
HAL Id: hal-01379897
https://hal.inria.fr/hal-01379897

Submitted on 14 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local traces: an over-approximation of the behaviour of
the proteins in rule-based models

Jérôme Feret, Kim Quyen Ly

To cite this version:
Jérôme Feret, Kim Quyen Ly. Local traces: an over-approximation of the behaviour of the proteins
in rule-based models. CMSB 2016 - Fourteenth Conference on Computational Method in Systems
Biology, Sep 2016, Cambridge, United Kingdom. pp.116-131, �10.1007/978-3-319-45177-0_8�. �hal-
01379897�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49326757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01379897
https://hal.archives-ouvertes.fr

Local traces: an over-approximation of the
behaviour of the proteins in rule-based models?

Jérôme Feret1 and Kim Lý Quyên1

DI-ENS (INRIA/ÉNS/CNRS/PSL?), Paris, France
feret@ens.fr, quyen@di.ens.fr

Abstract. Thanks to rule-based modelling languages, we can assemble
large sets of mechanistic protein-protein interactions within integrated
models. Our goal would be to understand how the behaviour of these
systems emerges from these low-level interactions. Yet this is a quite
long term challenge and it is desirable to offer intermediary levels of
abstraction, so as to get a better understanding of the models and to
increase our confidence within our mechanistic assumptions.
In this paper, we propose an abstract interpretation of the behaviour of
each protein, in isolation. Given a model written in Kappa, this abstrac-
tion computes for each kind of protein a transition system that describes
which conformations this protein can take and how a protein can pass
from one conformation to another one. Then, we use simplicial complexes
to abstract away the interleaving order of the transformations between
conformations that commute. As a result, we get a compact summary of
the potential behaviour of each protein of the model.

1 Introduction

Thanks to rule-based modelling languages, as Kappa, one can model accurately
the biochemical interactions between proteins involved for instance in signalling
pathways, without abstracting away a priori, when they are available, the mech-
anistic details about these interactions. For example, one can describe faithfully
the formation of dimmers, scaffold proteins, and the phosphorylation of proteins
on multiple sites, in a very compact way. Yet, understanding how the behaviour
of the systems may emerge from these interactions remains a challenge. More-
over, when models become large, no matter they have been humanly written,
or automatically assembled from the literature, as suggested in [14], it becomes
crucial to get some automatic tools to understand the content of the models and
to check that what is modelled matches with what the modeller has in mind.

We use the abstract interpretation framework [3,4] to systematically derive
automatic static analyses for Kappa models. Applications range from model

? This material is based upon works partially sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the U. S. Army Research Office under
grant number W911NF-14-1-0367, and by the ITMO Plan Cancer 2014. The views,
opinions, and/or findings contained in this article are those of the authors and should
not be interpreted as representing the official views or policies, either expressed or
implied, of DARPA, the U. S. Department of Defense, or ITMO.

debugging, to the abstraction of complex properties offering new insights to in-
vestigate the system overall behaviour. In this paper, we propose to study the
behaviour of each protein in isolation. Starting from a formal definition of the
trace semantics, we collect the behaviour of each kind of protein independently,
and summarise the potential steps to reach these conformations within a transi-
tion system. When proteins have too many interaction sites, it is crucial to take
benefit of the potential independence between some conformation changes in
some protein states. Taking inspiration from simplicial complexes [8], we intro-
duce the notion of macrotransition systems, in which the behaviour of different
subsets of sites can be described independently, abstracting away the potential
interleaving between their behaviour. The result is a scalable and convenient way
to visualise both the different conformations that each protein may take and the
causal relations among the different conformation changes.

Related works. A qualitative analysis is proposed in [9,6]. This abstraction cap-
tures all the conformations an agent may take in a Kappa model. In the present
paper, we go further and compute, for each agent, a transition system that de-
scribes the causal relationships among its potential conformational changes.

Causality plays an important role in the understanding and the verification
of concurrent systems, as found in Systems Biology. Several frameworks are
available to study and understand causality, and to reduce the combinatorial
complexity of the models, by exploiting pair of commutative transitions. Partial
order reduction is broadly used in model checking [10]. It consists in restricting
the transitions of a concurrent system so as to force its computation to follow
a canonical order for the interleaving of commutative transitions. Event struc-
tures [13] focus on the causal relations between events in a concurrent system.
In [5], they provide a compact description of trace samples, in which the events
which are not necessary, are discarded. Yet, it is worth noting that these dis-
carded events may have a kinetics impact. An application of event structures in
static analysis can be found in [2]. Since they focus on accumulating the effect of
causally related transformations, event structures somehow obfuscate the notion
of states. Our notion of macrotransition systems is inspired from simplicial com-
plexes. Simplicial complexes can be used for describing concurrent systems up
to the interleaving order of commutative transitions [8]. They describe the state
of the system as a point moving along a geometrical object, in which commu-
tative transitions are denoted by higher dimension faces. Our formalism offers
a convenient compact abstraction of all the potential conformation changes of a
protein, without discarding any transition.

Outline. In Sect. 2, we introduce two case studies to motivate our framework.
In Sect. 3, we describe Kappa. In Sect. 4, we define its finite trace semantics,
that we abstract in Sect. 5, by over-approximating the behaviour of each kind
of agent thanks to local transition systems. Lastly in Sect. 6, we explain how to
abstract away the interleaving order of the transitions that commute in these
local transition systems.

2

E .R

(a) ligand/receptor binding

E/R

(b) ligand/receptor unbinding

R.R

(c) receptor symmetric binding

R/R

(d) receptor symmetric unbinding

R.int

(e) receptor asymmetric binding

R/int

(f) receptor asymmetric unbinding

Fig. 1. Rules for dimmer formation.

R/int

||

init //
E.R

22
R.R

22

E/R
rr

R.int ((

R.int

<<
R/R
rr

R/int
hh

Fig. 2. The local transition system of membrane receptors.

2 Case studies

So as to motivate our goal, we introduce two models as case studies.

The first model describes the formation of some dimmers. Two kinds of pro-
teins are involved: ligands and membrane receptors. When activated by ligands,
receptors can form stable dimmers, as described by the means of the interac-
tion rules in Fig. 1. We are interested in one particular binding site in ligand
proteins, and in four sites in receptor proteins. Ligand proteins are depicted as
circles, whereas receptor proteins are depicted as rectangles. Their binding sites
are drawn as smaller circles. Some sites are connected pair-wisely. For the others,
we use the symbol ’a’ to specify a free site and the symbol ’−’ to specify a site
that is bound to an unspecified site. By convention, the site alone on its side in
a receptor protein is the one that can bind to a ligand protein; the three sites
on the other side can form bonds with other receptors (their order matters).

Let us now give more details about the interactions between these proteins.
A ligand protein and a receptor protein may bind to each other provided that
the sites that are dedicated to this binding are both free (e. g. see Fig. 1(a)), or
detach from each other, provided that the receptor protein is not yet involved
in a dimmer (e. g. see Fig. 1(b)). Two activated receptor proteins can form a
symmetric bond by connecting their respective top-most site (e. g. see Fig. 1(c)),

3

a+
1

(a) a1 activation

a−
1

(b) a1 deactivation

b+
1

(c) b1 activation

b−
1

(d) b1 deactivation

a+
2

(e) a2 activation

a−
2

(f) a2 deactivation

b+
2

(g) b2 activation

b−
2

(h) b2 deactivation

P .K

(i) binding

P/K

(j) unbinding

Fig. 3. Rules for the protein with four phosphorylation sites.

a+
2

((

b−2

��

a+
2

((

a−2
hh

b−2

��
init // oo

??

��

b+
2

@@
a−2

hh
__

��

//
P.K

22

P/K
rr

a+
1

33
b+
1

33

a−1ss
b−1ss

Fig. 4. Local transition system for the protein with four phosphorylation sites.

or break this bond unless an asymmetric bond has been formed already (e. g. see
Fig. 1(d)). To gain stability, a dimmer with a symmetric link can form an asym-
metric one by connecting one of its free site in the first receptor protein to the
free site of the other kind in the second receptor protein (e. g. see Fig. 1(e)), or
break this connection (e. g. see Fig. 1(f)).

Writing interaction rules can be error prone. Especially, which amount of
information should be put in rules, is often not so clear. So as to gain confidence
in our modelling process, we propose to compute, for each kind of protein, a local
transition system. The goal is to abstract the different conformations that each
protein may take, and how a given protein may pass from one conformation to
another one. As an example, the local transition system for receptor proteins is
given in Fig. 2 (there are two transitions for the rule R/Int, since it operates
differently on the first and on the second receptort of its left hand side; the same
remark holds for the rule R.Int). We claim that it provides a helpful summary
of the effect of the rules on the behaviour of each protein instance.

4

When proteins have too many interaction sites, we can no longer describe
extensively their sets of potential conformations. Our second model deals with a
protein with four phosphorylation sites and a single binding site. The lower left
(resp. lower right) site can be phosphorylated without any condition (e. g. see
Figs. 3(a) and 3(e)). The upper left (resp. upper right) site can get phosphory-
lated, if the lower left (resp. lower right) site is still phosphorylated (e. g. see
Fig. 3(c) and 3(g)). When the four sites are all phosphorylated, the conformation
of the protein changes which reveals the binding site. Then the protein can bind
to another kind of protein (e. g. see Fig. 3(i)). This bond can be released with
no condition (e. g. see Fig. 3(j)). Phosphorylated sites can be dephosphorylated
under the following conditions: as long as a protein is bound, none of its site can
be dephosphorylated; as long as the upper left site is phosphorylated, the lower
left site cannot be dephosphorylated (e. g. see Figs. 3(b), 3(d), 3(f), and 3(h)).

We notice that, in a protein instance, the potential transformations of the
states of both sites on the left commute with the potential transformations of
those of both sites on the right. Thanks to this, we can describe the transition
system between the different conformations of the protein in a more compact
way (e. g. see Fig. 4). In this transition system, the behaviour of the pair of sites
on the left and of the pair of sites on the right is described as two independent
subprocesses. This description is inspired by simplicial complexes [8]. It describes
independent processes modulo the interleaving order of their execution.

3 Kappa

In this section, we describe Kappa and its single push-out (SPO) semantics.
Firstly we define the signature of a model.

Definition 1. A signature is a tuple Σ = (Σag, Σsite, Σint, Σ
int
ag-st, Σ

lnk
ag-st) where:

1. Σag is a finite set of agent types, 2. Σsite is a finite set of site identifiers,
3. Σint is a finite set of internal state identifiers, 4. and Σlnk

ag-st : Σag → ℘(Σsite)

and Σint
ag-st : Σag → ℘(Σsite) are site maps.

Agent types in Σag denote agents of interest, as kinds of proteins for instance.
A site identifier in Σsite represents an identified locus for capability of interac-
tions. Each agent type A ∈ Σag is associated with a set of sites which can bear
an internal state Σint

ag-st(A) and a set of sites which can be linked Σlnk
ag-st(A). We

assume without any loss of generality that Σlnk
ag-st(A) ∩ Σint

ag-st(A) = ∅, for any

A ∈ Σag and we write Σag-st(A) for the set of sites Σlnk
ag-st(A)]Σint

ag-st(A).

Example 1. We define the signature for the model in the second case study as
Σ := (Σag, Σsite, Σint, Σ

int
ag-st, Σ

lnk
ag-st) where: Σag := {P ,K}; Σsite := {a1 , a2 , b1 ,

b2 , x }; Σint := {◦, •}; Σint
ag-st := [P 7→ {a1 , a2 , b1 , b2},K 7→ ∅]; Σlnk

ag-st := [P 7→
{x },K 7→ {x }]. The agent type P denotes the first kind of proteins and K the
second one; the site identifier x denotes the binding site (both in P and K), and
the site identifiers a1, a2, b1, b2 denote respectively the lower left, upper left,
lower right, and upper right sites in the protein P .

5

(a) G1 (b) G2 (c) G3 (d) The embedding f : G1
� � // G3

Fig. 5. Three site-graphs G1, G2, and G3, and an embedding f .

Site-graphs describe both patterns and chemical mixtures. Their nodes are
typed agents with some sites which can bear internal states and binding states.

Definition 2. A site-graph is a tuple G = (A, type,S,L, pκ) where: 1. A ⊆ N
is a finite set of agents, 2. type : A → Σag is a function mapping each agent to
its type, 3. S is a set of sites such that S ⊆ {(n, i) | n ∈ A, i ∈ Σag-st(type(n))},
4. L is a function between the sets {(n, i) ∈ S | i ∈ Σlnk

ag-st(type(n))} and {(n, i) ∈
S | i ∈ Σlnk

ag-st(type(n))} ∪ {a,−}, such that for any two sites (n, i), (n′, i′) ∈ S,
we have (n′, i′) = L(n, i) if and only if (n, i) = L(n′, i′); 5. and pκ is a function
between the sets {(n, i) ∈ S | i ∈ Σint

ag-st(type(n))} and Σint.

A site (n, i) ∈ S such that i ∈ Σint
ag-st(type(n)) is called a property site,

whereas a site (n, i) ∈ S such that i ∈ Σlnk
ag-st(type(n)) is called a binding site.

Whenever L(n, i) =a, the binding site (n, i) is free. Various levels of information
can be given about the sites that are bound. Whenever L(n, i) = −, the binding
site (n, i) is bound to an unspecified site. Whenever L(n, i) = (n′, i′) (and hence
L(n′, i′) = (n, i)), the sites (n, i) and (n′, i′) are bound together.

For a site-graph G, we write as AG its set of agents, typeG its typing function,
SG its set of sites, LG its set of links, and pκG its set of the internal states.

A mixture is a site-graph in which the state of each site in each agent is
documented. Formally, a site-graph G is a chemical mixture, if and only if,
SG = {(n, i) | n ∈ AG, i ∈ Σag-st(typeG(n))}.

Example 2. Three site-graphs G1, G2, and G3 are drawn in Figs. 5(a), 5(b),
and 5(c). For the sake of brevity, we only give the explicit definition of the first
one: 1. AG1

= {1, 2}, 2. typeG1
= [1 7→ P , 2 7→ K], 3. SG1

= {(1, x), (2, x)},
4. LG1

= [(1, x) 7→ (2, x), (2, x) 7→ (1, x)], 5. pκG1
= []; Among these three

site-graphs, we notice that only G3 is a chemical mixture.

Two site-graphs can be related by structure-preserving injective functions,
which are called embeddings. the notion of embedding is defined as follows:

Definition 3. An embedding h : G � � // H between two site-graphs G and
H is a function of agents h : AG → AH satisfying, for all agent identifiers
m, n ∈ AG, for all site identifiers i ∈ Σag-st(typeG(n)), i′ ∈ Σag-st(typeG(n′)),
and for all internal state identifier ι ∈ Σint: 1. if m 6= n, then h(m) 6= h(n);
2. typeG(n) = typeH(h(n)); 3. if (n, i) ∈ SG, then (h(n), i) ∈ SH ; 4. if L(n, i) =
(n′, i′), then L(h(n), i) = (h(n′), i′); 5. if L(n, i) =a, then L(h(n), i) =a; 6. if
L(n, i) = −, then L(h(n), i) ∈ {−}∪SH ; 7. if pκ(n, i) = ι, then pκ(h(n), i) = ι.

6

R′′

L′
r′

� ,2

r′′ �)0

R′
-

h
!

;;

L
r � ,2

?�
hL

OO

R

?�
hR

OO

, �

h′R

QQ

(a) Push-out.

� ,2

?�

f

OO

P/K � ,2
?�

OO

(b) Application of the rule P/K along the embedding f .

Fig. 6. Rule application.

Example 3. An embedding between G1 and G3, is shown in Fig. 5(d).

Two embeddings respectively between two site-graphs E and F , and between
the site-graph F and a site-graph G, compose in the usual way (and form an
embedding between the site-graphs E and G). Moreover, two site-graphs E and
F , such that there exists an embedding between E and F , and an embedding
between F and E, are said isomorphic. An embedding between two isomorphic
site-graphs, is called an isomorphism. Given three site-graphs L, R, and D, a
couple of embeddings respectively between the site-graphs D and L, and between
the site-graphs D and R, is called a span between L and R. Besides, a couple
of embeddings respectively between the site-graphs L and D, and between the
site-graphs R and D is called a cospan between L and R.

Transformations between site-graphs are described by rules (e. g. see Figs. 1
and 3). For the sake of simplicity, we assume that rules can break and create
bonds between sites, and can change the internal states of sites, but we consider
neither agent degradation, nor agent creation.

These requirements are formalised in the following definition:

Definition 4. A rule is a span of embeddings L ? _
hLoo D

� � hR // R such that:
1. AD = AL and AD = AR; 2. for all agents n ∈ AD, hL(n) = n and hR(n) = n;
3. SD = SL and SD = SR; 4. for all sites (n, i) ∈ SD, if LR(n, i) = −, then
LL(n, i) = −.

Since we do consider neither agent creation, nor agent degradation, we can as-
sume that the agents in the left hand side and in the right hand side of a rule
are the same (constraint 1) and that both embeddings preserve agent identifiers
(constraint 2). The constraint 3 ensures that, in a rule, sites cannot be removed
or added. Lastly, the constraint 4 ensures that, when the binding state of a site
is modified, it is not replaced with the state −.

A rule L ? _oo D
� � // R is usually denoted as L

� ,2 R.
Rules can be applied to site-graphs via an embedding, by the means of a

push-out construction.

Definition 5 ([5]). Let r be a rule L
� ,2 R, L′ be a site-graph, and hL be an

embedding between the site-graphs L and L′. Then, there exists a rule r′ between

7

the site-graph L′ and a site-graph R′ and an embedding hR between the site-
graphs R and R′ such that both following properties are satisfied: 1. hRr = r′hL;
2. for all rule r′′ between the site-graph L′ and a site-graph R′′ and all embedding
h′R between R and R′′ such that: h′Rr = r′′hL, there exists a unique embedding h
between R′ and R′′ such that r′′ = hr′ and hR′′ = hhR′ . With these notations, we
say that there is a transition from the state L′ into the state R′ via a computation

step with the label (r, hL), and we write L′
(r,hL)−−−−→ R′. Moreover, with the same

notations, whenever the site-graph L′ is a chemical mixture, the site-graph R′ is
a chemical mixture as well.

In Def. 5, the compositions between rules and embeddings are defined by the
the means of a pull-back construction.

Example 4. The embedding f between the site-graph G1 and the left hand side
of the rule P/K induces a computation step as described in Fig. 6(b).

In Kappa, a modelM (over a given signature Σ) is defined as a pair (G0,R)
where: 1. G0 is a chemical mixture; 2. and R is a set of rules. The chemical mix-
ture G0 denotes the initial state. Since we focus only on qualitative properties,
we do not associate rules with kinetic rates.

4 Trace semantics

In this section, we define the semantics of a model (written in Kappa) as the set
of the traces that is induced by the underlying transition system.

We assume that we are given Q a set of states and L a set of labels. We
call a transition any triple (q, λ, q′) in the set Q × L × Q. In Kappa, states are
chemical mixtures whereas transition labels are pairs composed of a rule and an
embedding between the left hand side of this rule and a chemical mixture.

A transition system is given by a set of initial states and a set of transitions,
as formalised in the following definition:

Definition 6 (Transition system). A transition system is a pair (Q0, T)
where: 1. Q0 ⊆ Q; 2. T ⊆ Q× L×Q.

We denote as TQ,L the set of all the transition systems over Q and L. Tran-
sition systems can be ordered by the relation v that is defined as (Q0, T) v
(Q′0, T

′) if and only if 1. Q0 ⊆ Q′0, 2. and T ⊆ T ′. The pair (TQ,L,v) is indeed a
complete lattice. This means that any family (Ti)i∈I of transition systems has a
least upper bound, that we denote by t{Ti | i ∈ I} (this way, 1. for each element
i ∈ I, Ti v t{Ti | i ∈ I}, 2. and for any transition system Y ∈ TQ,L such that
Ti v Y for each element i ∈ I, we have t{Ti | i ∈ I} v Y).

Each modelM := (G0,R) in Kappa is associated with the transition system
(Q0, T) where 1. Q0 = {G0}; 2. and T is the set of the transitions (L′, (r, hL), R′)

such that L′
(r,hL)−−−−→ R′ as defined in Def. 5.

Each transition system induces a set of traces. In this paper, we focus on
finite traces, that are made of an initial state followed by a (potentially empty)

8

finite sequence of transitions, each of them starting from the state the previous
transition had ended in. This is formalised in the following definition:

Definition 7 (Finite traces). A finite trace is a pair τ = (q′0, (qi, λi, q
′
i)1≤i≤p),

where q′0 is a state (in Q), and (qi, λi, q
′
i)1≤i≤p is a family of transitions (in

Q× L×Q), such that q′i−1 = qi for each integer i between 1 and p.

We denote as T ?Q,L the set of all the traces over the sets Q and L.
With the notations of Def. 7, we call the state q′0 (resp. q′p) the initial (resp. the

final) state of the trace τ and we denote it as fst(τ), (resp. as last(τ)). When a
trace is made of a single state, we write it as q instead of (q, ()). Besides, any
transition t := (qp+1, λp+1, q

′
p+1) such that the state qp+1 is equal to the final

state q′p of the trace τ , can be concatenated to the trace τ . In such a case, we
write τ a (qp+1, λp+1, q

′
p+1) for the finite trace (q′0, (qi, λi, q

′
i)1≤i≤p+1).

A transition system (Q0, T) induces a set of traces γQ,L(Q0, T), that is defined
as the set of the traces (q′0, (qi, λi, q

′
i)1≤i≤p) such that: 1. the state q′0 belongs to

the set Q0; 2. and for each integer i between 1 and p, the transition (qi, λi, q
′
i)

belongs to the set T . The set of traces γQ,L(Q0, T) can also be defined as the least
fix-point of the operator FQ0,T that maps any set of traces X ∈ ℘(T ?Q,L) into the
set of traces {q | q ∈ Q0}∪ {τ a (q, λ, q′) | τ ∈ X ∧ last(τ) = q ∧ (q, λ, q′) ∈ T}.
The operator FQ0,T is monotonic (that is to say that, for any two sets of traces
X,Y ∈ ℘(T ?Q,L), if X ⊆ Y , then FQ0,T (X) ⊆ FQ0,T (Y)). By [12], it follows that
FQ0,T has a fix-point that is included in any other fix-point. We denote this
fix-point lfp FQ0,T (thus, we have 1. lfp FQ0,T = FQ0,T (lfp FQ0,T), 2. and for
each set X ′ ⊆ ℘(T ?Q,L) such that X ′ = FQ0,T (X ′), we have: lfp FQ0,T ⊆ X ′).

Conversely, a set X ⊆ T ?Q,L of finite traces can be abstracted by the transition
system αQ,L(X) that is defined as the pair (Q0, T) with: 1.Q0 = {fst(τ) | τ ∈ X};
2. T = {ti| ∃(q0, (ti)1≤i≤p) ∈ X, i ∈ J1, pK}. The pair (αQ,L, γQ,L) forms a Galois
connection between the complete lattices (℘(T ?Q,L),⊆) and (TQ,L,v). This means
that for any transition system (Q′0, T ′), we have αQ,L(X) v (Q′0, T ′), if and only
if, X ⊆ γQ,L(Q′0, T ′). It follows (e. g. see [4]), that: 1. functions αQ,L and γQ,L
are both monotonic; 2. the function αQ,L maps each set of finite traces to the
smallest (for v) transition system which induces this set of traces.

5 Local transition systems

In Sect. 4, we have associated each model with a transition system, that describes
the set of the finite traces of this model. However, such transition systems are
usually too large to be computed, or even if they could, they are too complex to
help understanding the behaviour of the models. We propose to simplify these
transition systems by focusing on the behaviour of each protein independently,
abstracting away which proteins are bound together. This abstraction had al-
ready been applied in [9,6], to infer the relationships among the state of sites in
protein instances. Here we extend this static analysis to traces.

Firstly we explain how to track the behaviour of each protein independently
while forgetting about the bonds between pairs of binding sites. For any agent

9

(a) β1(G1) (b) β1(G2) (c) β1(G3) (d) Embedding β1(G1)
� � // β1(G3)

Fig. 7. Abstraction of the site-graphs G1, G2, G3, and of the embedding f .

L′
r′

� ,2

� &-

R′
- !
;;

r � ,2?�

OO

� ?

OO

�+

SS

(a) Concrete push-out.

βn′(L
′)

βn′ (r
′)

]� ,2

]
� '.

βn′(R
′)
, � !
::

]βn(r) � ,2?�

OO

� ?

OO

�+

QQ

(b) Abstract push-out.

]� ,2

?�

OO

β1(P/K)]� ,2

?�

OO

(c) Application of the ab-
straction of the rule P/K.

Fig. 8. The abstraction of a push-out (in the concrete) is a push-out (in the
abstract), and application of rule (in the abstract).

identifier n ∈ N, we denote by βn the function that, when applied to a site-
graph G containing an agent with identifier n: 1. replaces any bond between two
sites by two occurrences of the symbol ‘−’; 2. restricts the site-graph G to the
agent with identifier n; 3. renames the identifier n with 1. More formally, the
site-graph βn(G) is defined by: 1. Aβn(G) := {1}; 2. typeβn(G) := [1 7→ typeG(n)];
3. Sβn(G) := {(1, i) | (n, i) ∈ SG}; 4. the function Lβn(G) maps each site (1, i)

such that i ∈ Σlnk
ag-st(typeG(n)) and (n, i) ∈ SG, to the symbol ‘a’ whenever

LG(n, i) =a, and to the symbol ‘−’ otherwise; 5. the function pκβn(G) maps
each site (1, i) such that i ∈ Σint

ag-st(typeG(n)) and (n, i) ∈ SG, to pκG(n, i).

Example 5. The restriction of the site-graphs G1, G2, and G3 to their agent with
identifier 1, are depicted in Figs. 7(a), 7(b), and 7(c). For instance, the site-graph
β1(G1) is equal to the tuple ({1}, [1 7→ P], {(1, x)}, [(1, x) 7→ −], []). Moreover,
the function [1 7→ 1] induces an embedding between the site-graph β1(G1) and
the site-graph β1(G3), as depicted in Fig. 7(d).

For each agent type A, we define the set of the local views QA, for the agents
of type A, as the set of the site-graphs G with only one agent of type A and
identifier 1, that documents the state of all the sites in Σag-st(A) (that is to say
such that SG = {(1, i) | i ∈ Σag-st(A)}). Besides, we define the set of the local
transition labels LA as the set of pairs (r, n) where r is a rule, and n is an agent
identifier. Intuitively, the local transition label (r, n) denotes the fact that a rule
r is applied along an embedding that matches the agent with identifier n in the
left hand side of the rule r, to the local view to which we want to apply the
rule. Given a rule r : L ? _oo D �

� // R and an identifier n ∈ AL of an agent in
the left hand side L of the rule r, we define the abstraction βn(r) of the rule
r as the span βn(L) ? _oo βn(D)

� � // βn(R). In this span, both embeddings are
induced by the function [1 7→ 1]. The copsan βn(r) is not a rule in general, yet

10

it can be applied along any embedding between its left hand side βn(L) and a
site-graph L′ thanks to a push-out construction (e. g. see Fig. 8). In such a case,

we write L′
(r,n)−−−→]R′ for the corresponding abstract computation step. Moreover,

we notice that in an abstract computation step q]
(r,n)−−−→]q]′ if q] is a local view

in QA, then q]′ is a local view in QA as well.

Example 6. The application of the abstraction β1(P/K) of the rule P/K can be
applied to the site-graph β1(G1), as drawn in Fig. 8(c).

The application of the function βn can be lifted to traces. Given a trace
τ := (q′0, (qi, (ri, fi), q

′
i)1≤i≤p) ∈ T ?Q,L and an agent identifier n ∈ Aq′0 , we define

the local trace βn(τ) as the trace: (βn(q′0), (βn(qσ(i)), (rσ(i), ni), βn(q′σ(i)))1≤i≤p′)
where 1. σ1, . . . , σp′ is the sequence (in increasing order) of the integers i between
1 and p such that βn(qi) 6= βn(qi+1); 2. and for each integer i between 1 and
p′, the integer ni is the unique identifier such that the embedding fσi

maps the
agent with identifier ni in the left hand side of the rule rσi

into the agent with
identifier n in the chemical mixture qσi (there always exists such an integer,
otherwise the abstract state would not have been modified).

Now we combine our abstractions to over-approximate the behaviour of
each agent as an independent local transition system. The abstraction απ(X)
of a set of traces X ⊆ T ?Q,L is defined as the function mapping each agent
type A ∈ Σag into the local transition system αQA,LA

({βn(τ) | τ ∈ X, n ∈
Afst(τ) such that typefst(τ)(n) = A}) (i. e. the best over-approximation, as a
transition system, of the set of the local traces that can be associated with
an agent of type A). Conversely, the concretization γπ(Y) of a function Y be-
tween agent types and local transition systems, is defined as the set of the traces
τ ∈ T ?Q,L such that for each identifier n of an agent in the initial state fst(τ) of
the trace τ , the local trace βn(τ) belongs to the set γQA,LA

(Y (typefst(τ)(n))).
By [4], the function απ ◦ FQ0,T ◦ γπ is the best abstract counterpart to the

function FQ0,T . The function απ ◦FQ0,T ◦ γπ is monotonic and its least fix-point
satisfies the inclusion: lfp FQ0,T ⊆ γπ(lfp απ ◦ FQ0,T ◦ γπ). The least fix-point
in the right hand side of the inclusion can be computed in a finite number of
iterations, since the domain of απ ◦FQ0,T ◦γπ is finite. However computing these
iterations is quite cumbersome, because it intertwines the computation of the
local transition systems that are associated to each agent type. We propose to
desynchronise these computations. To do this, we introduce, for each agent type
A ∈ Σag, the function F]Q0,T,A

that maps any local transition system (Q]0, T]) ∈
TQA,LA

to the local transition system (Q]0′, T]′) ∈ TQA,LA
where: 1. Q]0′ = Q]0 ∪

{βn(q0) | q0 ∈ Q0, n ∈ Aq0 , typeq0(n) = A}; 2. and T]′ is the union between the

set T] and the set of the transitions (q], (r, n), q]′) such that the local view q] is

reachable in the transition system (Q]0, T]) and such that q]
(r,n)−−−→]q]′.

For any function Y mapping each agent type A ∈ Σag to a local transi-
tion system over the states QA and the transition labels LA, we have [απ ◦
FQ0,T ◦ γπ](Y) v F]Q0,T,A

(Y). Moreover, for each agent type A ∈ Σag, the func-

tion F]Q0,T,A
is monotonic. By [12], for each agent type A ∈ Σag, the function

11

q′a
λb
''

?// qp

q0
?// qa

λa 77

λb
''

q′′
?// q′′p

q′b
?// q′p

(a) Concurrent transitions.

q′a λ2

''
q0

?// qa

λa 77

λb
''

q′b
?// q′p

q′′ λa

77

(b) Consecutive transitions.

Fig. 9. Pairs of commutative transitions.

F]Q0,T,A
has a least fix-point. By [4], the inclusion lfp FQ0,T ⊆ γπ([A ∈ Σag 7→

lfp F]Q0,T,A
(A)]) is satisfied, which ensures the soundness of our approach.

Thus, we have derived an abstraction of the finite trace semantics, as a fam-
ily of local transition systems, that describes the behaviour of each particular
type of agent, in isolation. Each such local transition system can be computed
independently iteratively. We can apply our framework to abstract the local
transition system associated to the membrane receptors in the model of dimmer
formation (e. g. see Fig. 1). As expected, the result is the abstract transition
system that is given in Fig. 2.

6 Macrotransition systems

The analysis described in Sect. 5 can also be applied to our second case study
(e. g. see Fig. 3). But there are too many conformations for the result to be
visualisable in practice. In this section, we propose to identify which transitions
commute and provide a more compact symbolic representation of local transition
systems, which abstracts the interleaving order of commutative transitions.

We firstly define the notion of pairs of commutative transitions in a set of
traces. Given a set X ⊆ T ?Q,L of traces, We denote by TX the set of the transitions
that occur inX, i. e. TX := {(qi, λi, q′i) | (q0, (qi, λi, q′i))1≤i≤p, 1 ≤ i ≤ p}. For the
sake of simplicity, and since this is the case in Kappa, we assume that any transi-
tion is fully defined by the state it is starting from and the label of the transition.
Formally, we assume that for any two transitions (q1, λ1, q

′
1), (q2, λ2, q

′
2) ∈ TX ,

the states q′1 and q′2 are equal whenever the pairs (q1, λ1) and (q2, λ2) are equal.

Definition 8. We say that transitions with labels λa ∈ L and λb ∈ L commute
in the set of traces X ⊆ T ?Q,L, if and only if both following properties are satisfied:
1. for each two traces (q0, (ti)1≤i≤p) and (q′0, (t

′
i)1≤i≤p′) in the set X and an

integer j such that: (a) 1 ≤ j ≤ p; (b) j ≤ p′; (c) q0 = q′0; (d) ti = t′i, for
every integer i such that 1 ≤ i < j; (e) the label of the transition tj is equal to
λa; (f) the label of the transition t′j is equal to λb (we denote tj = (qa, λa, q

′
a)

and t′j = (qb, λb, q
′
b)); there exists a trace (q′′0 , (t

′′
i)1≤i≤p′′) in the set X such

that: (a) j + 1 ≤ p′′; (b) q0 = q′′0 ; (c) ti = t′′i , for every integer i such that
1 ≤ i ≤ j; (d) the label of the transition tj+1 is equal to λb; 2. and for each
trace (q0, (ti)1≤i≤p) in X, such that there exists three states qa, q

′
a, q
′
b ∈ Q and

an integer j between 1 and p − 1 satisfying both tj = (qa, λa, q
′
a) and tj+1 =

(q′a, λb, q
′
b), there exists a state q′′ ∈ Q such that the trace (q0, (t

′
i)1≤i≤p), where

12

t′i is defined as (qa, λb, q
′′) whenever i = j, as (q′′, λa, q′b) whenever i = j + 1,

and as ti otherwise, is well defined and belongs to the set X.

In Def. 8, the first property entails that whenever after a given prefix of trace,
two transitions that commute are enable (they necessarily starts from the same
state), each transition can be followed by the other one modulo the fact that
the latter transition should now start from the ending state of the former one
(e. g. see Fig. 9(a)), whereas the second property entails that two consecutive
transitions that commute can always be performed in the reverse order, modulo
the fact that the intermediary state has to be modified (e. g. see Fig. 9(b)).

Given C ∈ ℘(L2) a set of pairs of transition labels, we define the opera-
tor ρC which maps each set of traces X ⊆ T ?Q,L, into the smallest set of traces
ρC(X) ⊆ T ?Q,L that contains the set X and in which each pair of transitions

((qa, λa, q
′
a), (qb, λb, q

′
b)) ∈ T 2

X such that (λa, λb) ∈ C, commutes. The function ρC
is an upper closure operator, that is to say that:1. ρC is monotonic; 2. ρC is idem-
potent (i. e. ρC ◦ρC = ρC); 3. and ρC is extensive (i. e. X ⊆ ρC(X), ∀X ⊆ T ?Q,L).
We notice that the fix-points of the upper closure ρC are the set of traces
X ⊆ T ?Q,L such that each pair of transitions ((qa, λa, q

′
a), (qb, λb, q

′
b)) ∈ T 2

X such
that (λa, λb) ∈ C, commutes. We can use the upper closure ρC to accelerate the
computation of the set of traces γQ,L(Q0, T) that is induced by a given transition
system (Q0, T) provided that each pair of transitions ((qa, λa, q

′
a), (qb, λb, q

′
b)) ∈

T 2
γQ,L(Q0,T) such that (λa, λb) ∈ C, commutes in the set of traces γQ,L(Q0, T).

The function ρC ◦FQ0,T is monotonic and satisfies FQ0,T (X) ⊆ [ρC ◦FQ0,T](X)),
for any set of traces X ⊆ T ?Q,L. So, by [12], the function ρC ◦ FQ0,T has a least
fix-point, and by [4], lfp FQ0,T ⊆ lfp [ρC◦FQ0,T]. If additionally, each pair of tran-
sitions ((qa, λa, q

′
a), (qb, λb, q

′
b)) ∈ TγQ,L(Q0,T) such that (λa, λb) ∈ C, commutes,

we get that ρC(lfp FQ0,T) = lfp FQ0,T , and thus that lfp FQ0,T = lfp [ρC ◦FQ0,T].
In Kappa, pairs of commutative local transitions can be identified syntacti-

cally. Let us consider an agent type A ∈ Σag. Given the label (r, n) ∈ LA of a
local transition, we denote as test(r, n) the set of the site identifiers i such that
the site (n, i) occurs in the domain of the rule r, and as mod(r, n) the set of the
site identifiers i such that the site (n, i) occurs in the domain of the rule r with-
out occurring in its left hand side. Then, for any two labels λ1, λ2 ∈ LA of local
transitions such that both mod(λ1)∩test(λ2) = ∅ and mod(λ2)∩test(λ1) = ∅,
any pair of local transitions with the labels λ1 and λ2 commutes [11].

Example 7. In the rules Fig. 3, we have: We have: test(b+1 , 1) = {a1, b1};
mod(b+1 , 1) = {b1}; test(b+2 , 1) = {a2, b2}; mod(b+2 , 1) = {b2}. As a consequence
any two local transitions with respective labels (b+1 , 1) and (b+2 , 1) commute.

Given a local view v ∈ QA, we consider the set Λ(v) as the set of all the
transitions labels λ such that there exists a local transition starting from the
view v and with the label λ. We define the site-graph frameλ(v) as the site-
graph that is obtained by removing from the site-graph v any site that belongs
to the set

⋃
{mod(λ′) | λ′ ∈ Λ(v)\{λ}}. Intuitively, frameλ(v) is the restriction

of the local view v to the sites that cannot be modified by local transitions that
commute with a local transition with the label λ.

13

We are left to provide a compact data-structure to represent transition sys-
tems with pairs of commutative transitions. We propose to use macrostates
and macrotransitions. A macrostate is a symbolic representation of a set of
(micro)states (that behave similarly), and macrotransitions are transitions be-
tween macrostates, that denote some transitions between the corresponding
microstates. Let us assume that we are given a set of macrostates Q]. Each
macrostate q] ∈ Q] denotes a set of microstates ΓQ,Q](q]) ⊆ Q.

A macrotransition system is defined as follows:

Definition 9. A macrotransition system is a pair (Q0, T
]) where: 1. Q0 ⊆ Q;

2. T] ⊆ Q] × L×Q].

A macrotransition system is made of a set of initial microstates, and a set
of labelled transitions between macrostates. Each macrotransition is an im-
plicit representation of a set of transitions between microstates. Formally, each
macrotransition (q], λ, q]′) denotes the set of the transitions (q, λ, q′) ∈ Q ×
L × Q for which there exists a set of macrostates X ⊆ Q] satisfying: q =⋂
{ΓQ,Q](x) | x ∈ X ∪ {q]}} and q′ =

⋂
{ΓQ,Q](x) | x ∈ X ∪ {q]′}}. We de-

note as Γ ′Q,Q](q
], λ, q]′) the set of the transitions denoted by the macrotransition

(q], λ, q]′). A macrotransition system (Q0, T
]) is an abstraction of the transition

system (Q0,∪{Γ ′Q,Q](t) | t ∈ T]}), that we denote as ΓQ0,T,Q](Q0, T
]).

In Kappa, a macrostate is a site-graph that can be embedded in a local view.
Each macrostate intentionally denotes the set of the local views it can be embed-
ded in. Now we mimick the computation of F]Q0,T,A

in macrotransition systems.

We define the function G]Q0,T] mapping each macrotransition system (Q0, T
])

to the macrotransition system where the set of initial states is defined as the
union between Q0 and the set {βn(q0) | n ∈ A(q0), typeq0(n) = A}; and where

the set of macrotransitions is obtained 1. by adding in the set T] any transition
of the form (frameλ(v), λ, v′) for any local view v ∈ QA such that: (a) the local
view v is reachable in the transition system γQA,LA

(ΓQ0,T,Q](Q0, T
])); (b) and

frameλ(v)
λ−→] v′, 2. before removing any macrotransition t such that there

exists a macrotransition t′ satisfying Γ ′Q,Q](t) ⊂ Γ ′Q,Q](t
′).

For any macrotransition system X], both following inclusions are satisfied:
1. γQA,LA

(F]Q0,T,A
(ΓQ0,T,Q](X]))) ⊆ γQA,LA

(ΓQ0,T,Q](G]Q0,T](X
]))) (soundness);

2. γQA,LA
(ΓQ0,T,Q](G]Q0,T](X

]))) ⊆ ρC(γQA,LA
(F]Q0,T,A

(ΓQ0,T,Q](X]))))) (rela-

tive completeness). It follows (since ΓQ0,T,Q](∅, ∅) = (∅, ∅)) that, when k ∈ N
increases, the sequence of the images by [γQA,LA

◦ ΓQ0,T,Q]] of the iterates

G](k)Q0,T](∅, ∅) of the function G]Q0,T] , starting from the macrotransition system

(∅, ∅), stations ultimately at the value γQA,LA
(lfp F]Q0,T,A

). The result of our

analysis is defined as the macrotransition system G](l)Q0,T](∅, ∅), where l ∈ N is
the rank at which this limit is reached.

Our analysis is integrated within an open-source static analyser [1]. It relies
on binary decision diagrams, to describe implicitly which microtransitions are
not yet covered by any macrotransition (as required both in the function G]Q0,T]

14

and to detect when to stop the iterations). We obtain, for the second case study
in Fig. 3, the macrotransition system that is described in Fig. 4. We have also
applied to a similar model with 5 pairs of phosphorylation sites and obtained
the corresponding macrotransition system in around one second.

7 Conclusion

Kappa [7] allows for the description of highly combinatorial systems of interac-
tions between proteins. But it is not always obvious to check the consistency of
the models that are written in Kappa or to get an overview of how these mod-
els work. To cope with this issue, we have proposed an abstract interpretation
framework to automatically over-approximate the behaviour of each agent of a
model, independently, by the means of a local transition system.

Since these local transition systems may remain too combinatorial when pro-
teins have many interaction sites, we have designed a coarser description of the
local transition systems, inspired by simplicial systems. This latter description
abstracts away the interleaving order between commutative transitions, by the
means of transitions between macrostates, that denotes symbolically sets of tran-
sitions between microstates. Our tool computes these macrotransitions directly.

Acknowledgement. This work has been motivated by models written by Héctor
Medina, and by Nathalie Théret and Jean Cocquet. We deeply thank them, as
well as Pierre Boutillier, Ioana Cristescu, Vincent Danos, Walter Fontana, Russ
Harmer, Jean Krivine, Jonathan Laurent, and Jean Yang, for fruitful discussions.

References

1. Boutillier, P., Feret, J., Krivine, J., Q., Kim Lý.: Kasim development homepage,
http://kappalanguage.org

2. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization
of reachable attractors using Petri net unfoldings. In: Computational Methods in
Systems Biology. LNCS, vol. 8859 (2014)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In:
Proc. POPL’77 (1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis framework. In:
Proc. POPL’79 (1979)

5. Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-
Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-
based models. In: Proc. FSTTCS ’12. LIPIcs, vol. 18 (2012)

6. Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular
signalling networks. In: Proc. VMCAI ’2008. LNCS, vol. 4905. Springer (2008)

7. Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1) (2004)
8. Fajstrup, L., Goubault, E., Raußen, M.: Detecting deadlocks in concurrent systems.

In: Proc. CONCUR ’98. LNCS, vol. 1466 (1998)
9. Feret, J.: Reachability analysis of biological signalling pathways by abstract inter-

pretation. In: Proc. ICCMSE ’2007. vol. 963.(2). AIP (2007)

15

http://kappalanguage.org

10. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem, LNCS, vol. 1032 (1996)

11. Laurent, J.: Causal analysis of rule-based models of signaling pathways (2015)
12. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific

J. Math. 5(2) (1955)
13. Winskel, G.: Event structures. In: Advances in Petri Nets. LNCS, vol. 255 (1987)
14. You, J.: Darpa sets out to automate research. Science 347 (2015)

16

	Local traces: an over-approximation of the behaviour of the proteins in rule-based models

