−2.
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Applying the previous results to the particular regular function h = Uµ, we deduce:

E[Un+1 − Un|Xn] = E[Uµ(Xn+1)|Xn]− Uµ(Xn) ≥ Cd(Xn)
−2

∫ βd(Xn)

0

r dr =
Cβ2

2
,

for some positive constant C depending on η, β and d. Since E[Un+1 − Un|Un] = E[Un+1 −
Un|Xn], we obtain the announced result.
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