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Abstract: As the computation power of modern high performance architectures increases, their
heterogeneity and complexity also become more important. One of the big challenges of exascale
is to get programming models which gives access to high performance computing (HPC) to many
scientists and not only to a few HPC specialists. One relevant solution to ease parallel programming
for scientists is Domain Speci�c Language (DSL). However, one problem to avoid with DSLs is to
not design a new DSL each time a new domain or a new problem has to be solved. This phenomenon
happens for stencil-based numerical simulations, for which a large number of languages has been
proposed without code reuse between them. The Multi-Stencil Language (MSL) presented in this
paper is a language common to any kind of mesh used into a stencil-based numerical simulation. It
is said that MSL is mesh-agnostic. Actually, from the description of a numerical simulation, MSL
produces an empty parallel pattern, or skeleton, of the simulation which will be �lled using other
existing parallel languages and libraries. Thus, MSL, by �nding a common language for di�erent
kinds of stencil-based simulation, facilitates code reuse. MSL is evaluated on a real case simulation
which solves shallow-water equations. It is shown that MSL does not introduce overheads on data
parallelism up to 16.384 cores, and that the hybrid parallelism (data and task) introduced improves
performance of the simulation.
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Le langage MSL: orchestration de stencils au travers d'un

DSL maillage-agnostique

Résumé : Alors que la puissance de calcul des architectures hautes performances augmente,
leur hétérogénéité et leur complexité augmente également ce qui rend de plus en plus di�cile leur
utilisation. Pour cette raison, l'un des sujet de recherche majeur pour prétendre atteindre des
machines exascale est de proposer des modèles de programmation permettant l'accès au calcul
hautes performances au plus grand nombre et non pas seulement à une poignée de spécialistes.
L'une des solutions permettant de faciliter la programmation parallèle aux scienti�ques tout en
conservant les performances est l'utilisation de langages de domaine spéci�ques (DSL). Cepen-
dant, l'un des problèmes lié aux DSL est leur conception qui n'est pas envisageable pour chaque
nouveau domaine visé car trop chronophage et complexe. Ce problème apparaît notamment
dans le domaine de la simulation numérique basé sur les calculs de type stencil. Dans ce do-
maine un très large ensemble de langages ont été proposés chacun avec ses spéci�cités et sans
aucune ré-utilisation de fonctionnalités et de codes de conception de l'un vers l'autre. Le langage
MSL (Multi-Stencil Language) présenté dans ce rapport de recherche est un langage qui extrait
le fondement commun des di�érents types de simulation multi-stencil en proposant une abstrac-
tion du type de maillage utilisé. MSL produit un squelette (ou patron) de l'application décrite
en entrée et ré-utilise des langages hautes performances existants pour obtenir l'application �-
nale. MSL est évalué sur un cas réel de simulation numérique par lequel il est montré que MSL
n'introduit pas de surcoûts par rapport à une utilisation classique des langages sous-jacents. Le
passage à l'échelle est évalué jusqu'à 16.384 c÷urs de calcul. Il est également montré que la
version hybride de code introduite par MSL améliore les performances en suivant un modèle de
performances également décrit.

Mots-clés : Langage de domaine sp¢i�que, stencil, simulation num¯ique, parall¨isme de donnés,
parall¨isme de tâches, ordonnancement, MPI, OpenMP
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1 Introduction

As the computation power of modern high performance architectures increases, their hetero-
geneity and complexity also become more important. For example, the current world's top
supercomputer Tianhe-2 1 is composed of multi-cores processors and accelerators, and is able to
reach a theoretical peak performance around thirty peta �oating point operations par seconds.
However, to be able to use such a machine, multiple programming models, such as MPI (Message
Passing Interface), OpenMP, CUDA etc., and multiple optimization techniques, such as cache
or vectorization optimizations, have to be combined. Moreover, current architectures evolution
lets think that heterogeneity and complexity in HPC will continue to grow in future.

One of the big challenges to solve to be able to use exascale computers is to propose pro-
gramming models which gives access to high performance computing (HPC) to many scientists
and not only to a few HPC specialists [10]. Actually, applications which run on supercomputers
and which need such a computation power are physics, weather or genomic applications, which
are not implemented by HPC specialists most of the time.

One possible runtime execution model for HPC is to propose dynamic scheduling of task
graphs combined to message passing models [1, 12, 22] (to be able to use more than one ma-
chine). Those models increase HPC code portability and reach an interesting performance onto
heterogeneous architectures, which is interesting to reach exascale programming. At a higher
abstraction level, general purpose parallel languages, such as OpenMP [8] and OpenCL [18] fol-
low the direction of task graph scheduling proposed by those execution models. However, for
non-experts end-users, general purpose languages still are di�cult to use and to tune for a given
application onto a given architecture. The current easiest (with the higher abstraction level),
but still e�cient, programming model for end-users is Domain Speci�c Language (DSL). Such
a language is speci�c to the end-user domain and proposes a grammar which is easy to under-
stand. The DSL compiler is able, because of the speci�c knowledge onto the domain targetted,
to automatically apply parallelization and speci�c optimizations to produce a high performance
back-end code. Thus, a DSL is able to split end-user concerns from HPC concerns which is
relevant to reach exascale programming models.

However, many DSLs have been proposed for many domains yet, and, as far as we know,
only a few of them have been able to reuse work already done by another language [19]. In
other words, software engineering properties have to be integrated into DSL conception, such
that a new DSL can be seen as a composition of parallelization, optimizations or even languages
semantics already proposed by others.

For example, to numerically solve a set of partial di�erential equations (PDEs), iterative
methods are frequently used to approximate the exact solution through a discretized phenomena.
A very well known and usual way to discretize PDEs is to transform them to explicit numerical
schemes, also often called stencils. Many DSLs have been proposed for stencil computations [3,
4, 9, 16, 20], as it will be detailed in Section 2. Many of them use same kind of parallelization,
data structures or optimizations, however each one has been built from scratch to deal with
another additionnal speci�c case. We present the Multi-Stencil Language (MSL) DSL, also for
stencil-based numerical simulations. MSL is a language with a light grammar to describe a
numerical simulation without implementation details. From the description, the compiler has
enough information to extract and build an empty parallel pattern of the simulation, which
can be �lled, in a second step, by implementation concerns. The parallel pattern generated by
the language is able to use di�erent existing languages and libraries as it is independent from
implementation choices. Moreover, the parallelization performed by the language is large enough
to be compatible with many architectures and back-end languages. Contributions presented in

1urlwww.top500.org
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4 Coullon & Bigot & Perez

this paper are : the computational model of a multi-stencil program and its parallelization
formalism; the MSL grammar and its compiler; a back-end implementation and its performance
evaluation onto a real case numerical simulation up to 16.384 cores.

Section 2 introduces the related work on DSLs for stencils. Section 3 formally explains the
targetted domain and its computational model. From this model can be extracted the grammar
of MSL in Section 4. Section 5 shows how parallelism can be extracted from this light grammar
of MSL. Sections 6 and 7 detail choices that have been done in this paper to evaluate MSL, and
Section 8 shows performance results of the language. Finally, Section 9 concludes and proposes
perspectives on this work.

2 Related work

Many domain speci�c languages have been proposed for stencil computations. Each one has its
own speci�cities and answers to a speci�c stencil case or to a speci�c additionnal optimization.
For example, Pochoir [20] works on cache optimization techniques for stencils applied onto Carte-
sian meshes. On the other hand, PATUS [4] proposes to add a parallelization strategy grammar
to its stencil language to perform an auto-tuning parallelization strategy. Moreover, Halide [16]
proposes an optimization and parallelization of a pipeline of stencil codes, while ExaSlang [17]
is speci�c to multigrid numerical methods etc.

The reason why each of those languages are implemented from scratch to answer its own
particularities and its own optimizations is because each language is built and thought as a single
block, which makes impossible or di�cult code reuse from one language to another. In other
words domain speci�c languages (for stencils or other domains) su�er from a lack of software
engineering properties, which could increase the productivity to build a new language, by code-
reuse, and also the maintainability of languages, with more separation of concerns. As far as
we know, a single work proposes a framework to create DSL, which afterwards will be easier to
compose and combine together [19], which is interesting for inter-domains applications. However,
the point argued by this paper, and by the Multi-Stencil Language (MSL), is that DSL conception
must be studied to maximize its usefulness for di�erent types of applications, while keeping a
good performance. This maximization is directly linked to the abstraction level proposed to the
end-user, and also to separation of concerns and code reuse improvements.

MSL is itself a domain speci�c language for stencil-based simulations. It o�ers a way to
give a mesh-agnostic description of a simulation, which could be common to di�erent cases of
simulations, and thus facilitates reuse of existing underlying data structures, optimizations or
parallelization techniques. In other words, MSL extracts where parallelization and optimizations
are needed into the simulation, by producing an empty parallel pattern, but not how to do
it, which is left to existing languages (SkelGIS and OpenMP in this paper), and which is an
implementation concern.

Liszt [9] and Nabla [3], both o�er languages for stencils applied onto any kind of mesh,
from Cartesian to unstructured meshes. The mesh which is needed into the simulation can be
built from a set of available symbols in the grammar of each language. Thus, those languages
generalize the de�nition of a mesh, as it is proposed into the MSL formalism. However, two main
di�erences can be noticed.

First, the formalism is more �exible in MSL. For example, a computation can be applied onto
a subset of the space domain which is not possible with Liszt and Nabla. This functionnality
is important in numerical simulations yet. For example, many computations performed in the
simulation studied in this paper have to be applied onto a subpart of the overall space domain.

Second, in Liszt and Nabla the description of a simulation is not splitted from its implemen-

Inria



The Multi-Stencil Language 5

tation concerns. In other words, the topology of a mesh as well as numerical codes are given at
the same time than the description of the di�erent computations to apply into the simulation,
while MSL splits those two di�erent phases. Thus, MSL improves separation of concerns. Ac-
tually, a numerician could describes the di�erent computations to perform into the simulation,
while another one, later, could focuss on the implementation and the numerical code. This also
facilitates reuse of other languages.

Finally, the parallelization techniques proposed in this paper, take place at paradigm level,
with data parallelism and hybrid (data plus task) parallelism. Thus the parallel pattern of the
simulation does not need details onto parallel architectures (distributed or shared memories,
with or without accelerators). This makes possible a large panel of backend architectures and
languages. In other words MSL improves portability.

3 Computational model of Multi-Stencil Programs

Some approaches to numerically solve partial di�erential equations (PDEs) are based on direct
iterative methods (e.g. �nite di�erence, �nite volume or �nite element methods). They approx-
imate the solution through a discretized process where the continuous time and space domains
are discretized and numerical computations are iteratively (time discretization) applied onto a
mesh (space discretization). While the computations can have various forms, we focus on three
categories. Stencil computations involve access to neighbor values only (the concept of neighbor-
hood depending on the space discretization used). Local computations depend on the computed
location only (this can be seen as a stencil of size one). Finally, reductions enable to transform
values mapped on the mesh to a single scalar value.

This section gives a complete formal description of what we call a stencil program and its
computations. The proposed language MSL (Multi-Stencil Language) does not depend on the
type of space discretization used. Thus, some details given in the following sections, are useful
to understand the domain but do not have to be kept in mind to understand the Multi-Stencil
Language.

3.1 Time, mesh and data

Ω is the continuous space domain of a numerical simulation (typically Rn). A meshM de�nes
the discretization of the continuous space domain Ω of a set of PDEs and is de�ned as follows.

De�nition 1 A mesh is a connected undirected graph M = (V,E), where V ⊂ Ω is the set of
vertices and E ⊆ V 2 the set of edges. The set of edges E of a meshM = (V,E) does not contain
bridges. It is said that the mesh is applied onto Ω.

0,0

1,1

Figure 1: From left to right, Cartesian, curvilinear and unstructured meshes.
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6 Coullon & Bigot & Perez

De�nition 2 The dimension of a meshM = (V,E) applied onto Ω = Rn is denoted dim(M) =
n.

A mesh can be structured (as Cartesian or curvilinear meshes), unstructured, regular or irregular
(without the same topology for each element) as illustrated in Figure 1. One can notice that
more than one type of mesh is also possible inside a single simulation. For example, an hybrid
mesh can be de�ned as an unstructured mesh composed itself of a Cartesian mesh inside each of
its vertices. However in this paper, single mesh simulations are addressed.

De�nitions (mesh)

� An entity φ of a meshM = (V,E) is de�ned as a subset of its vertices and edges, φ ⊂ V ∪E.
� A group of mesh entities G ∈ P(V ∪ E) represents a set of entities of the same topology
and the mesh of a group is denoted mesh(G), i.e. G ∈ P(V ∪ E)⇔ mesh(G) = (V,E)

� The set of entities groups used in a simulation is denoted Φ.
For example, in a 2D Cartesian mesh, a group of entities where each entity is made of four

vertices and four edges could form the cells. Another group of entities are the vertices de�ned
as all singletons formed of a single vertex of V . Both groups, then, would be part of Φ. This
example is illustrated in Figure 2b.

De�nition 3 (De�nitions (time)) The �nite sequence T : (tn)n∈J0,TmaxK represents the dis-
cretization of the continuous time domain T = R. To each discrete time-step n ∈ J0, TmaxK, it
associates a time value tn ∈ T .

The time discretization can be as simple as a constant time-step with a �xed number of steps.
It can, however, also be de�ned by recursion with both the time-step and the number of steps
depending on the data variables (see de�nitions below).

De�nitions (quantity)

� V = ∆ ∪ S is the set of variables or quantities.
� ∆ are the mesh variables that to each entity of a group and time-step associates a value
δ : G × T 7→ Vδ where Vδ is a value type.

� The group of entities a variable is mapped on is denoted entity(δ) = G.
� S are the scalar variables that to each time-step associates a value s : T 7→ Vδ where Vδ is
a value type.

� Amongst the scalar variables is one speci�c variable conv ∈ S, the convergence criteria
whose value is 0 except at the last step where it is 1. Thus, ∀t ∈ J0, Tmax−1K, conv(t) = 1,
and conv(Tmax) = 1.

This section has presented the general formalism of meshes, their entities, groups of entities,
time discretization, and �nally quantities (mapped on mesh and scalars). While the details
about mesh and their topologies were useful to specify the following concepts, the Multi-Stencil
Language presented in this paper is mesh-agnostic. These details will therefore not be needed in
the remaining of the paper.

3.2 Computations

De�nitions

� A computation domain D is a subpart of a mesh entities group, D ⊆ G ∈ Φ.

Inria



The Multi-Stencil Language 7

� The set of computation domains of a numerical simulation is denoted D.
� N are the neighborhood functions n : Gi 7→ Gmj which for a given entity φ ∈ Gi returns a
set of m entities in Gj . One can notice that i = j is possible. Most of the time, such a
neighborhood is called a stencil shape.

De�nition 4 A computation kernel k of a numerical simulation is de�ned as k =
(S,R, (w,D), comp), where

� S ∈ S is the set of scalar to read,

� (w,D) ∈ ∆×D is the single data written by the kernel:

� w is the single quantity (variable) modi�ed by the computation kernel,

� D is the computation domain on which w is computed, D ⊆ entity(w),

� R ∈ ∆×N is the set of tuples (r, n) representing the data read where

� r is a quantity read by the kernel to compute w,

� n : entity(w)→ entity(r)m is a neighborhood function that indicates whose values of
r are read to compute w.

� comp is the numerical computation which returns a value from a set of n input values,
comp : Vni → Vj, where Vi and Vj are value types. Thus, comp represents the actual
numerical expression which is computed by a kernel.

At each time-step, a set of computations is performed. During a computation kernel, it can
be considered that a set of old states (t− 1) of quantities are read (R), and that a new state (t)
of a single quantity is written (w).

Such a de�nition of a computation kernel covers a large panel of di�erent computations. For
example, the four usual types of computations (stencil, local, boundary and reduction) performed
into a simulation can be de�ned as follow :

� A kernel computation k(S,R, (w,D), comp) is a stencil kernel if ∃(r, n) ∈ R such that
n 6= identity .

� A boundary kernel is a kernel k(S,R, (w,D), comp) where D is a speci�c computation
domain at the border of entities, and which does not intersect with any other computation
domain.

� A kernel computation k(S,R, (w,D), comp) is a local kernel if ∀(r, n) ∈ R, n = identity.

� A kernel computation k(S,R, (w,D), comp) is a reduction kernel if w is a scalar.

Since we only consider explicit numerical schemes in this paper, a kernel can not write the same
quantity it reads, except locally, i.e. if ∃(w, n) ∈ R⇒ n = identity

A reduction is typically used to compute the convergence criteria of the time loop of the
simulation.

De�nition 5 The set of n ordered computation kernels of a numerical simulation is denoted
Γ = [ki]0≤i≤n−1, such that ∀ki, kj ∈ Γ, if i < j, then ki is computed before kj.

De�nition 6 A multi-stencil program is de�ned by the octuplet

MSP(M,Φ,D,N ,∆,S, T,Γ)

RR n° 8962
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Mesh Cells Edgex

(a) Mesh and two groups of mesh entities.

x,y x,y

x
y+1

x
y-1

x-1
y

x+1
y

A B

(b) A is computed with a 4-
neighborhood stencil applied on B.
A is computed onto a computation
domain which does not include all
entities of the group.

x,y x1
y1

x1+1
y1

A C

(c) A is computed with a 2-neighborhood
stencil applied on C. A is computed onto
a computation domain includes all enti-
ties of the group.

Figure 2: (a) a Cartesian mesh and two kind of groups of mesh entities, (b) an example of stencil
kernel on cells, (c) an example of stencil kernel on two di�erent entities of the mesh.

Example For example, in Figure 2b, assuming that the computation domain (full lines) is
denoted dc1 and the stencil shape is n1, the stencil kernel can be de�ned as:

R : {(B,n1)}, w : A, D : dc1,

comp : A(x, y) = B(x+ 1, y) +B(x− 1, y) +B(x, y + 1) +B(x, y − 1).

On the other hand, in the example of Figure 2c, assuming the computation domain is dc2 and
the stencil shape is n2, the stencil kernel is de�ned as:

R : {(C, n2), (A, identity)}, w : A, D : dc2,

comp : A(x, y) = A(x, y) + C(x1, y1) + C(x1 + 1, y1).

A stencil program has been formally de�ned in this section. This formalism is used in the
next Section to de�ne two parallelization techniques of a multi-stencil program.

One can note that all de�nitions given in this section are independent from the topology of
the mesh. This property will be kept in the rest of this paper to propose the mesh-agnostic MSL
language.

4 The Multi-Stencil Language

From the formalism detailed in the previous section, the Multi-Stencil Language and its grammar
can already be given. This grammar is su�cient to automatically extract parallelism from the
program as will be explained in the next section.

Inria



The Multi-Stencil Language 9

1 program : := "mesh : " meshid
2 "mesh e n t i t i e s : " l i s t g r o up
3 "computation domains : " listcompdom
4 " independent : " l i s t i n d e
5 " s t e n c i l  shapes : " l i s t s t e n c i l
6 "mesh quan t i t i e s : " l i s t q u a n t i t i e s
7 " s c a l a r s " l i s t s c a l a r
8 l i s t l o o p
9
10 l i s t g r o up : := groupid " , " l i s t g r o up | groupid
11 listcompdom : := compdom listcompdom | compdom
12 compdom : := compdomid " in " groupid
13 l i s t i n d e : := inde l i s t i n d e | inde
14 inde : := compdomid "and" compdomid
15 l i s t s t e n c i l : := s t e n c i l l i s t s t e n c i l | s t e n c i l
16 s t e n c i l : := s t e n c i l i d " from" groupid " to " groupid
17 l i s t q u a n t i t i e s : := quant i ty l i s t q u a n t i t i e s | quant i ty
18 quant i ty : := groupid l i s t q u a n t i t y i d
19 l i s t q u a n t i t y i d : := quant i ty id " , " l i s t q u a n t i t y i d | quant i ty id
20 l i s t s c a l a r : := s c a l a r i d " , " l i s t s c a l a r | s c a l a r i d
21 l i s t l o o p : := loop l i s t l o o p | loop
22 loop : := " time : " i t e r a t i o n
23 " computations : " l i s t comp
24 i t e r a t i o n : := num | s c a l a r
25 l i s t comp : := comp l i s t comp | comp
26 comp : := wr i t t en "=" compid " ( " l i s t r e a d " ) "
27 wr i t t en : := quant i ty id " [ " compdomid " ] " | s c a l a r
28 l i s t r e a d : := dataread l i s t r e a d | dataread
29 dataread : := quant i ty id " [ " s t e n c i l i d " ] " | quant i ty id | s c a l a r

Figure 3: Grammar of the Multi-Stencil Language.

The grammar of the Multi-Stencil Language is given in Figure 3 and an example is provided
in Figure 4. A Multi-Stencil program is composed of eight parts.

1. The mesh keyword (Fig.3, l.1) introduces an identi�er forM, the single mesh of the sim-
ulation. For example cart in Fig.4, l.1. Since the language is independent of the mesh
topology, this is not used by the compiler but is syntactic sugar for the user.

2. The mesh entities keyword (Fig.3, l.2) introduces identi�ers for the groups of entities
G ∈ Φ. For example cell or edgex in Fig.4, l.2. Again, this is syntactic sugar only as the
compiler does not rely on the mesh topology.

3. The computation domains keyword (Fig.3, l.3) introduces identi�ers for the computation
domains D ∈ D. For example d1 and d2 in Fig.4, l.4-5. For reference, each domain is
associated to a group of entities (Fig.3, l.12) such as cell for d1 in Fig.4, l.4.

4. The independent keyword (Fig.3, l.4) o�ers a way to declare that computation domains
do not overlap, such as d1 and d2 in Fig.4, l.7. This is used by the compiler to compute
dependencies between computations.

RR n° 8962



10 Coullon & Bigot & Perez

1 mesh : ca r t
2 mesh e n t i t i e s : c e l l , edgex
3 computation domains :
4 d1 in c e l l
5 d2 in edgex
6 independent :
7 d1 and d2
8 s t e n c i l shapes :
9 ncc from c e l l to c e l l

10 nce from c e l l to edgex
11 nec from edgex to c e l l
12 mesh quan t i t i e s :
13 c e l l A,B,D,E,F ,G, I , J
14 edgex C,H
15 s c a l a r s : mu, tau
16 time : 500
17 computations :
18 B[ d1 ] = k0 ( tau ,A)
19 C[ d2 ] = k1 (B[ nec ] )
20 D[ d1 ] = k2 (C)
21 E[ d1 ] = k3 (C)
22 F [ d1 ] = k4 (D,C[ nce ] )
23 G[ d1 ] = k0 (mu, tau ,E)
24 H[ d2 ] = k6 (F)
25 I [ d1 ] = k7 (G,H)
26 J [ d1 ] = k8 (mu, I [ ncc ] )

Figure 4: Example of program using the Multi-Stencil Language.

5. The stencil shapes keyword (Fig.3, l.5) introduces identi�ers for n ∈ N , the stencil
shapes. For each shape, the source and destination group of entities (Fig.3, l.16) are
speci�ed. For example nec in Fig.4, l.11 associates cell entities to each edgex entity.

6. The mesh quantities keyword (Fig.3, l.6) introduces identi�ers for δ ∈ ∆, the quantities
with the group of entities they are mapped on (Fig.3, l.16). For example the quantities C
and H are mapped on edgex entities.

7. The scalars keyword (Fig.3, l.7) introduces identi�ers for s ∈ S, the scalars. For example
mu and tau in Fig.4, l.15.

8. Finally, the last part (Fig.3, l.8) introduces the computations loops. Each loop is made of
two parts:

� the time keyword (Fig.3, l.22) introduces conv, the convergence criteria either as a
number of iterations or as 0, 1 valued scalar (Fig.3, l.24). For example, 500 iterations
are speci�ed in Fig.4, l.16,

� the computations keyword (Fig.3, l.23) introduces identi�ers for each computation
k ∈ Γ = (S,R, (w,D), comp). Each computation (Fig.3, l.26) speci�es:

� the quantity w written and its domain D, for example in Fig.4, l.22, kernel k4
computes the quantity F on domain d1,
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The Multi-Stencil Language 11

� the read scalars S and mesh quantities with their associated stencil shape R, for
example in Fig.4, l.16, k4 reads C with the shape nce and D with the default
identity shape, it uses no scalar.

One can notice that in the example of Figure 4, there are no (reduction) kernel associated
to the scalars mu and tau. In this case, those scalars are in fact constants. One can also notice
that the computation to execute for each kernel is not speci�ed. This is indeed not handled by
MSL, which is mesh-agnostic, and which only generates a skeleton of the application (a parallel
pattern of the application). Actually, a numerical computation is naturally mesh-dependent and
is left to other languages. The numerical computation is speci�ed elsewhere by referencing the
identi�er chosen here.

This section has introduced the grammar of MSL. The next section will show how paralleliza-
tion can be extracted from this simple language and how an empty parallel skeleton (or pattern)
of the application can be generated.

5 Parallelization of Multi-Stencil Programs

As previously explained, in a computation k(S,R, (w,D), comp), comp is not handled by MSL.
As a result, in the rest of this paper, and to simplify notations, we denote the same computation
k(S,R, (w,D)).

5.1 Data parallelism

In a data parallelization technique, the idea is to split quantities on which the program is com-
puted into balanced sub-parts, one for each available resource. The same sequential program can
afterwards be applied on each sub-part simultaneously, with some additioinal synchronizations
between resources to update the data not computed locally, and thus to guarantee a correct
result.

More formally, the data parallelization of a multi-stencil program

MSP(M,Φ,D,N ,∆,S, T,Γ)

consists in, �rst, a partitioning of the mesh M in p balanced sub-meshes (for p resources)
M = {M0, . . . ,Mp−1}. This step can be performed by an external graph partitionner [6,14,15]
and is not adressed by this paper.

As entities and quantities are mapped onto the mesh, the set of groups of mesh entities and
the set of quantities ∆ are partitionned the same way than the mesh: Φ = {Φ0, . . . ,Φp−1},
∆ = {∆0, . . . ,∆p−1}.

The second step of the parallelization is to identify in Γ the needed synchronizations between
resources to update data, and thus to build a new ordered list of computations Γsync.

De�nition 7 For n the number of computations in Γ, and for i, j such that i < j < n, a
synchronization is needed between ki and kj, denoted ki ≺≺≺ kj, if ∃(rj , nj) ∈ Rj such that wi = rj
and nj 6= identity (kj is a stencil computation). The quantity to synchronize is {wi}.

Actually, a synchronization is needed by the quantity read by a stencil computation (not
local), if this quantity has been modi�ed before, which means that it has been written before.
This synchronization is needed because a neighborhood function n ∈ N of a stencil computation
involves values computed on di�erent resources.
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12 Coullon & Bigot & Perez

However, as a multi-stencil program is an iterative program, computations which happen
after kj at the time iteration t have also been computed before kj at the previous time iteration
t− 1. For this reason another case of synchronization has to be de�ned.

De�nition 8 For n the number of computations in Γ and j < n, if ∃(rj , nj) ∈ Rj such that
nj 6= identity and for all i < j, ki 6≺≺≺ kj, a synchronization is needed between kl and kj, where
j < l < n, denoted kl ≺≺≺ kj, if wl = rj. The quantity to synchronize is {wl}.

De�nition 9 A synchronization between two computations ki ≺≺≺ kj is de�ned as a speci�c com-
putation

ksynci,j (S,R, (w,D)),

where S = ∅, R = {(r, n)} = {(wi, nj ∈ N}, (w,D) = (wi,
⋃
φ∈Dj

nj(φ))). In other words, wi
has to be synchronized for the neighborhood nj for all entities of Dj.

De�nition 10 If ki ≺≺≺ kj, kj is replaced by the list

[ksynci,j , kj ]

When data parallelism is applied, the other type of computation which is responsible for
additional synchronizations is the reduction. Actually, the reduction is �rst applied locally
on each subset of entities, on each resource. Thus, p (number of resources) scalar values are
obtained. For this reason, to perform the �nal reduction, a set of synchronizations are needed
to get the �nal reduced scalar. As most parallelism libraries (MPI, OpenMP) already propose a
reduction synchronization with its own optimizations, we simply choose to replace the reduction
computation by itself anotated by red.

De�nition 11 A reduction kernel kj(Sj , Rj , (wj , Dj)), where w is a scalar, is replaced by
kredj (Sj , Rj , (wj , Dj)).

One can notice that both types of synchronizations are performed by all resources.

De�nition 12 The concatenation of two ordered lists of respectively n and m computations
l1 = [ki]0≤i≤n−1 and l2 = [k′i]0≤i≤m−1 is denoted l1 · l2 and is equal to a new ordered list
l3 = [k0, . . . , kn−1, k

′
0, . . . , k

′
m−1].

De�nition 13 From the ordered list of computation Γ, a new synchronized ordered list Γsync
is obtained from the call Γsync = Fsync(Γ, 0), where Fsync is the recursive function de�ned in
Algorithm 1.

Algorithm 1 follows previous de�nitions to build a new ordered list which includes synchro-
nizations. In this algorithm, lines 7 to 19 apply De�nition (7), lines 20 to 29 apply De�nition (8),
and �nally lines 34 and 35 apply De�nition (11). Finally, line 39 of the algorithm is the recursive
call.

The �nal step of this parallelization is to run Γsync on each resource. Thus, for each resource
0 ≤ r ≤ p− 1 the multi-stencil program

MSPr(Mr,Φr,Dr,N ,∆r,S, T,Γsync), (1)

is performed.
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The Multi-Stencil Language 13

Algorithm 1 Fsync recursive function

1: procedure Fsync(Γ,j)
2: kj = Γ[j]
3: list = []
4: if j = |Γ| then
5: return list
6: else if ∃(rj , nj) ∈ Rj such that nj 6= identity then
7: for all (rj , nj) ∈ Rj such that nj 6= identity do
8: found = false
9: for 0 ≤ i < j do
10: ki = Γ[i]
11: if ki ≺≺≺ kj then
12: found = true
13: S = ∅
14: R = {(wi, nj)}
15: (w,D) = (wi,

⋃
φ∈Dj

nj(φ)))

16: list.[ksynci;j (S,R, (w,D))]
17: end if
18: end for
19: if !found then
20: for j < i ≤ n do
21: ki = Γ[i]
22: if ki ≺≺≺ kj then
23: S = ∅
24: R = {(wi, nj)}
25: (w,D) = (wi,

⋃
φ∈Dj

nj(φ)))

26: list.[ksynci;j (S,R, (w,D))]
27: end if
28: end for
29: end if
30: list · [kj ]
31: end for
32: else if wj ∈ S then
33: list.[kredj ]
34: else
35: list.[kj ]
36: end if
37: return list · Fsync(Γ, j + 1)
38: end procedure
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14 Coullon & Bigot & Perez

Example Figure 4 gives an example of a MSP program. From this example, the following
ordered list of computation kernels can be extracted:

Γ = [k0, k1, k2, k3, k4, k0, k6, k7, k8]

From this ordered list of computation kernels Γ, and from the rest of the multi-stencil program,
synchronizations can be automatically detected from the call to Fsync(Γ, 0) to get the synchro-
nized ordered list of kernels:

Γsync = [k0, k
sync
0;1 , k1, k2, k3, k

sync
1;4 , k4, k0, k6, k7, k

sync
7;8 , k8], (2)

where

ksync0;1 = (∅, {(B,nce)}, (B,∪φ∈D1nce(φ))), (3a)

ksync1;4 = (∅, {(C, nec)}, (C,∪φ∈D4
nec(φ))), (3b)

ksync7;8 = (∅, {(I, ncc)}, (I,∪φ∈D8
ncc(φ))). (3c)

5.2 Hybrid parallelism

A task parallelization technique is a technique to transform a program as a dependency graph
of di�erent tasks. A dependency graph exhibits parallel tasks, or on the contrary sequential
execution of tasks. Such a dependency graph can directly be given to a dynamic scheduler,
or can statically be scheduled. In this paper, we introduce task parallelism by building the
dependency graph between kernels of the sequential list Γsync. Thus, as Γsync takes into account
data parallelism, we introduce hybrid parallelism.

De�nition 14 For two computations ki and kj, with i < j, it is said that kj is dependant from
ki with a read after write dependency, denoted ki ≺raw kj, if ∃(rj , nj) ∈ Rj such that wi = rj.
In this case, ki has to be computed before kj.

De�nition 15 For two computations ki and kj, with i < j, it is said that kj is dependant from
ki with a write after write dependency, denoted ki ≺waw kj, if wi = wj and Di ∩Dj 6= ∅. In this
case, ki also has to be computed before kj.

De�nition 16 For two computations ki and kj, with i < j, it is said that kj is dependant from
ki with a write after read dependency, denoted ki ≺war kj, if ∃(ri, ni) ∈ Ri such that wj = ri.
In this case, ki also has to be computed before kj is started so that values read by ki are relevant.

Those de�nitions are known as data hazards classi�cation. However, a speci�c condition on
the computation domain, due to the speci�c domain of multi-stencils, is introduced for the write
after write case.

De�nition 17 A directed acyclic graph (DAG) G(V,A) is a graph where the edges are directed
from a source to a destination vertex, and where, by following edges direction, no cycle can be
found from a vertex u to itself. A directed edge is called an arc, and for two vertices v, u ∈ V an
arc from u to v is denoted (

_
u, v) ∈ A.

From an ordered list of computations Γsync, a directed dependency graph Γdep(V,A) can be
built �nding all pairs of computations ki and kj , with i < j, such that ki ≺raw kj or ki ≺waw kj
or ki ≺war kj .
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The Multi-Stencil Language 15

De�nition 18 For two directed graphs G(V,A) and G′(V ′, A′), the union (V,A) ∪ (V ′, A′) is
de�ned as the union of each set (V ∪ V ′, A ∪A′).

De�nition 19 From the synchronized ordered list of computation kernels Γsync, the dependency
graph of the computations Γdep(V,A) is obtained from the call Fdep(Γsync, 0), where Fdep is the
recursive function de�ned in Algorithm 2.

Algorithm 2 Fdep recursive function

1: procedure Fdep(Γsync,j)
2: kj = Γsync[j]
3: if j = |Γsync| then
4: return ({}, {})
5: else if j < |Γsync| then
6: G = ({}, {})
7: for 0 ≤ i < j do
8: ki = Γsync[i]
9: if ki ≺raw kj or ki ≺waw kj or ki ≺war kj then
10: G = G ∪ (kj , {(

_

ki, kj})
11: end if
12: end for
13: return G ∪ Fdep(Γsync, j + 1)
14: end if
15: end procedure

This constructive function is possible because the input is an ordered list. Actually, if ki ≺ kj
then i < j. As a result, ki is already in V when the arc (

_

ki, kj) is built.
One can notice that Γdep is the dependency graph of the computations of a multi-stencil

program, but it only takes into account a single time iteration. A complete dependency graph
of the simulation could be built. This is a possible extension of this work.

Proposition 20 The directed graph Γdep is an acyclic graph.

As a result of the hybrid parallelization, each resource 0 ≤ r ≤ p− 1 perform a multi-stencil
program, de�ned by

MSPr(Mr,Φr,Dr,N ,∆r, T,Γdep).

The set of computations Γdep is a dependency graph between computation kernels ki of Γ and
synchronizations of kernels added into Γsync. Γdep can be built from the call to

Fdep(Fsync(Γ, 0), 0).

Example Figure 4 gives an example of MSP program. From Γsync that has been built in
Equation (2), the dependency DAG can be built. For example, as k0 computes B and k1 reads

B, k0 and k1 becomes vertices of Γdep, and an arc (
_

k0, k1) is added to Γdep. The overall Γdep
built from the call to Fdep(Γsync, 0) is drawn in Figure 5.
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k0 ksync0;1 k1

k2

ksync1;4

k3

k4

k5

k6

k7 ksync7;8 k8

Figure 5: Γdep of the example of program of Figure 4

6 Static Scheduling and performance model

In this section we detail a static scheduling of Γdep by using minimal series-parallel directed
acyclic graphs. Such a static scheduling may not be the most e�cient one, but it o�ers a simple
fork/join task model which make possible the design of a performance model. Moreover, such a
scheduling o�ers a simple way to propose a fusion optimization.

6.1 Series-Parallel graph

In 1982, Valdes & Al [21] have de�ned the class of Minimal Series-Parallel DAGs (MSPD). Such a
graph can be decomposed as a serie-parallel tree, denoted TSP , where each leaf is a vertex of the
MSPD DAG it represents, and whose internal nodes are labelled S or P to indicate respectively
the series or parallel composition of sub-trees. Such a tree can be considered as a fork-join model
and as a static scheduling.

Valdes & Al [21] have identi�ed a forbidden shape, or subgraph, called N , such that the
following property is veri�ed :

Theorem 21 The transitive reduction of a DAG G is MSPD if and only if it does not contain
N as an induced subgraph.

To remove the forbidden N-shapes from the transitive reduction of Γdep = (V,E), we have
chosen to apply an over-constraint with the relation k0 ≺ k3, such that a complete bipartite
graph is created for the sub-dag, and can be translated to a series-parallel decomposition, as
illustrated in Figure ??.

k0 k1

k2 k3

Figure 6: Over-constraint on the forbidden N shape.

After these over-constraints are applied, Γdep is MSPD. Valdes & Al [21] have proposed a
linear algorithm to know if a DAG is MSPD and, if it is, to decompose it to its associated binary
decomposition tree. As a result, the binary tree decomposition algorithm of Valdes & Al can be
applied on Γdep to get the TSP static scheduling of the multi-stencil program.

Example The Serie-Parallel tree decomposition of the example given in Figure 4, which is
built from the dependency graph of Figure 5 is given in Figure 7.
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S

S

S

S

k0 ksync0;1

k1

S

S

k7 ksync7;8

k8P

S

k3 k0

S

P

k2 ksync1;4

S

k4 k6

Figure 7: Serie-Parallel tree decomposition of the example of program of Figure 4

6.2 Performance model

In this subsection are introduced two performance model, one for the data parallelization tech-
nique, and one for the hybrid data and task parallelization technique, both previously explained.

The performance model of a data parallelization technique is inspired from the Bulk Syn-
chronous Parallel model. Actually data parallelization technique consider that each process has
its own part of the domain. Thus the performance model reveals that the computation time is
the sum of the reference sequential time divided by the number of processes, and of the time
spent in communications between processes. Thus, for

� TSEQ the sequential reference time,

� P the total number of processes,

� TCOM the communications time,

the total computation time is

T =
TSEQ
P

+ TCOM . (4)

Thus, when the number of processes P increase in data parallelization, the performance model
limit is TCOM

lim
P→+∞

T = TCOM . (5)

As a result, the critical point for performance is when TCOM ≥ TSEQ

P , which happens naturally

in data parallelization as TCOM will increase with the number of processes, and TSEQ

P decrease
with the number of processes.

This limitation is always true, but can be delayed by di�erent strategies. First, it is possible to
perform communications through the network while computations are performed simultaneously.
Second, it is possible to introduce another kind of parallelization, task parallelization. Thus, for
the same total number of processes, only a part of them are used for data parallelization, and
the rest are used for task parallelism. As a result, TSEQ

P will continue to decrease but TCOM
will increase later. This second strategy is the one studied in the following hybrid performance
model.

For an hybrid (data and task) parallelization technique, and for
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� Pdata the number of processes used for data parallelization,

� Ptask the number of processes used for task parallelization,

� such that P = Pdata × Ptask is the total number of processes used,

� Ttask the overhead time due to task parallelization technique,

� and Ftask the task parallelization degree of the application,

the total computation time is

T =
TSEQ

Pdata × Ftask
+ TCOM + Ttask (6)

The time overhead due to task parallelization can be represented as the time spent to create
a pool of threads and the time spent to synchronize those threads. Thus, for

� Tcr the total time to create the pool of threads (may happened more than once),

� Tsync the total time spent to synchronize threads,

the overhead is
Ttask = Tcr + Tsync.

The task parallelization degree of the application Ftask is the limitation of a task paralleliza-
tion technique. As explained before, a task parallelization technique is based on the dependency
graph of the application. Thus, this dependency graph must expose enough parallelism for the
number of available threads. For this performance model we consider that

Ftask = Ptask.

However, the upper bound of Ftask is constrained by the dependency graph of the application
and by the time spent in each task.

As a result when Pdata is small a data parallelization technique may be more e�cient, while an
hybrid parallelization could be interesting at some point to improve performance. The question
asked here is when is it interesting to use hybrid parallelization.

To answer this question lets consider the two parallelization techniques, data only and hybrid.
We denote

� Pdata1 the total number of processes entirely used by the data only parallelization,

� Pdata2 the number of processes used for data parallelization in the hybrid parallelization,

� and Ptask the number of processes used for task parallelization in the hybrid parallelization,

� such that Pdata1 = Pdata2 × Ptask.

We search the point where the data parallelization is less e�cient than the hybrid paralleliza-
tion. Thus,

TSEQ
Pdata1

+ TCOM1 ≥
TSEQ

Pdata2 × Ptask
+ TCOM2 + Ttask.

This happens when
TCOM1 ≥ TCOM2 + Ttask (7)

This performance model will be validated and will help to explain results the Section 8.
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6.3 Fusion optimization

Using MSL, it is possible to ask for data parallelization of the application, or for an hybrid
parallelization. Even though the MSL language is not dedicated to produce very optimized
stencil codes, but to produces the parallel pattern of the application, building the TSP tree
make available an easy optimization when the data parallelization technique is the only one
used. This optimization consists in proposing a valid merge of some computation kernels inside
a single space loop. As a result, the user can use this valid fusion of kernels or not when
implementing those.

Those fusions can be computed from the canonical form of the TSP tree decomposition. The
canonical form consists in recursively merging successive S vertices or successive P vertices of
TSP .

The fusion function Ffus is described in Algorithm 3, where parent(k) returns the parent
vertex of k in the tree, and where kfusi;j represents the fusion of ki and kj keeping the sequential
order i; j if i is computed before j in TSP . Finally, type(k) returns comp if the kernel is a
computation kernel, and sync otherwise.

Algorithm 3 Ffus

1: procedure Ffus(TSP (V,E))
2: for (ki, kj) ∈ V 2 do
3: if parent(ki)==parent(kj) then
4: if type(ki) = type(kj) = comp then
5: if parent(ki)==S then
6: if Di == Dj then

7: propose the fusion kfusi;j

8: end if
9: else if parent(ki)==P then
10: if Di == Dj and Ri ∩Rj 6= ∅ then
11: propose the fusion kfusi;j

12: end if
13: end if
14: end if
15: end if
16: end for
17: end procedure

We are not arguing that such a simple fusion algorithm could be as good as complex cache
optimization techniques which can be found in stencil DSLs for example [20]. However, this fusion
takes place at a di�erent level and can bring performance improvments as it will be illustrated
in Section 8. This fusion algorithm relies on very simple statements:

� Two successive computation kernels ki and kj which are under the same parent vertex S
in TSP are, by construction, data dependant. As a result, what is written by the �rst one
is read by the second one. Thus, at least one data is common to those computations (the
one written by ki). Thus, if the computation domains verify Di = Dj , the fusion of ki and
kj will decrease cache misses.

� Two successive computation kernels ki and kj which are under the same parent vertex P
in TSP are not, by construction, data dependant. However, if the computation domains
verify Di = Dj , and if Ri∩Rj 6= ∅ cache misses could also be decreased by the fusion kfusi;j .
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7 Implementation

The MSL compiler takes a �le written in the grammar described in Section 4 as input and gener-
ates an application skeleton. In this skeleton, the user still has to �ll the functions corresponding
to the various computation kernels. The overall behavior of the compiler is as follow:

1. it parses the input �le and generates Γ, the list of computation kernels,

2. from Γ, it builds Γsync, the list including synchronizations for data parallelism using Algo-
rithm Fsync introduced in Section 5,

3. from Γsync, it builds Γdep, the DAG supporting hybrid parallelism using Algorithm Fdep
introduced in Section 5,

4. it then removes the N-Shapes from Γdep to get a MSPD graph, and generates its serie-
parallel binary tree decomposition TSP ,

5. it performs the fusion of kernels in TSP if required,

6. �nally it dumps an application structure matching TSP .

The abstract de�nition of MSL enables to use a very wide range of languages for the dump.
In this paper, we use a compiler that targets the Low Level Components [2] (L2C), a component
model for C++ supporting high-performance applications. Similar to classes in object-oriented
models, components specify the services they provide, but in addition they also specify the
services they require. This enables to build applications by assembling components in a second
phase through the matching of requirements of some components with the services provided by
others. In the case of MSL, this assembly of components o�ers a way to clearly separate in
distinct components the features that are implemented:

� by reusing the same code more than once, such as for the time iteration logic,

� by generating some code that depends on TSP and thus from the input �le, such as for
the task parallelism logic,

� or by letting the user �ll-in an empty skeleton component, such as for the computation
kernels.

By enforcing the use of well de�ned interfaces in the generated code, L2C makes easier the
substitution of an implementation by another, for example to reconsider an implementation
choice. It also simpli�es the addition of new features to MSL or the coupling of MSL with
another domain-speci�c language, for example.

The two main other choices in the code generation concern the technologies used for data and
task parallelizations. For the data-parallelization, we rely on SkelGIS, a C++ embedded DSL [5]
which o�ers distributed data structures (meshes) for numerical simulations, and programming
interfaces to easily write codes using them. SkelGIS is implemented over MPI [13] and can
therefore be used on distributed memory architectures such as clusters. Two kind of meshes are
o�ered by SkelGIS: a) a distributed two dimensional Cartesian mesh [6], and b) a distributed
graph of Cartesian meshes (hybrid mesh) [7]. The use of di�erent back-ends for data-parallelism,
such as for example the distributed unstructured mesh proposed by PaMPA [14], will be the
subject of future work.

For the task parallelism, we use OpenMP [8]. OpenMP targets shared-memory platforms
only. However, as the level of parallelism introduced by task parallelism technique is low com-
pared to data parallelism, shared-memory, or intra-node parallelism is a good architecture choice
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for task parallelism.While the version 4 of OpenMP has introduced explicit support for tasks,
our implementation only requires version 3 whose fork-join model is well suited for the static
scheduling introduced in Section 6. The use of dynamic schedulers such as provided by libgomp2,
StarPU [1], or XKaapi [12] to directly execute the DAG Γdep will be the subject of some future
work.

As a result, the MSL compiler generates an hybrid code which uses both SkelGIS and
OpenMP. It also generates empty components where the user must provide local sequential
implementations of the kernels using well de�ned interfaces of the component to iterate over the
local data subdomain. These implementations can of course be written by hand, but ideally one
should also be able to generate them using a stencil compiler such as Pochoir or PATUS thus
enabling the combinations of approaches used by those compilers. The following section will
evaluate this compiler as well as the code it generates.

8 Evaluation

This section evaluates the MSL compiler and the code it generates. We �rst evaluate the gener-
ated code in the case where only data parallelization and fusion are applied and compare this to
a full SkelGIS program. Then, we analyze a case taking advantage of the full the hybrid paral-
lelization combining data and task parallelism and validate the performance model proposed in
Section 6.1.

All evaluations presented in this section are based on a real case study of the shallow-Water
Equations as solved in the FullSWOF2D3 [5, 11] code from the MAPMO laboratory, University
of Orléans. We have developed a MSL version of FullSWOF2D that contains 3 mesh entities,
7 computation domains, 48 data and 98 computations (32 stencil kernels and 66 local kernels).

8.1 Compiler

Table 1 illustrates the execution time of each step of the MSL compiler for the FullSWOF2D
example. This has been computed on a laptop with a dual-core Intel Core i5 1.4 GHz, and 8 GB
of DDR3. While the overall time of 4.6 seconds remains reasonable, one can notice that the
computation of the TSP tree is by far the longest step. As a matter of fact, the complexity
of the algorithm for N-shapes removal is O(n3). The replacement of the static scheduling by a
direct scheduling of the DAG by dedicated tools should solve this in the future.

Step Parser Γsync Γdep TSP
Time (ms) 1 2 4.2 3998.5

% 0.022 0.043 0.09 86.6

Table 1: Execution times of the MSL compiler

8.2 Data parallelism

In this evaluation, we disable task-parallelism (�x its degree to 1) to focus on data-parallelism.
In the implementation evaluated in this paper, the data parallelism is handled using Skel-
GIS that has already been evaluated in comparison with a native MPI implementation for the

2https://gcc.gnu.org/projects/gomp/
3http://www.univ-orleans.fr/mapmo/soft/FullSWOF/
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Figure 8: weak-scaling with 400×400 domain
per core.
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Figure 9: weak-scaling with 800×800 domain
per core.

FullSWOF2D example [5]. In addition to SkelGIS, MSL automatically inserts the required MPI
synchronizations and identi�es possible fusion of kernels to reduce cache misses.

Cluster TGCC Curie Thin Nodes
Processor 2×SandyBridge

(2.7 GHz)
Cores/node 16
RAM/node 64 GB
RAM/core 4GB

Compiler [-O3] gcc 4.9.1
MPI Bullxmpi

Network fat-tree In�niband

Table 2: Hardware con�guration of TGCC Curie Thin nodes.

This section compares the performance of the code produced by MSL for FullSWOF2D with
a plain SkelGIS program where synchronizations and fusion choices have been done by the
developer without any automatic support. This enables to evaluate both the choices made by
the compiler as well as the potential overheads of using L2C [2] that is not used in the plain
SkelGIS version. The evaluations have been performed on the Curie supercomputer (TGCC,
France) described in Table 2. Each evaluation has been performed ten times and the median is
presented in results.

Weak scaling Figures 8 and 9 show a weak scaling for a 400 × 400 points by core and a
800× 800 points by core from 16 cores to 16.384 cores. Minimum and maximum values are also
shown as error bars in �gures.

One can notice that the MSL code produces a slightly better execution time on the 400×400
domain and a small overhead on the 800 × 800 domain. This might be explained by slightly
di�erent compiler optimization �ags since L2C requires compilation as dynamic libraries with
the -fpic compilation �ag while the SkelGIS version does not. This �ag can have slight positive or
negative e�ect on code performance depending on the situation and might be responsible for the

Inria



The Multi-Stencil Language 23

25 26 27 28 29 210 211 212 213 214

cores

2-2

2-1

20

21

22

23

24

25

26

27

28

it
e
ra

ti
o
n
s 

p
e
r 

se
co

n
d

Ideal

MSL + SkelGIS

SkelGIS

Figure 10: Strong scaling on a 10k × 10k domain.

observed di�erence. In any case, these di�erence are barely noticeable and often included in the
error bar of the measure and both version globally perform similarly. The MPI synchronizations
performed by MSL perform as good as manually speci�ed ones, and L2C does not introduce any
noticeable overhead.

Strong scaling Figure 10 shows the number of iteration per second for a 10k×10k global
domain size from 16 to 16.384 cores. The ideal strong scaling is also illustrated.

First, one can notice that the strong scaling evaluated for the code generated by MSL is close
to the ideal speedup up to 16.384 cores, which is a very good result. Moreover, no overheads are
introduced by MSL which shows that automatic synchronization detections and automatic fusion
detections are the same one that the one written manually into the SkelGIS code of FullSWOF2D.
Finally, no overheads are introduced by components of L2C. A small behavior di�erence can be
noticed with 29 = 512 cores, however this variation is no longer observed with 1024 cores.

Fusion Finally, to evaluate the data parallelization technique automatically introduced by
MSL, the fusion optimization is evaluated. Figure 11 shows the number of iterations per second
as a function of the number of cores, for FullSWOF2D with and without fusion optimization
and onto a 500 × 500 domain. As explained in Section 6.3, the MSL fusion happens at a
high level and is most of the time done naturally by a computer scientist. However, for a non
computer scientist which write its numerical codes, an automatic proposition of such fusions
makes the implementation easier. Moreover, one can notice that the performance is clearly
improved (around 40%) by this fusion.

8.3 Hybrid parallelism

In this evaluation, we introduce task parallelism to evaluate the hybrid parallelization o�ered by
MSL that mixes data parallelization and task parallelization. In the implementation evaluated
in this paper and in addition to SkelGIS, the hybrid parallelization relies on OpenMP.
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Figure 11: Strong scaling on a 500x500 domain, with and without the fusion optimization.

Level 1 2 3 4 6 10 12 16
Frequency 2 1 3 5 3 1 1 2

Table 3: Parallelism level (number of parallel tasks) and the number of times this level appears.

The series-parallel tree decomposition TSP of this simulation, extracted by the MSL compiler,
is composed of 17 sequence nodes and 18 parallel nodes. Table 3 represents the number of time
a given level of parallelism, i.e., the number of tasks to perform concurrently, is observed in the
�nal tree. One can notice that the level of task parallelism extracted from the Shallow water
equations is limited by two sequential parts in the application (level 1). Moreover, a level of
16 parallel tasks is reached two times, and �ve times for the fourth level. This means that if two
threads are dedicated to task parallelism, two parts of the code at least will not take advantage of
this and that no part of the code would bene�t from more than 16 threads. The task parallelism
alone is therefore clearly not enough to take advantage of even a single node of a cluster that
typically supports today between 16 and 32 threads (16 for Curie).

On the other hand, Figure 12 illustrates limitations of data parallelization technique alone.
While the computation time decreases linearly with the number of core used, the communication
behavior is much more erratic. Between 2 and 16 cores, the communication happen inside
a single node and the time is small and nearly constant. There is a small oscillation that
might be explained by di�erence between number of processors that are power of 4, where
the communications are all the same, and those that are nota power of 4, where there is an
imbalance. Starting with 32 cores, there are multiple nodes and the communication time is
typically modeled as L + S/B where L is the latency, S the data size and B the bandwidth.
This explains the decrease of time from 32 to 128 cores where the data sizes communicated by
each process decreases. The increased observed after that might be due to the fact that with the
increased number of processes the fat-tree becomes deeper and the latencies increase.

All in all, when the number of core used increases, the computation/communication ratio
becomes poorer and poorer. As a result, the data parallelism alone fails to provide enough
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Figure 12: Computation vs communication times in the data parallelization technique.

parallelism to leverage the whole machine and other sources of parallelism have to be found. The
blue curve of Figure 13 shows the total execution time for the same example as in Figure 12 and
as expected, the speedup bends down from 256 to 2048 cores.

In addition to the blue curve, Figure 13 shows strong scalings for the same example but using
an hybrid parallelization. For example, the purple curve shows the parallelization which uses 8
cores, to perform the task parallelization, for each process used for data parallelization (i.e., MPI
process). As a result, for example, when using 2 machines of the TGCC cluster, with a total of
32 cores, 4 cores are used for SkelGIS MPI processes, for data parallelization, and for each one
8 cores are used for task parallelization (4× 8 = 32).

As a result, and as explained in Section 6.2, data is less divided into sub-domains and the
e�ect which is observe onto the blue curve is delayed. This �gure shows a comparison with 2, 4,
8 and 16 cores per MPI process for task parallelization.

From 2 to 8 cores, the improvement of the strong scaling is clear. However, reaching 16
cores, an important initial overhead appears; moreover, the curve bends down rapidly instead of
improving the one with 8 cores for task parallelization. Two di�erent phenomena happen.

First, thin nodes of the TGCC Curie are built with two NUMA nodes each of 8 cores. As a
result, when increasing the number of OpenMP cores for task parallelization from 8 to 16 cores,
an overhead is introduced by exchanges of data between memories of the two NUMA nodes.
This phenomena is illutrated in Figure 14. In this �gure, a di�erent strategy is used to bind
threads onto available cores (using OpenMP). This strategy, called spread (instead of close in
Figure 13), binds threads on cores in order to spread as much as possible onto resources, which
means that the two NUMA nodes are directly used whatever the number of cores kept for task
parallelization. As a result, and as shown in the �gure, using 2, 4 and 8 cores an initial overhead
is introduced.

The second phenomena, which happens in Figure 13 with 16 cores for tasks parallelization, is
due to the level of parallelization introduced by the task parallelization technique. Actually, as
illsutrated in Table 3, only two steps of the TSP static scheduling generated by the MSL compiler
can take advantage of 16 cores among a total of 18 steps. This phenomena has been explained
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Figure 13: Strong scaling comparisons between data parallelization and hybrid parallelization.
A close OpenMP clause is used to bind threads onto cores.
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Figure 14: Strong scaling comparisons between data parallelization and hybrid parallelization.
A spread OpenMP clause is used to bind threads onto cores.

in Section 6.2 by the variable Ftask and the fact that it is not always true that Ftask = Ptask.
This explains why using 16 cores for task parallelization in Figure 14 is still less e�cient than
using 8 cores even if the two NUMA nodes are always used in this evaluation.

Finally, to completely validate the performance model introduced in Section 6.2, and to un-
derstand when the hybrid parallelization becomes more interesting than the data parallelization,
Figure 15 represents TCOM1 and TCOM2 + Ttask of Equation (7), for the best case (i.e., when
8 cores are used for task parallelization), and with a close OpenMP bind of threads onto cores.
Table 4 gives time details.
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TCOM1 TCOM2 Ttask Equation (7)
16 cores (2× 8) 0.0005 0.00032 0.013 False
32 cores (4× 8) 0.0018 0.00045 0.0062 False
64 cores (8× 8) 0.0013 0.00038 0.0034 False
128 cores (16× 8) 0.00075 0.0005 0.0023 False
256 cores (32× 8) 0.00077 0.0018 0.001 False
512 cores (64× 8) 0.0029 0.0013 0.00052 True
1024 cores (128× 8) 0.018 0.00075 0.00029 True
2048 cores (256× 8) 0.0623 0.00077 0.00016 True

Table 4: Execution times (seconds) of TCOM1, TCOM2 and Ttask for 8 cores for task paralleliza-
tion. Veri�cation of the Equation (7).
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Figure 15: Execution times (seconds) of TCOM1 and TCOM2 + Ttask for 8 cores for task paral-
lelization. Veri�cation of the Equation (7).

Figure 15 and Table 4 perfectly matches results observed in Figure 13 for 8 cores used for
task parallelization per core used for data parallelization. As a result, the hybrid parallelization
becomes better with a total of 512 cores.

9 Conclusion

We have presented the Multi-Stencil Language (MSL), a domain speci�c language for stencil-
based numerical simulations. Compared to other existing stencil DSLs, MSL proposes a higher
abstraction level for end-users. MSL o�ers a way to describe a numerical simulation indepen-
dently from the type of mesh used. As a result, the language can be used for a larger number of
simulations. It helps to clearly separate the description of the simulation from implementation
choices, which facilitates reuse of existing languages and libraries, for example languages for data
structures optimizations and parallelization strategies.

In this paper, the formal de�nition of a multi-stencil program has been given. This formalism

RR n° 8962



28 Coullon & Bigot & Perez

helps to understand what is de�ned into the light grammar of MSL, and also how parallelization
can be extracted from it. MSL produces an empty parallel pattern of the numerical simulation
described. This pattern indicates where synchronizations are needed, but not how they are
performed, which is dependent from the type of mesh and from implementation choices. This
second step is left to other existing languages, which are chosen as a back-end of MSL. For
example, in this paper the chosen back-end is a code using SkelGIS [5�7], a templated C++
language for distributed meshes (using MPI), and OpenMP [8].

Experiments presented in this paper show that the back-end code produced by MSL, i.e.,
by a mesh-agnostic language, does not introduce overheads up to 16.384 cores, and that the
hybrid (data and task) parallelism automatically introduced by the language, which combines
SkelGIS and OpenMP as a back-end, improves performance compared to a data parallelization
only. Thus, with the same code asked to the user, two di�erent parallel versions of the simulation
can be obtained.

However, if performances are improved by the hybrid parallelization, this performance is also
limited by the scheduling strategy used in this paper. Actually, as described in Section 6, a static
series-parallel (fork-join) scheduling is performed in this work. This helps to de�ne a predictive
performance model, which has been validated in experiments. However, getting rid of global syn-
chronizations (join) could be an interesting improvement to get better performance, especially for
irregular simulations, where tasks are not naturally balanced. Our immediate perspective, thus,
is to use OpenMP dynamic schedulers [1,12,22] as back-ends to study performance improvments.
Using such dynamic schedulers also opens to more heterogeneous architectures, such as GPUs
or many-cores accelerators.

Finally, to validate the separation of concerns introduced by MSL, a second back-end for
unstructured meshes could be interesting. We think about PaMPA [14] as a distributed data
structure backend, instead of SkelGIS. Thus using a single language, the MSL language, two
di�erent kinds of numerical simulations could be de�ned: one onto Cartesian meshes; and one
on unstructured meshes.

This work has partially been supported by the PIA ELCI project of the French FSN. This
work was granted access to the HPC resources of TGCC under the allocations t2015067470 and
x2016067617 made by GENCI.
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