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Isotopic Approximation within a Tolerance Volume

Manish Mandad David Cohen-Steiner Pierre Alliez
Inria Sophia Antipolis - Méditerranée

Abstract

We introduce in this paper an algorithm that generates from an input
tolerance volume a surface triangle mesh guaranteed to be within
the tolerance, intersection free and topologically correct. A pliant
meshing algorithm is used to capture the topology and discover the
anisotropy in the input tolerance volume in order to generate a con-
cise output. We first refine a 3D Delaunay triangulation over the
tolerance volume while maintaining a piecewise-linear function on
this triangulation, until an isosurface of this function matches the
topology sought after. We then embed the isosurface into the 3D
triangulation via mutual tessellation, and simplify it while preserv-
ing the topology. Our approach extends to surfaces with boundaries
and to non-manifold surfaces. We demonstrate the versatility and
efficacy of our approach on a variety of data sets and tolerance vol-
umes.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Boundary representations;

Keywords: Isotopic approximation, tolerance volume, mesh re-
finement, mesh simplification, intersection-free, mutual tessellation

1 Introduction

Faithful approximation of complex shapes with simplicial meshes
is a multifaceted problem, involving geometry, topology and their
discretization. This problem has received considerable interest due
to its wide range of applications and the ever-increasing accessi-
bility of geometric sensors. Increased availability of scanned ge-
ometric models, however, does not mean improved quality: while
many practitioners have access to high-end acquisition systems, a
recent trend is to replace these expensive tools with a combina-
tion of consumer-level acquisition devices. Measurement data gen-
erated by, and merged from, these heterogeneous devices are re-
putedly unfit for direct processing. Similarly, the growing variety
of geometry processing tools often increase the net amount of de-
fects in data: Conversion to and from various geometry representa-
tions often degrades the input, and rare are the algorithms that have
stronger guarantees on their output than they have requirements on
their input. As we deal with ever finer discretizations to capture
intricate geometric features, this issue of offering strict geometric
guarantees to be robust to the occurrence of artifacts is becoming
more prevalent.

Geometric guarantees usually refer to upper bounds on the approx-
imation error and to the absence of self-intersections. Topological
guarantees refer to homotopy, homeomorphism or isotopy. In our

context isotopy means that there exists a smooth deformation that
maps one shape to another while maintaining a homeomorphism
between the two. Surface meshes with such guarantees are required
for artifact-free rendering, computational engineering, reverse en-
gineering, manufacturing and 3D printing. While geometric sim-
plification can reduce the number of primitives, topological sim-
plification can repair holes and degeneracies in existing discretiza-
tions. Combined, the two may also be used for reconstructing clean
shapes from raw geometric data such as point sets or polygon soups.

1.1 Related Work

A vast array of methodologies has been proposed for shape approx-
imation over the years, ranging from decimation to optimization
through clustering and refinement. Fewer, however, provide error
bounds. In addition, they only apply to specific types of input ge-
ometry, and often fail to satisfy geometric and topological guaran-
tees as we now review.

[Agarwal and Suri 1998] proposed a polynomial-time approxima-
tion algorithm with guaranteed maximum error and minimum num-
ber of vertices, but this algorithm is too complex to be practically
relevant. Approximation with bounded error has also been targeted
through clustering [Kalvin and Taylor 1996], mesh decimation [Co-
hen et al. 1996; Klein et al. 1996; Guéziec 1996; Ciampalini et al.
1997; Cohen et al. 2003; Botsch et al. 2004; Ovreiu et al. 2012]
or a combination of both [Zelinka and Garland 2002]. In gen-
eral the error metric considered is the one-sided Hausdorff distance
to the input mesh, but the normal deviation has also been consid-
ered [Borouchaki and Frey 2005]. In general these approaches are
not generic enough to handle heterogeneous input data, and they are
not designed to guarantee a valid, intersection-free output. Guar-
antees for intersection-free output can be obtained by preventing
intersections during mesh decimation [Gumhold et al. 2003]) but
this approach is not sufficient when the input itself self-intersects.
Also, searching for the locus of points in space that avoids inter-
sections when applying a decimation operator, and tunneling out
of situations where every operator is forbidden is often too labor-
intensive to be considered a practical solution. Another class of ap-
proaches based on Delaunay filtering and refinement, instead, pro-
vide intersection-free approximations by construction [Boissonnat
and Oudot 2005]. Unfortunately, these approaches generate only
isotropic meshes and thus do not target very coarse approximations
and, as such, cannot be used for shape simplification.

When dealing with imperfect or heterogeneous data, methods in-
volving repairing [Ju 2004; Bischoff et al. 2005; Attene 2010], con-
version [Shen et al. 2004], or reconstruction [Hornung and Kobbelt
2006; Kazhdan et al. 2006] are designed to generate clean meshes,
but do not yield low-polygon-count approximations with bounded
error. Other approaches target only hole filling and do not re-
move the self-intersections [Dey and Goswami 2003]. A great
variety of methods have been proposed for surface reconstruction.
Among them, those which come with theoretical guarantees of iso-
topy [Amenta and Bern 1998; Amenta et al. 2000; Boissonnat and
Cazals 2000; Dey 2006] assume that the sampled surface is smooth.
Surface reconstruction from noisy point sets [Dey and Sun 2005;
Dey 2006] has also been investigated well. A recent approach deals
with boundaries but does not handle noisy data [Dey et al. 2009]. In
addition, all these methods generate isotropic meshes, overly com-



Figure 1: Overview of our algorithm. Top: input tolerance Ω, sampling of ∂Ω, mesh refinement by inserting a subset of the sample points,
and topology condition met. Samples that are well classified are depicted in green, and in red otherwise. The boundary of the simplicial
tolerance volume ∂Γ is depicted with blue edges. Bottom: simplification of ∂Γ, mutual tessellation of zero-set, simplification of zero-set, and
final output.

plex, which would require another algorithm for simplification with
geometric guarantees.

1.2 Positioning

In R3, [Chazal and Cohen-Steiner 2004] showed that when seek-
ing a homeomorphic approximation S′ of a connected surface S, a
simple topological condition is sufficient to guarantee that the two
surfaces are isotopic. If S and S′ are homeomorphic, then S and S′

are isotopic if S′ is contained in a topological thickening of S and
separates the boundary components of this thickening. In this paper
we contribute a constructive approach for this theoretical result in
the form of an algorithm that matches these conditions in order to
ensure that the output surface mesh is an isotopic approximation.
We state the problem as follows. The input is a tolerance volume
Ω (Figure 1, top left) that is a topological thickening of a surface
S which we want to approximate. By topological thickening of S
we mean a compact subset of R3 homeomorphic to S × [0, 1]. Our
goal is to generate as output a surface triangle mesh located within
Ω, isotopic to the boundary components of Ω, and with a low tri-
angle count. This approximation problem was originally stated by
Klee for polytopes in arbitrary dimensions. In 2D, the problem is
commonly referred to as the minimum nested polygon problem, and
has been investigated well [Aggarwal et al. 1985]. The 3D instance
of this problem, referred to as minimum nested polyhedron problem
has been shown to be NP-hard [Agarwal and Suri 1998].

Despite being a long standing problem, there is still no robust and
practical solution to this enduring scientific challenge. Yet, it is
both relevant to, and timely for, the increasing variety of indus-
trial applications that involve raw geometric data. In this paper,
we develop an algorithm for the above problem that yields approx-
imations with very low triangle count, while enjoying topological
guarantees under relatively mild assumptions on the tolerance vol-
ume. Note that while the assumption that Ω is a proper thickening
makes the analysis easier, it is not always necessary and our ap-
proach may also work when boundary components of Ω have, for
instance, additional spurious handles. We also extend our algorithm
to non-closed and non-manifold surfaces. If Ω is not provided as in-
put, we may generate it from a possibly defect-laden approximation
of S (Σ, e.g., a point cloud or a polygon soup) using either simple
offsets in the noise-free case, or sublevel sets of a robust distance
function (e.g. [Chazal et al. 2011]). Hence, under relatively mild

conditions, our algorithm is able to solve the problem of robust re-
construction, repair and simplification concurrently.

2 Base Algorithm

2.1 Overview

Figure 1 depicts the three main steps of our approach: First, the
initialization step generates a dense point sample S on the bound-
ary of the tolerance volume ∂Ω. Second, we proceed coarse-to-fine
through refinement of a 3D Delaunay triangulation by inserting one
sample of S at a time, and while maintaining a piecewise-linear
function interpolated on the triangulation. The function value at
the triangulation vertices is set in accordance to the index of each
boundary component ∂Ωi (+1 or −1). The term zero-set refers
to the isosurface where the interpolated function evaluates to zero.
Refinement is performed until the zero-set is entirely contained into
Ω and matches the topology of Ω. All samples are then well clas-
sified, and the tolerance volume is approximated by Γ, referred to
as the simplicial tolerance volume. Third, we proceed mainly fine-
to-coarse through simplifying Γ, inserting the zero-set into Γ via
mutual tessellation, and simplifying the zero-set while preserving
the validity of the embedding.

2.2 Initialization

For initialization, we generate a σ-dense set S sampled on the tol-
erance boundary ∂Ω, σ being typically set to a fixed fraction of the
minimum separation δ between the ∂Ωi. That is, the balls of radius
σ centered on S cover ∂Ω.

For the base algorithm we assume that ∂Ω has only two components
∂Ω1 and ∂Ω2. We assign to each sample s of S a function value:
F(s) = +1 if s ∈ ∂Ω1, and F(s) = −1 if s ∈ ∂Ω2.

We then construct an initial 3D Delaunay triangulation (T ) with
the eight corners of a loose bounding box of S. We assign to these
eight vertices the same function value as that of the samples of the
outer boundary of Ω. We maintain a piecewise-linear function f
interpolated on T , and its zero-set, denoted by Z .

At each sample point s ∈ S we define an error ε(s):

ε(s) = |F(s)− f(s)|, (1)



where f(s) denotes the interpolated function at s calculated using
the function value F of the vertices of the tetrahedron containing s.
Each sample point s ∈ S is classified as bad if ε(s) ≥ 1, and as
good (or well classified) otherwise.

During refinement of T with a subset of S (described next), the
classification of S provides us with a means to detect when Z lies
within Ω, with a safety margin (defined in Section 3). Figure 2
illustrates in 2D a refinement on T , the corresponding zero-set Z
and the classification of S.

Z
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Figure 2: Classification of S. The black solid edges depict the
zero-set Z of f . A sample classified as good is depicted in green,
and in red otherwise.

2.3 Refinement

We now refine the triangulation T through inserting Steiner points
selected from S, until the correct topology is met. More specifi-
cally, we insert one sample point at a time into T and update the
Delaunay property, until Z classifies all samples of S as good, or
equivalently, until Z separates the boundaries ∂Ωi of Ω.

Greedily inserting the sample s with maximum error at each step is
a natural idea for achieving the above goal with few samples. For
each tetrahedron we maintain a list of sample points (⊂ S) con-
tained in it, and a global modifiable priority queue during refine-
ment with the maximum error points of these tetrahedra. Figure 3
illustrates several steps of a refinement sequence in 2D, until com-
plete classification of S.

Unfortunately, the above basic refinement algorithm is not sufficient
for at least two reasons.

Figure 3: Refinement of T . Top: initial triangulation and one
Steiner point inserted. Bottom: more Steiner points inserted, and
complete classification of samples. The zero-set is depicted with
black solid edges. Samples classified as good are depicted in green,
and in red otherwise. A Steiner point to be inserted at the next it-
eration is depicted in red. Upon termination the edges of ∂Γ are
depicted in blue.

The first reason relates to the fact that we are dealing with a finite
sample of ∂Ω. Even if all sample points end up being well classi-
fied, this still leaves the possibility that Z crosses ∂Ω in-between
the samples. To prevent this from happening, we enforce that all
samples are well classified with an α margin, as well as an upper
bound on the Lipschitz constant of the piecewise-linear function.

The second reason relates to the quality of normals. In certain con-
figurations (e.g., Figure 4), the normal directions are grossly wrong
even in locally smooth areas. To alleviate this issue we detect so-
called misoriented tetrahedra by checking that the piecewise linear
function they define is locally well adapted to the geometry of Ω
(condition 3 below). We note that this condition is not required for
the topological correctness of the algorithm.

∂Ω1

∂Ω2

A

B

C

A

B

C

Z

Figure 4: Misoriented element. Left: The edges of Z are depicted
with solid black lines. The zero-set of 4ABC (red) has an in-
correct normal. Right: The piecewise-linear function defined on
4ABC should classify well the samples of S (on both ∂Ωi form-
ing4ABC) which are nearest (orange) to the vertices of a shrunk
triangle (green).

Our modified refinement algorithm iteratively refines the triangula-
tion until all the following criteria are met in order:

1. For some given 0 < α < 1 : ∀s ∈ S, ε(s) ≤ 1− α (α is set
to 0.2 in all experiments).

2. The height of every tetrahedron contributing to Z is at least
2σ/α. The height is defined as the the distance between the
supporting lines or planes of the maximal faces with different
labels (Figure 5).

3. The piecewise-linear function defined by each tetrahedron t
classifies well the samples of S on both ∂Ωi that are nearest
to the vertices of a shrunk copy of t. The size of this shrunk
copy is set to 70% of the size of t in all experiments.

The term “in order” herein means that at each iteration, we look
at the first condition that is violated and attempt to satisfy it by
inserting a Steiner point as described below. If the condition is not
satisfied after exhausting all candidate Steiner points, we move to
the next condition.

Since we are dealing with a σ-dense sample, for an α margin (con-
dition 1), an upper bound of α/σ on the Lipschitz constant of the
piecewise-linear function suffices to ensure that the zero-set does
not cross ∂Ω. Noticing that the Lipschitz constant is nothing but
twice the inverse height of a tetrahedron, we get an easy-to-check
criterion (condition 2). The first criterion is met by adding the sam-
ple point with maximum error while the two other criteria are met
by adding the sample point nearest to the circumcenter of a bad
tetrahedron.

The full refinement algorithm incorporates one more condition
(condition 4): while the output Z of the above algorithm does not
have the expected genus, we refine the heterogeneous tetrahedron
with the largest circumradius by adding the sample point closest
to its circumcenter. This additional layer is needed to get topo-
logical guarantees on the result. However, in practice, we did not
encounter a single case where the genus was not correct after the
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Figure 5: Height of a tetrahedron contributing to Z . The height
is defined as the distance between the supporting primitive of the
maximum dimension simplices formed by the tetrahedron vertices
with common labels. Left: distance between point A and support-
ing plane of 4BCD. Right: distance between supporting lines of
edges AB and CD.

first iteration. Note also that the circumradius criterion for refining
tetrahedra is blind in the sense that it does not necessarily refines
the mesh where topological defects are present. While it is possible
to improve the criterion from this point of view, we did not pursue
this goal since it has no practical relevance.

Upon termination of the refinement step, the union of all tetrahedra
of T which contribute to Z , bound a simplicial tolerance volume
(Γ), seen as an approximation of Ω. The boundary facets of Γ are
denoted by ∂Γ.

2.4 Simplification

The zero-set Z is now topologically correct. In the simplification
step we reduce its complexity via the decimation of T combined
with a mutual tessellation with Z . Note that we stop enforcing
that T is a Delaunay triangulation, which allows for increasingly
anisotropic triangulations.

Simplification is achieved through performing a series of edge-
collapse operators on T . These operators are made conservative
to preserve a valid triangulation T , the classification of S and the
normals achieved in previous step.

A B

Y

X

A B

Y

Z

X

Figure 6: Link condition in 2D. Left: the edgeAB is collapsible as
Lk(A)∩Lk(B) = Lk(AB). Right: the edgeAB is not collapsible
as Lk(A) ∩ Lk(B) 6= Lk(AB).

The validity of T requires checking for two conditions. The com-
binatorial topology of T is preserved via the link condition [Dey
et al. 1998] (Figure 6).

The valid embedding of T is preserved by computing the visibility
kernel (KT )(PQ) of a polyhedron formed by the one-ring of the
edge PQ (Figure 7). If the visibility kernel is non empty then locat-
ing the target vertex into this kernel preserves a valid embedding.

Preserving the classification of S requires further restricting the vis-
ibility kernel of an edge. As this problem is non-convex we resort to
a point sampling of the kernel during the simulation of each edge-
collapse operator. To obtain faithful normals locally in a smooth
area, we use the same method as before (Figure 4) and check in
advance whether the final solution is locally well adapted to the
geometry of Ω or not.

P Q
P

QKT (PQ)

Figure 7: Visibility kernel condition in 2D. Left: the edge PQ is
collapsible and a valid embedding is preserved when the target ver-
tex is located within the kernel KT (PQ) (orange) of the polygon
formed by the one-ring of the edge. Right: the kernel is empty and
hence the edge PQ is not collapsible.

In order to improve efficiency we always perform simpler halfedge
collapse before general edge collapse operators. A halfedge col-
lapse operator locates the target vertex at one of the vertices of the
edge. In addition, we adopt a multi-staged decimation approach
with the following steps:

1. Collapse edges of ∂Γ.

2. Mutual Tessellation of Z into T .

3. Collapse edges of Z .

4. Collapse edges between Γ and Z , which may induce further
edge collapses of Z (previous step).

Intuitively, we perform the steps in increasing order of computa-
tional complexity: first the operations with low number and dis-
crete degrees of freedom, then with higher or continuous degrees of
freedom. As for other decimation algorithms we need to define an
error to sort the operators and to optimize the target vertex place-
ment when performing a general edge collapse operator. In order
to preserve fidelity to the initial zero-set we use as error the sum of
square distances between the target vertex and the set of supporting
planes of the zero-set facets located in the 2−ring of the collapsed
edge. The edge collapse operators are sorted via a priority queue
sorted by increasing error.

2.4.1 Simplicial Tolerance

In this step we collapse only a subset of the edges of the simplicial
tolerance boundary ∂Γ. Denote by PQ such an edge (Figure 8).
We select as target vertex a sample point (1) from S (2) located
within the visibility kernel KT (PQ) of PQ, (3) inducing a zero-
set that preserves the classification of S along with normals and (4)
that minimizes the aforementioned error.

P Q

KT
S|KT (PQ)

Ω

∂Ω1

∂Ω2

Figure 8: Edge PQ of ∂Γ. PQ is candidate to be collapsed. The
edges of T are depicted with dashed black lines. Visibility Kernel
KT (PQ) is depicted (partially) in orange. The edges of Z (black
solid lines) are not part of T . The green dots (S|KT (PQ)) depict
the subset of samples from S located within KT (PQ).

Denote by S|KT (PQ) the initial set of candidate sample points from
S located within the visibility kernel KT (PQ). To avoid exhaus-
tive search, we discard the sample points leading to errors in the
classification of S, as located in invalid regions, denoted Ψ. Fig-
ure 9 illustrates Ψ = a ∩ b ∩ m where the point with maximum
error is chosen only over ∂Ω1. A similar invalid area is computed
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Figure 9: Invalid region. Assume an edge of ∂Γ is collapsed
into the target point T . Line segment XY denotes the zero-set of
4ABT after collapse. Line n represents the extreme zero-set of
4ABT which preserves the classification of the point with maxi-
mum error E. Line m delineates the corresponding locus for T .
The intersection of the two half-spaces delineated by a and b repre-
sents the locus of T which keeps E within4ABT . If T is located
in the invalid area Ψ (gray) then the classification of E is not pre-
served. Top: case where A and B belong to the same ∂Ωi. Line
n is parallel to AB and passes through E. Bottom: case where A
and B belong to two different ∂Ωi. Notice that Y is fixed and n is
the supporting line of EY .

by considering the point of maximum error on ∂Ω2 within4ABT .
We then collapse iteratively all edges of ∂Γ to the point which ex-
hibits the minimum error, as discussed above.

2.4.2 Mutual Tessellation

When no more edges of ∂Γ are collapsible, we perform a mutual
tessellation between Z and T by inserting all vertices and faces of
Z into T . The newly inserted vertices are assigned the function
value F = 0. We then label all tetrahedra of T in accordance to
their associated tolerance boundary component ∂Ωi. This provides
us with a means to preserve the classification in the next simpli-
fication steps. A sample s ∈ ∂Ωi is constrained to lie within a
tetrahedron with label i. Intuitively, this step implements a transi-
tion from a function embedded in a volume mesh of the tolerance,
to a surface mesh embedded within the 3D triangulation. Figure 10
illustrates such mutual tessellation in 2D.

Figure 10: Mutual tessellation. Left: before mutual tessellation.
Middle: after mutual tessellation. Right: classification of tetrahe-
dra in accordance to ∂Ωi. The edges of Z and ∂Γ are depicted
with solid black and blue lines, respectively.

2.4.3 Zero-set

After mutual tessellation we collapse the edges of Z . Figure 11
illustrates the visibility kernel of an edge that preserves a valid em-
bedding upon a collapse operator.

P Q
KT (PQ)

Figure 11: Kernel of an edge PQ of Z . PQ is candidate to be
collapsed. The edges of Z are depicted with solid black lines. The
visibility kernel KT (PQ) of PQ is depicted in orange.

Two important differences with the previous step are that we col-
lapse an edge to an arbitrary target vertex location within the valid
area (⊂ Ω, that minimizes the aforementioned error), and the target
vertex is assigned the function value F = 0.

BA

bE

Ψ = a′ ∪ b′

a′
b′

P R a

T

BA
E

a′
b′

T

P
R

Ψ = (a ∩ b) ∪ (a′ ∩ b′)

Figure 12: Invalid region. Assume an edge of Z is collapsed into
the target point T (PTR represents the zero-set after collapse).
The intersection of the two half-spaces delineated by a and b rep-
resents the locus of T which keeps E within4ABT . Lines a′ and
b′ represent the extreme zero-set originating from E that preserves
the classification of point E. If T ∈ Ψ (gray), the classification of
E is not preserved.

To accelerate the computations, we compute invalid regions as de-
scribed above. Figure 12 illustrates the invalid region by consider-
ing the point of maximum error on both ∂Ωi for a4ABT when it
contains one zero-set vertex. The invalid regions Ψ are constructed
similarly when 4ABT contains several zero-set vertices. To fur-
ther reduce the computational time when simulating general edge
collapse operators, we use an octree for hierarchical sampling of
KT to find the best target location and ignore further sampling of
KT for the octree cells lying inside Ψ.

2.4.4 All Edges

P
Q

Due to the simplicial tolerance Γ, there
may exist regions in Ω which are inac-
cessible (see shaded region in the inset
figure). To make full use of the tol-
erance volume, we collapse edges be-
tween vertices of Γ and Z (Figure 13).
It not only helps relocating the zero-
set vertices to a better location with re-
spect to the error chosen for ordering the priority queue, but also
increases the size of visibility kernel and hence, helps exploring fur-
ther possibilities of an edge collapse over Z as discussed in 2.4.3.

Figure 14 illustrates all steps of our algorithm on a mechanical part.
The input is a raw triangle soup (20k triangles). The tolerance vol-
ume is computed as the sub-level [0-0.6] of the Euclidean distance
function to the input triangle soup. Note that until mutual tessel-
lation the zero-set is made up of triangles and quadrangles before
being converted into a pure triangle mesh after mutual tessellation.

3 Guarantees

We first derive geometric conditions under which the first three con-
ditions of the refinement algorithm are met upon termination. De-
note by ε the radius of the largest ball that can fit within Ω, and by



P Q P Q

KT (PQ)

∂Ω1

∂Ω2

Z

Figure 13: Making an edge collapsible. Left: Edge PQ is not
collapsible as visibility kernel KT (PQ) is empty. Right: Kernel
KT (PQ) (orange) is not empty after collapsing the red edge shown
left. Collapsing an edge between a vertex of Γ and a vertex of Z
tends to increase the area of the one-ring of PQ (green) and hence
increases the probability that an edge of Z is collapsible.

δ the minimum separation between the two boundary components
of Ω.

Condition 1 (2.3-1) is necessarily satisfied at the end of the refine-
ment process since any sample not meeting the condition will be
added to the triangulation.

Assume now that Condition 2 (2.3-2) is not satisfied upon termi-
nation. This means that there exists a heterogeneous tetrahedron t
with height lower than 2σ/α. Denote by B its circumscribed ball
and r its radius. Ball B cannot contain any sample point from S,
else that sample would have been added by the algorithm. Since
S is a σ-sample of ∂Ω, we get that the shrunk ball B−σ does not
intersect ∂Ω. Hence it is either empty, within Ω, or outside Ω. In
the first case, r ≤ σ. In the second case, we have that r−σ ≤ ε. In
the third case, because t is heterogeneous, B meets both boundary
components of Ω, hence σ ≥ δ. As a partial conclusion, upon ter-
mination, and assuming σ < δ, the circumradius r of a tetrahedron
violating condition 2 cannot exceed ε+ σ.

We now formulate our condition. Given two subsets A and B
of R3, define the margin of (A,B) to be the maximum thick-
ness of a slab separating A and B. If no such slab exists then

ρ
∂Ω2

∂Ω1

≥ h x

the margin is set to zero. We say that a tol-
erance volume Ω is (ρ, h)-separated if for all
x ∈ R3, the margin of (∂Ω1∩B(x, ρ), ∂Ω2∩
B(x, ρ)) is at least h.

From the above discussion, if σ < δ, and if Ω is (ε + σ, 2σ/α)-
separated, condition 2 will be satisfied at the end of the algo-
rithm. Similarly, condition 3 (2.3-3) will ultimately hold assum-
ing a stronger local separation assumption on Ω. However, since
this condition is not essential for the topological correctness of our
algorithm, we do not elaborate further on expliciting the required
separation constants.

Finally, concerning condition 4, we note for future reference that if
the correct genus is not met upon termination, we can bound the
circumradius r of any heterogeneous element as above. That is,
assuming σ < δ, we have that r ≤ ε+ σ.

Theorem 3.1. Let κ be such that for any two points x and y in
∂Ωi at distance at most 2(ε+ σ), the geodesic distance between x
and y is at most κ times their Euclidean distance. Assuming Ω is
a ((5 + κ)(ε+ σ)/2, 2σ/α)-separated topological thickening of a
surface S, the output of the algorithm is isotopic to S.

Proof. Our proof for isotopy utilizes the same criterion as [Chazal
and Cohen-Steiner 2004]. This result states that two connected 3-
dimensional surfaces S′ and S are isotopic if:

1. S′ is included in a topological thickening of S and separates
its boundary components.

2. S′ is connected and its genus does not exceed the genus of S.

In our setting, we take Ω to be a topological thickening of S. Be-
ing the zero-set of a piecewise-linear function, Z is a 2-manifold.
Because condition 2 of the base algorithm is satisfied, all points in
∂Ω are well classified, meaning that Z is contained inside Ω and
separates its boundary components.

It remains to show that the second condition holds when the re-
finement algorithm terminates. First, because S′ is a zero-set
of a piecewise linear function, any component of S′ must en-
close a vertex of the Delaunay triangulation. As there are no
vertices in the interior of Ω, these components must induce non-
zero homology classes in Ω. These components are included
in the simplicial tolerance, which is fibered by line segments
where the piecewise linear function is monotone. This implies
that S′ is connected. Assume now that the genus of S′ exceeds
the one of S. This means that S′ contains a spurious handle.

S ′

Because sub and superlevel sets of piecewise lin-
ear functions are homotopy equivalent to subcom-
plexes of the background triangulation, we get that
the two components of Ω\S′ contain linked homo-
geneous polygonal cycles in the Delaunay triangu-
lation. For each edge in these polygonal cycles, we may form an
elementary cycle by stitching the edge with a geodesic shortest path
drawn on the appropriate boundary component of Ω and joining the
two endpoints of the edge. Because the two polygonal cycles are
linked, there must be two linked elementary cycles with different
labels. Assume the correct genus is not met upon termination of
the algorithm. Then we may assume that the Delaunay edges in
the linked polygonal cycles are edges of heterogeneous tetrahedra.
Hence their length is at most 2(ε+ σ). Hence the length of the ele-
mentary cycles are at most 2(1 + κ)(ε+ σ). Because two of them
are linked, the tolerance volume Ω cannot be ((5+κ)(ε+σ)/2, 0)-
separated (Appendix A.1).

Ω

∂Ω1

∂Ω2

The above conditions are clearly met when the toler-
ance volume is a sufficiently small offset of a smooth
surface, for example. Also, the algorithm can also be
shown to work in situations not covered by the above
theorem, as for instance tolerances bounded by convex
surfaces. The numerical constants in the theorem may
be further optimized, and other types of conditions, e.g. based on
the separation δ can also be proved to be sufficient. In particular, if
2(ε + σ)

√
κ2 − 1 < δ, the algorithm is correct. The inset figure

depicts an example of tolerance volume where the algorithm would
fail. It is apparent from the proof above that such configurations
are essentially the only way the algorithm can fail. Note that even
in such situations, the output of the algorithm will be a manifold
surface, albeit possibly with a too large genus. Finally, we note that
if the only pursued goal was to provide topologically guaranteed
output for tolerances that are topological thickenings, then a trivial
solution would be to output one of the tolerance boundary surface.
However, such methods would be limited to topological thicken-
ings, while our approach may work in less favorable situations. In
addition, algorithms inspired by the trivial idea above do not seem
to allow successful subsequent simplifications, even in favorable
cases.

4 Extensions

The algorithm above can be extended in order to deal with bound-
aries and non-manifold surfaces. While the guarantees can be ex-
tended to non-closed surfaces, for non-manifold cases, they are
more difficult to formulate and are probably beyond the reach of
existing tools. Still, the output is guaranteed to have the correct
homotopy type in these cases also.



Figure 14: Blade. From left to right: Input tolerance (δ = 0.6%); Z after refinement (20.4k vertices); simplification of ∂Γ (5.3kv); mutual
tessellation and simplification of Z (1.01kv); and the final output (752v).

4.1 Non-closed Surfaces

Our algorithm deals with surfaces with boundaries when Σ is pro-
vided as input along with Ω. We first detect sample points corre-
sponding to boundaries, referred to as B, using γδ′−radius balls
centered at Σ (Figure 15), where γ denotes a user defined parame-
ter derived from the reach of input data. Parameter δ′ is defined as
the minimum distance between the current center of ball and S.

Figure 15: Boundary sample points. The intersection between S
and ball located on the input surface Σ is composed of a single
connected component near a boundary.

When a ball contains a single connected component (samples con-
nected to each other by paths with a maximum step distance of
2σ) boundary surface of the tolerance volume then the associated
samples are considered part of B. Conversely, the sample points
which correspond to a multi-component surface - with a minimum
distance between the components greater or equal to 2δ′ - are not
considered part of B. Note that when Σ is not provided, balls cen-
tered at S can also be used, but this severely limits the reach size of
the input data that can be dealt with. Once the boundary is detected,
we use the set S \ B as the set of sample points in the initialization
stage. In other words, we ignore the classification of B with respect
to f . Via refinement as described in Section 2.3, we then classify
all sample points of S \ B and clip the zero-set by Ω. We enforce
during the simplification step that the two-sided Hausdorff distance
between boundary of Z and B is at most δ. Furthermore, in order
to preserve smoothness along the boundary, we use in this last step
besides Hausdorff distance an extra error term defined as the sum
of squared distances between the target vertex and the set of sup-
porting boundary edges of the zero-set located in the 2−ring of the
edge to be collapsed.

Figure 16 depicts a range scan of the Kitten point cloud with bound-
aries due to missing data. The holes are preserved by the non-closed
variant of our algorithm (middle). Note that by not ignoring the
parts of the zero-set outside Ω, we can also fill the large hole on the
nearly flat area. Nevertheless, more work is needed to reliably deal
with more complicated holes.

Figure 16: Preserving or repairing holes. Left: Range scan of a
kitten. Middle: Our output as non-closed surface (1.3k vertices).
Right: Our output with holes filled (1.2k vertices).

4.2 Non-manifold Surfaces

To handle non-manifold surfaces when computing the error of a
sample, we evaluate f with respect to each component of ∂Ω. More
specifically, to evaluate the error ε at a sample s ∈ ∂Ωi we define

∀p ∈ S,F(p) =

{
+1, p ∈ ∂Ωi
−1, p /∈ ∂Ωi.

(2)

The zero-set is ignored when its end points lie outside Ω; this con-
figuration occurs when the input geometry is made up of several
components. The process described above yields a zero-set (Fig-
ure 17, top left) with topological artifacts where several surfaces
of ∂Ω meet. These artifacts are located inside tetrahedra contain-
ing vertices from three or more ∂Ωi. In addition, such tetrahedron
may contain several zero-sets corresponding to the total number of
possible permutations when assigning function values to its ver-
tices. We remove these artifacts by joining all zero-set edges to the
centroid of the zero-set vertices located on the edges of this tetrahe-
dron. Figure 17 illustrates our algorithm at work on a non-manifold
geometry.

5 Experiments

Implementation. Our algorithm is implemented in C++ using the
CGAL library for the triangulation data structures and the Intel
Threading Building Blocks library for parallelization. 3D tolerance
volumes are rendered via 3D texture mapping using pixel shaders
from the NVIDIA Cg Toolkit. All atomic operations performed



Figure 17: Dealing with a non-manifold geometry. Top: refinement
until matching the topology. Bottom: mutual tessellation and final
output.

over the tetrahedra or sample points are easily parallelized as they
are independent. All experiments are performed on an Intel 2.4GHz
16-core machine with 128 Gb RAM. The tolerance errors are spec-
ified as a percentage of the longest edge of the bounding box of the
input data. Margin α is set to 0.2 in all experiments.

Though for simplicity of exposition, we assigned F at bounding
box vertices as that of the outer boundary. In practice, we found
that by multiplying this assignment by the distance to Ω signifi-
cantly reduces over refinement. However this choice might lead to
large interpolated values at samples of the outer tolerance boundary.
Since this does not hinder classification, we do not further refine in
such cases. One way to implement this idea, is to replace the error
ε(s) for classification by ε(s) = 1− f(s)/F(s).

Figure 18: Blade. From top left to bottom right: δ is set to 0.15,
0.35, 0.9 and 1.5%. The final vertex count are 3, 020, 1, 015, 493
and 254, respectively.

Figure 18 illustrates our algorithm at work on a mechanical part
(blade), for several separation distances between the boundaries
of the tolerance volume. The overall time consumed by the algo-

Figure 19: Fertility. From top left to bottom right: δ is set to 0.15,
0.25, 0.4, 0.8, 2.0 and 8.0. The final vertex count is 4, 642, 2, 768,
1, 484, 767, 417 and 120, respectively. The input model is a surface
triangle mesh of the fertility model with 14k vertices.

Figure 20: Armadillo. δ is set to 0.1% and 0.9%. The final vertex
count is 26, 189 and 1, 518. The input model is a surface triangle
mesh of the armadillo model with 173k vertices.

rithm ranges from 34 minutes for δ = 1.5% to around 7 hours for
δ = 0.15%. Figure 19 shows outputs of our algorithm on a smooth
surface (fertility) with δ ranging from 0.15% to 8%. The one-sided
Hausdorff measured from the output to the input is bounded in all
cases. Note that when δ is large (bottom right), the tolerance vol-
ume is not a topological thickening anymore as the topology of the
inner boundary of the tolerance changes. We also run our algorithm
on Armadillo - a more general mesh made of smooth and flat parts
(Figure 20).

Vertex count over time. Figure 21 plots the vertex count of Z
against time, for the fertility model and different values for δ. In
all experiments the refinement step is substantially faster than the



multi-staged simplification step. The two batches of halfedge col-
lapse operators applied to ∂Γ and Z decreases the vertex count
rapidly. The more general edge collapse operators are substantially
slower. The time taken per operator further increases as we move
from ∂Γ to Z , and finally to all edges. Such increase is mostly
due to the transition from sampling the kernel of the edge only over
∂Ω (Figure 8) to pointwise probing of the whole kernel volumes in
later stages. Another reason for the escalating time per operator is
due to the progressive increasing of the kernel volumes when the
mesh coarsens. In addition, each tetrahedron contains on average
more samples and hence requires more time to verify the classifica-
tion of these samples. In other words, discovering progressively the
anisotropy in the input geometry, under the tolerance volume con-
straint, comes at an increasing cost for each edge collapse operator.
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Figure 21: Evolution of mesh complexity over time for different
δ(%). Each mark depicts the completion of: refinement; simplifi-
cation via halfedge collapses of ∂Γ; edge collapses of ∂Γ; mutual
tessellation and halfedge collapses of Z; edge collapses of Z; and
simplification of all edges. The input is a raw surface mesh of the
fertility model (14kv).

Comparisons. A strict qualitative comparison with previous
work is not possible as our problem statement differs. The one-
sided Hausdorff distance preserved in general mesh decimation al-
gorithms is measured from the input to the output mesh, while
we guarantee the other side of the Hausdorff distance. Neverthe-
less, we plot our one-sided Hausdorff distance against the num-
ber of vertices of the final output mesh, for five other mesh ap-
proximation algorithms: simplification envelopes [Cohen et al.
1996], a decimation algorithm from Lindstrom-Turk [Lindstrom
and Turk 1999] (without error bounds), the MMGS remeshing al-
gorithm [Borouchaki and Frey 2005] (with Hausdorff error bound),
MMGS with the mesh anisotropy option and a decimation algo-
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Figure 22: Comparisons. We plot the one-sided Hausdorff distance
(output to input) (H|O→I) against the final number of vertices. A
dot indicates a self-intersection of the output mesh. The input mesh
is a clean surface triangle mesh of the fertility model (14kv).

rithm with error bound implemented in OpenFlipper [Möbius and
Kobbelt 2012].Albeit none of the other approaches except [Cohen
et al. 1996] target an intersection-free output, we indicate with a dot
a self-intersection of the output mesh (Figure 22). For completeness
we also plot the other-sided Hausdorff distance over the same input
and output datasets (Figure 23). In both cases we achieve a lower
vertex count for a given tolerance error, at the price of higher com-
putational times.
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Figure 23: Comparisons. We plot the other-sided Hausdorff dis-
tance (input to output) (H|I→O) against the final number of ver-
tices over the same data.

We also compare our algorithm with [Cohen et al. 1996] on Ar-
madillo (Figure 24). For a very large tolerance, the vertex count for
our algorithm and simplification envelopes is comparable. How-
ever, on most part of the curve, our algorithm generates on aver-
age 10% fewer vertices, for a given tolerance error. Note also that
the simplification envelopes require a manifold mesh as input. In
addition, they cannot simplify the geometry of highly undulating
surfaces beyond a certain limit, due to the specific type of tolerance
volume used (Figure 25).
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Figure 24: Comparison with the Simplification envelopes [Cohen
et al. 1996]. We plot the final number of vertices against the one-
sided Hausdorff distance (output to input) (H|O→I). The input is a
clean surface triangle mesh of Armadillo (173k vertices).

Normals. We do not provide quantitative guarantees of faithful
approximation of normals in all cases. Instead our proof (Section 3)
yields good normals in smooth areas, when the sampling σ is dense
enough. Figure 26 plots the distribution of normal deviation with
respect to different shrinkage factors used for condition 3 for the
Fertility model. Dropping this condition may cause in practice the
normal deviation to exceed 90◦. Figure 27 provides on the Lucy
model a visual comparison of normals of our output to the input
surface triangle mesh (left).

Dealing with sharp creases subtending small angles may require
an extremely dense σ, which also translates into dense refinement.



Figure 25: Aggressive simplification. As the tolerance in the
Simplification Envelopes is generated by offsetting the vertices
along the normals, this approach cannot simplify the geometry
of highly undulating surfaces beyond a certain Hausdorff limit.
Left: input mesh. Middle: output from the Simplification En-
velopes (H|O→I = 60%). Right: output from our algorithm
(H|O→I = 10%).
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Figure 26: Distribution (in log scale) of normal deviation. We plot
the distribution of normal deviation of our output for the fertility
model (δ = 0.2%) when condition 3 is not used, and when a 30%,
70% and 100% shrinkage factor is used. The final vertex count of
the output is 3, 498, 3, 538, 3, 624 and 5, 715 respectively.

When using a too large value for σ, activating the preservation
of normals during refinement may further translate into dense re-
finement as the normals are ill-defined locally. We cannot always
deduce whether overly dense refinement comes from the preser-
vation of inferred normals or from the recovery of the topology.
As the decimation preserves the inferred normals we may end up
with overly complex meshes. However, relaxing constraint 3 dur-
ing halfedge collapses can alleviate this issue.

Robustness. A primary virtue of our algorithm is its resilience
to the type and defects of the input dataset. More specifically, and
as our algorithm takes a tolerance volume as input, the robustness of
our algorithm is delegated to the construction of a robust tolerance
volume - then the output is guaranteed to be homotopy-equivalent
to the given tolerance volume. Said differently, our algorithm is
oblivious to the dataset inside the tolerance as long as the tolerance
is well-behaved. Figure 28 illustrates the robustness of our algo-
rithm on point sets and defect-laden triangle soups sampled on the
elephant model, with two levels of noise. We use as tolerance vol-
ume a sub-level of the robust distance function based on distances
between measures [Chazal et al. 2011].

Limitations. Despite its guarantees and qualitative performances,
our algorithm is compute-intensive, especially when setting a small
tolerance. On Figure 14 the tolerance is set to δ = 0.6% and our
algorithm runs for approximately 3h and consumes 2.1Gb of peak
RAM memory. The time complexity is dominated by the simplifi-
cation step. Table 1 lists the time taken by each step of the algorithm
against the vertex count of Z .

Figure 27: Lucy. Left: Input model (50kv). Right: Output from
our algorithm (16.7k vertices, δ = 0.13%).

Table 1: Timing (in seconds) for each step of our algorithm for the
blade model depicted in Figure 14.

Stage # Vertices (Z) Time (s) Time per iteration

Refinement 20, 447 655 0.0319

halfedge - ∂Γ 10, 217 326 0.0318

general - ∂Γ 5, 346 4, 658 0.956

halfedge - Z 2, 292 153 0.050

general - Z 1, 015 1, 478 1.157

All edges 752 4, 537 17.185

Total 11, 807 0.2941

Most of the time spent by the algorithm is in the exhaustive search
to find the best point location for an edge collapse operator, and this
time escalates as the decimation proceeds. Unlike other mesh deci-
mation algorithms, the running time of our algorithm is decreasing
with parameter δ of the specified tolerance. A small tolerance re-
quires dense sampling and hence |S| increases together with the
time consumed to classify the samples. Another dominating factor
is the sampling density used to probe a kernel when searching for
the best point of a general edge collapse operator. The halfedge col-
lapse operators are on average two orders of magnitude faster, but
are not sufficient to generate coarse meshes. On the positive side,
each operation performed over all sample points and tetrahedra of
the triangulation is parallelizable. Figure 29 plots the speed up in
the run-time of our algorithm versus the number of CPU cores.



Figure 28: Robustness to noise and type of input datasets. From left to right: point set, triangle soup with low noise, noisy point set, and
triangle soup with high noise. The corresponding δ and output vertex count are 0.9, 1.2, 2, 5% and 2, 191, 1, 897, 1, 082, 502 respectively.
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Figure 29: Speed up. We plot the speed up in the run-time of our
algorithm versus the number of CPU cores (input: Fertility, δ is set
to 0.4%).

6 Discussion

We introduced a novel approach to the problem of isotopic approx-
imation within a tolerance volume. We depart from common ap-
proaches by leveraging on a dense point sample of the boundary of
the tolerance volume. We designed a pliant meshing algorithm that
first proceeds by Delaunay refinement in order to recover the correct
topology through classifying the samples, and then by topology-
preserving simplification in order to discover the anisotropy within
the tolerance volume. A distinctive feature of our approach is its
robustness to input data sets. As our approach is oblivious to the
type and defects of the datasets within the tolerance volume, it can
reconstruct, repair and simplify concurrently. Compared to error-
driven simplification algorithms, with or without error bounds, our
approach makes full use of the tolerance volume and achieves lower
vertex counts for a given tolerance error, in addition to intersection-
free outputs. Such lower vertex counts, however, come at a price:
our current implementation is compute-intensive, and the computa-

tional times escalate when the tolerance decreases.

The current version of the algorithm is highly parallelizable: in
practice we observed that the running time was inversely propor-
tional to the number of processors. As future work we wish to ex-
tend our approach so as to make it out-of-core. A natural direction
is to cut the tolerance volume into sub-parts before stitching, but it
requires another line of work to preserve the guarantees during sim-
plification. Finally, another stimulating direction is the concept of a
progressive approximation algorithm, in which we could guarantee
that every additional CPU cycle spent by the algorithm is making
progress toward the optimal solution that matches the global mini-
mum vertex count.
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GUÉZIEC, A. 1996. Surface simplification inside a tolerance vol-
ume. Tech. Rep. 20440. IBM Research Report RC 20440.

GUMHOLD, S., BORODIN, P., AND KLEIN, R. 2003. Intersection
free simplification. International Journal of Shape Modeling 9,
2, 155–176.

HORNUNG, A., AND KOBBELT, L. 2006. Robust reconstruction of
watertight 3d models from non-uniformly sampled point clouds
without normal information. In Proceedings of EUROGRAPH-
ICS Symposium on Geometry Processing, 41–50.

JU, T. 2004. Robust repair of polygonal models. ACM Transactions
on Graphics 23, 3, 888–895.

KALVIN, A. D., AND TAYLOR, R. H. 1996. Superfaces: Polyg-
onal mesh simplification with bounded error. IEEE Computer
Graphics and Applications 16, 3.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Pois-
son surface reconstruction. In Proceedings of EUROGRAPHICS
Symposium on Geometry Processing, 61–70.

KLEIN, R., LIEBICH, G., AND STRASSER, W. 1996. Mesh reduc-
tion with error control. In IEEE Visualization, 311–318.

LINDSTROM, P., AND TURK, G. 1999. Evaluation of memoryless
simplification. IEEE Transactions on Visualization and Com-
puter Graphics 5, 2, 98–115.
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A Interlocked loops

Theorem A.1. Assume 2 interlocked loops, each formed by joining
a segment of length le with a continuous curve of length lc. Then
the continuous curves of the two loops cannot be ( le+lc

4
+ le, 0)-

separated.

Proof. Each loop is contained within a ball of radius le+lc
4

. Let B
Bbe such a ball for the first loop C1. Because the

two loops are linked, the part of the second loop C2

lying inB cannot be linearly separated from the first
loop. If this part only consists of the curve part, the
conclusion follows. Else, letB′ be the ball obtained by enlargingB
by le. Now B′ ∩C2 must contain the two endpoints of the segment
part of C2. Also, B′ ∩ C2 and C1 are not linearly separable. Since
the segment lies in the convex hull of the curve part of B′ ∩C2, the
conclusion follows.


