
HAL Id: hal-01249188
https://hal.inria.fr/hal-01249188v2

Submitted on 20 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilience of Routing in Parallel Link Networks
Eitan Altman, Aniruddha Singhal, Corinne Touati, Jie Li

To cite this version:
Eitan Altman, Aniruddha Singhal, Corinne Touati, Jie Li. Resilience of Routing in Parallel Link
Networks. GameSec 2016 - 7th International Conference on Decision and Game Theory for Security,
Nov 2016, New York, United States. pp.3 - 17, �10.1007/978-3-319-47413-7_1�. �hal-01249188v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49324091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01249188v2
https://hal.archives-ouvertes.fr

Resilience of Routing in Parallel Link Networks

Eitan Altman1,2, Aniruddha Singhal2, Corinne Touati2, and Jie Li3

1 Université Côte d’Azur
2 Inria, France, Email: {Eitan.Altman, corinne.touati}@inria.fr

3 Faculty of Engineering, Information and Systems, University of Tsukuba, Japan,
Email: lijie@cs.tsukuba.ac.jp

Abstract. We revisit in this paper the resilience problem of routing
traffic in a parallel link network model with a malicious player using a
game theoretic framework. Consider that there are two players in the
network: the first player wishes to split its traffic so as to minimize its
average delay, which the second player, i.e., the malicious player, tries to
maximize. The first player has a demand constraint on the total traffic
it routes. The second player controls the link capacities: it can decrease
by some amount the capacity of each link under a constraint on the sum
of capacity degradation. We first show that the average delay function
is convex both in traffic and in capacity degradation over the parallel
links and thus does not have a saddle point. We identify best responses
strategies of each player and compute both the max-min and the min-
max values of the game. We are especially interested in the min max
strategy as it guarantees the best performance under worst possible link
capacity degradation. It thus allows to obtain routing strategies that are
resilient and robust. We compare the results of the min-max to those
obtained under the max-min strategies. We provide stable algorithms
for computing both max-min and min-max strategies as well as for best
responses.

1 Introduction

The current computer networks such as Internet architecture remain remarkably
vulnerable to different security attacks and failures which may cause system un-
aivabilities or performance degradation. It is a great challenge to provide services
under such security attacks and failures in computer networks. Resiliency is the
ability to provide and maintain an acceptable level of service in the face of faults
and challenges to normal operation [1].

In this paper, we study the resilience problem of routing traffic in a par-
allel link network model with a malicious player using game theory. Although
the network model looks simple, it could be taken as a typical one for a com-
puter network with general network configuration in which there are many paths
between a source node and a destination node and a path consists of several com-
munications.

Although our network is a simple one, the network resilience problem in the
network model is not a trivial one. We study the resilience problem of routing

1

traffic in a parallel link network model with a malicious player using a game
theoretic framework. Consider that there are two players in the network: the
first player wishes to split its traffic so as to minimize its average delay, which
the second player, i.e., the malicious player, tries to maximize. The first player
has a demand constraint on the total traffic it routes. The second player controls
the link capacities: it can decrease some amount of the capacity of each link
under a constraint on the sum of capacity degradation. We first show that the
average delay function is convex both in traffic and the capacity degradation
over the parallel links and thus does not have a saddle point. We identify best
responses strategies of each player and compute both the max-min and the min-
max value of the game. We are especially interested in the min-max strategy as
it guarantees the best performance under worst possible unknown link capacity
degradation. It thus allows to obtain routing strategies that are resilient and
robust. We compare the results of min-max to those obtained at max-min. We
provide numerical algorithms for computing both max-min and min-max values
and strategies as well as for best responses.

1.1 Related work

We restrict in this paper our analysis to the framework of routing in a ”parallel
link” network. This topology has long been a basic framework for the study of
routing, as it is a natural generic framework of load balancing among servers
in a network. The study of competitive routing in networks with parallel links
using game theory goes back to [2]. They were further studied in [3], [4] and
many others. The only reference we know that studied adversarial behavior in
routing in a model similar to the max-min scenario is [5] but they do not propose
an algorithmic solution as we do here. On the other hand, to the best of our
knowledge, the min-max setting has not been studied before. While the max-
min problem has a water-filling structure, we show that the min-max policy has a
form which extends the water filling policy and we call it the ”water distribution”
policy. We provide an algorithm for computing it.

2 System Model and Problem Formulation

Consider a set L = {1, ...,L} of parallel links between a common source s and
destination d as shown in Fig. 1.

Let the delay density over link ` ∈ L of capacity C` be given by the following
function of the link flow xl:

D(x`, C`) ,

1

C` − x`
if x` < C`,

+∞ otherwise.
(1)

Let x be the flow vector, x = (x`, 1 ≤ ` ≤ L). Define the system delay as the
average delay experienced by the flow on the different links:

D̂(x,C) ,
∑
`∈L

x`D`(x`, C`). (2)

2

`2

`1

`L

s d

•••

Fig. 1: A system of parallel links

Such delay system model was already widely used to describe delay in telecom-
munication network (see, e.g. [2]). In this paper, we address resilience in routing
for such networks.

The vector x is controlled so as to minimize the system delay under the

demand constraint:
∑
`∈L

x` = X. Meanwhile, suppose that the capacity C` of link

` is decreased to C`− δ` where δ` ∈ R+. In this case, the delay of link ` becomes

D(x`, C` − δ`) =

1

C` − δ` − x`
if x` < C` − δ`,

+∞ otherwise.

Let δ be the degradation vector, δ = (δ`, 1 ≤ ` ≤ L). The average system
delay is therefore given by

D̂(x,C − δ) ,
∑
`∈L

x`D`(x`, Cl − δ`), (3)

and the worst degradation is therefore maxδ D̂(x,C−δ) subject to the constraint∑
`∈L δ` = ∆.
In this paper, we study a routing that would be robust under the worst

possible impact of removing an amount ∆ of link capacities. Our objectives are
as follows:

Objective 1 For a given load vector x, identify the vector δ which is the most
harmful. This is addressed in Section 3.

Objective 2 Conversely, for a given attack δ, identify the best possible response
x to capacity degradation. This is addressed in Section 4.

3

Objective 3 Determine the worst possible capacity degradation to arbitrary flow
vector. This is addressed in Section 5. More precisely, our problem can be inter-
preted as a zero-sum game with x playing the role of the minimization player’s
action and δ the maximization player’s. If player Πδ is playing first, then it will
aim at finding the attack which reduces the system capacity most:

max
δ

min
x
D̂(x,C − δ) subject to

∑
`∈L

x` = X and∑
`∈L

δ` = ∆.
(4)

Objective 4 Determine the flow vector x∗ which guaranties the best possible
performance under any possible capacity degradation response. This is addressed
in Section 6. That is, if player Πx is playing first, it will aim at choosing the
flow vector x∗ that guarantees the best possible performance under the worst
possible reaction of attack δ of player Πδ:

min
x

max
δ

D̂(x,C − δ) subject to

∑
`∈L

x` = X and∑
`∈L

δ` = ∆.
(5)

A crucial question is whether the solutions of the latter two problems coin-
cide. The following result gives a clue:

Proposition 1. The average delay function D̂ is convex both in x and δ.

The proof is available in the technical report [6]
A very well studied class of games is that of concave-convex games, for which

the maximizing player’s optimization function is concave while the minimizer
player’s is convex. These games are known to have a value, that is their maximin
optimization (4) coincide with their minimax (5). However, in our scenario, the
game is convex-convex, and therefore the order at which the players are taking
decisions can affect the resulting equilibrium.

In the following, we shall obviously restrict to the case that
∑
`∈L C` > X+∆

so that there exists a routing strategy with finite cost.

3 Optimal Attack in response to Link Utilization

In this section, we consider the optimal strategy for player Πδ in response to a
given link usage x. That is:

δ∗(x) , arg max
δ≥0

D(x,C − δ), s.t
∑
`

δ` = ∆.

The next theorem gives a characterization of the optimal reaction of player
Πδ: it is such that only a single link should be attacked, that is, the one inducing
the higher throughput degradation:

4

Theorem 1 (Optimal attack response). For any load vector x, there exists
a unique optimal reaction of player Πδ. It is such that:

δ∗` (x) =

{
∆ if ` = `∗

0 otherwise,
with `∗ = arg max

`∈L

x`
(C` − x`)(C` −∆− x`)

. (6)

Proof. For a given x vector, note that D̂ is convex in δ and defined on the convex
polytope P :

P , {(δ`)`∈L,∀`, 0 ≤ δ` ≤∆ and
∑
`

δ` = ∆}

Define ei the unit vector, i.e. the vector of dimension L with all elements being
equal to 0 except for the ith element which is 1. Then P is the convex hull of a
set of L + 1 extreme points: {0 ∪∆ei, i ∈ L}.

Hence, for any point p of P , there exists non-negative α0, ..., αL such that
1 =

∑
`∈L α` and p = ∆

∑
` α`e`. Let `∗ = arg max` D̂(x,C − e`).

As D̂ is convex, then D̂(x,C−p) = D̂(x,C−∆
∑
` α`e`) ≤∆

∑
` α`D̂(x,C−

e`) ≤∆
∑
` α`D̂(x,C − e∗`) = ∆D̂(x,C − e∗`) which gives Eq. (6).

The degradation of the delay induced by attacking link ` is

x`

(
D̂`(∆, x`)− D̂`(0, x`)

)
=

x`∆

(C` −∆− x`) (C` − x`)
which leads to the de-

sired result.

Corollary 1. The degradation induced by player Πδ on the total delay equals
to

∆x`∗

(C`∗ − x`∗)(C`∗ −∆− x`∗)
.

Therefore, from Theorem 1, a straightforward algorithm can give the exact
optimal attack in 3× L multiplications and L comparisons.

4 Optimal Link Utilization as Response to some Attack

We now analyze the optimal link utilization in response to a choice of δ from
player Πδ, which is denoted by x∗(δ). Then, we seek:

x∗(δ) = arg min
x≥0

D(x,C − δ), subject to
∑
`

x` = X.

The next theorem gives a characterization of x∗(δ):

Theorem 2 (Optimal link usage response). There exists a unique real value
K such that:

x∗` (δ) =

C` − δ` −K
√
C` − δ` if ` ∈ X ,

0 otherwise,
(7)

5

with X , {`, C` − δ` ≥ K2} and K ,

∑
`∈X

(C` − δ`)−X∑
`∈X

√
C` − δ`

. (8)

(Note the fixed point equation between the set of links used at the optimal
response X , and the quantity K.)

Proof. For given C and δ, consider the Lagrangian function

L(λ,x) = D̂(x,C − δ)− λ

(∑
`∈L

x` −X

)
. (9)

Then, the optimal link usage response x∗ is solution of the optimization
problem min

x≥0
L(λ,x). Since x 7→ L(λ,x) is convex, then

x∗ = arg min
x

L(λ,x)⇔ ∂L(λ,x∗)

∂x∗`

≥ 0 ∀`

= 0 if x∗` > 0.

Then

x∗` = 0⇔ ∂L̂

∂x`
(λ,x|x` = 0) ≥ 0⇔ 1

C` − δ`
≥ λ,

x` > 0⇔ C` − δ` − x` =

√
C` − δ`
λ

(10)

which gives (7) by taking K = 1/
√
λ. Then, summing Eq. (7) over X yields

X =
∑
`∈X

(
C` − δ` −K

√
C` − δ`

)
, which allows us to express K as Eq. (8).

From this theorem, we can then derive the performance achieved at the op-
timal link usage response:

Proposition 2 (Performance at the optimal link usage). At the optimal
x∗(δ), the total delay on any used link ` (i.e. such that x∗` > 0) is given by

x∗` (δ)D`(x`, C` − δ`) ,
x∗` (δ)

C` − δ` − x∗` (δ)
=

√
C` − δ`
K

− 1

and the total delay is

D̂(x∗(δ),C − δ) =

(∑
`∈X

√
C` − δ`

)2

∑
`∈X

(C` − δ`)−X
− |X |. (11)

6

Proof. From (7), we have:

x∗` (δ)

C` − δ` − x∗` (δ)
=
C` − δ` −K

√
Cl − δ`

K
√
C` − δ`

=

√
C` − δ`
K

− 1.

Thus

D̂(x∗(δ),C − δ) =
∑
`∈X

(√
C` − δ`
K

− 1

)
=

(
∑
`∈X
√
C` − δ`)2∑

`∈X

(C` − δ`)−X
− |X |.

In order to derive a powerful algorithmic solution, we need the following
characterization of the optimal link usage solution:

Proposition 3 (Optimal Usage Characterization). For each link `, define
the normalized delay as

ND`(x,C − δ) =
√
C` − δ`.D`(x,C − δ). (12)

Then, at the optimal x∗(δ):

ND`(x∗(δ),C − δ)

{
= K(X) if C` − δ` ≥ 1/K2

≥ K(X) if C` − δ` ≤ 1/K2 (13)

Proof. At the optimal response x∗(δ), we have, from Eq. (7), for any used link:

ND`(x∗(δ),C − δ) =

√
C` − δ`

C` − δ` − x∗` (δ)

=

√
C` − δ`

K
√
C` − δ`

= 1/K.

For any unused link, we have:

ND`(x∗(δ),C − δ) =
√
C` − δ`.D`(x

∗(δ),C − δ)

=

√
C` − δ`
C` − δ`

=
1√

C` − δ`

But from Eq. (10),
1

C` − δ`
≥ λ, i.e.

1√
C` − δ`

≥
√
λ = 1/K which concludes

the proof.

The proposed water-filling mechanism for the strategy of player Πx is given
in Algorithm 1. The links are initially sorted by decreasing capacity. The mech-
anism gradually increases the amount of x` of the various links until reaching
X.

More precisely, the algorithm proceeds with initialization of x as zero. At each
iteration of the algorithm, the set X is updated by checking for some potential
new candidates.

7

Algorithm 1: The algorithm of player Πx which defines an optimal strat-
egy in response to some attack.

Input: Vector C of channel capacities, Attack vector δ
Output: Load vector x

1 Sort links with decreasing capacity C` − δ`
2 TA← 0 // The traffic allocated so far
3 Link← 1 // The link index up to which we inject data
4 ε← 0.001 // Set it to the desired accuracy
5 x← 0 // The traffic vector
6 while TA < X do
7 while Link < L and ND1(x,C − δ) ≥ NDLink+1(x,C − δ) do
8 Link ++

9 x1 ← x1 + ε

10 K ←
√
C1 − δ1

C1 − δ1 − x1
11 for j = 2 to Link do

12 xj ← Cj − δj −
√
Cj−δj
K

13 Update TA←
∑
`∈L

x`

14 return x

One can use a direct water-filling algorithm by using ε, a very small quantity,
representing the discretization of level increase in the water-filling algorithm.
The algorithm would be a direct implementation of Proposition 3, that is, if the
current link was filled up to a level (in terms of ND) that is greater or equal
than that of next link, then variable Link is incremented so as to start filling the
next link. Then, the “for” loop would fill each link j by a small amount ηj which
is such that NDj(x+ ηjej ,C − δ)−NDj(x,C − δ) = ε until X is exhausted.

The performance of such algorithm exhibits average performance though,
as the numerical precision errors in the level increases of the different links are
summed up over the different iterations and can end up in large inaccuracy if the
ratio x`/η` turns out to be large. Performance is significantly improved by using
one link (for instance that of greater capacity) as the point of reference of the
link level and setting up the other links levels accordingly. We propose another
variant of the algorithm where ε represents the discretization of x1. Then, at
each iteration of the algorithm, x1 is increased by ε, then K is updated and then
all links in X .

Then, the maximal error is Err ≤
∑
`∈L |x`(x1)−x`(x1+ε)| =

∑
`∈L |

√
Cj−δj
K(x1)

−
√
Cj−δj

K(x1+ε)
| = ε√

C1−δ1

∑
`∈L
√
C` − δ`. Since the links are ordered by decreasing ca-

pacity, then the error is bounded by Lε.

8

5 Optimal Link Degradation Strategy to Unknown Link
Usage

Let us now consider that player Πδ is to choose its attack vector, without know-
ing the link usage chosen by player Πx. Then, a natural strategy of player Πδ
is to choose the attack vector that would guarantee the highest value of delay
under any action load x. Such strategy of player Πδ is commonly known as the
maxmin strategy and is given by Definition 1.

Definition 1. δ∗ is a maxmin strategy if it is solution of

Mm(C,X,∆) : max
δ≥0

min
x≥0

D(x,C − δ),

s.t
∑
` x` = X,

∑
` δ` = ∆.

(14)

Note that this is equivalent to a two-player sequential game where player Πδ
plays first, followed by player Πx, after it observes the action of player Πδ.

5.1 Existence and Characterization of the Optimal Strategy

Theorem 3 shows that there exists a unique strategy for player Πδ and provides
a characterization of it.

Theorem 3. There exists a unique real value α such that the optimal strategy
for player Πδ is given by:

δ` =

{
C` − α if ` ∈ D,
0 otherwise

with α =

∑
`∈D C` −∆

|D|
and D = {`|C` ≥ α}. (15)

The proof is given in the technical report [6].
Note that the optimal strategy for player Πδ is therefore to attack the links

of greater capacity in a way so that their remaining capacities (C` − δ`) are all
equal to α. Hence, the optimal strategy for player Πδ is independent on the
weight X of player Πx.

5.2 A decreasing water filling algorithm

Based on Theorem 3, we can derive an algorithm to compute the optimal strategy
of player Πδ, which is given in Algorithm 2.

Similarly to Algorithm 1, at each step of the algorithm, the links 1 to Link are
being filled. The algorithm ends whenever all links have been attacked or when
the attack level ∆ has been exhausted. More precisely, at any stage of the loop,
the links 1 to Link are being filled until either the attack has been exhausted
(Line 9-10) or the water-level reaches that of the next link (Line 11-12).

Yet, the algorithm differs drastically from Algorithm 1 in its form and com-
plexity. Indeed, from Equation 15, all links ` ∈ D are such that C` − δ`’s are

9

Algorithm 2: The algorithm of player Πδ which defines an optimal strat-
egy for unknown link usage.

Input: Vector C of channel capacities, of size L
Output: Attack vector δ

1 Sort links with decreasing capacity C`
2 Attack←∆ // Amount of ∆ left to be allocated
3 Link← 1 // The link index up to which we attack
4 Diff ← 0 // Extra capacity of the current link to the next
5 η ← 0 // Amount to be allocated in each link
6 δ ← 0 // The attack vector
7 while Link ≤ L andAttack > 0 do
8 Diff = CLink − CLink+1

9 if (Link = L or Attack < Link×Diff) then
10 η ← Attack /Link
11 else
12 η ← Diff

13 Attack← Attack−η.Link
14 for j = 1 to Link do
15 δj ← δj + η

16 Link ++

17 return δ

equal, which amounts to say that for i, j D, we have δi−δj = Ci−Cj . Hence, the
different links are being filled at the same rate η, which allows us to simply derive
the level of exhaustion of ∆ or when the set D is to be modified. As opposed to
Algorithm 1 which computes the solution with arbitrary precision, Algorithm 2
gives the exact solution. Further, the loop runs for at most L times and the
solution is obtained after at most O(L) multiplications and O(L2) additions.

Figure 2 shows a typical run of the algorithm, with a set of 5 links. There,
the algorithm terminates after 3 loops in the ”while” command, as

∑
` δ` = ∆.

6 Optimal Link Usage Strategy with Unknown
Degradation Attack

We finally proceed to the case where player Πx chooses its routing strategy
without knowledge of the attack performed by player Πδ. Then, we consider its
strategy to be the one that has the best delay guarantee, i.e. the one such that
the delay it will suffer from is the lowest possible one in the worst case scenario
(i.e. where player Πδ has the strongest attack). The problem is referred to as
minmax and given below:

10

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

(a) (b) (c)

α

Fig. 2: Typical run of the water-filling algorithm. First, in (a), the channel with
highest capacity is filled so as to reach the level of the second. Then in (b) the
two channels of largest capacities are filled. Finally, in (c) as the total attack is
exhausted before reaching the level of C4, then channels 1 to 3 are equally filled
with the remaining attack.

Definition 2. x∗ is a minmax strategy if it is solution of:

mM(C,X,∆) : min
x≥0

max
δ≥0

D(x,C − δ),

s.t
∑
`

x` = X,
∑
`

δ` = ∆. (16)

Note that the minmax strategy is also the optimal one in a scenario of a two-
player sequential game with perfect information where player Πx plays first
followed by player Πδ.

6.1 Existence and Characterization of the Optimal Strategy

The following theorem states the uniqueness of the solution and gives a charac-
terization:

Theorem 4. There exists a unique x∗ solution of Eq. (16). It is such that there
exists a unique α and λ such that

x∗` =

C` − ∆

2 + ∆
2α

(
1−

√
4αC`

∆ + (α− 1)2
)

if ` ∈ CM ,

C` −
√
C`/λ if ` ∈ CI ,

0 otherwise.

(17)

with

CM ,

{
` ∈ L, C` ≥

1

λ

(
∆− α∆

∆− α/λ

)2
}

CI ,

{
` ∈ L, 1

λ

(
∆− α∆

∆− α/λ

)2

≥ C` ≥ 1/λ

} (18)

11

and the set of optimal responses δ∗ of player Πδ are:

{δ|∃`∗ ∈ CM ,∀` 6= `∗, δ` = 0 and δ`∗ = ∆} .

Proof. From Theorem 1, we can write

x∗= arg min max
`∈L

D̂(x,C −∆e`)

= arg min

(
D̂(x,C)+max

`∈L
D`(x`, C`)−D`(x`, C` −∆)

)
.

Hence, problem (16) is equivalent to the following equivalent constrained
optimization problem:

min
x,α

D(x,C) + α s.t.

∀x`,

∆x`
(C` −∆− x`)(C` − x`)

≤ α,

x` ≥ 0, and
∑
` x` = X.

(19)

The corresponding Lagrangian is

L(x, α, λ, µ) =
∑
l

x`
C` − x`

+ α+ λ(X−
∑
`

x`)

−
∑
`

µ`

(
α+

x`
C` − x`

− x`
C` −∆− x`

)
with ∀`, x` ≥ 0, µ` ≥ 0.

Let CM be the set of links for which α+ x`

C`−x`
− x`

C`−∆−x`
= 0 and xM` the

corresponding loads. Then, xM` satisfies

xM` ∆

(C` −∆− xM`)(C` − xM`)
= α

i.e. xM` = C` −
∆

2
+

∆

2α

(
1−

√
4α
C`
∆

+ (α− 1)2

)
.

If ` /∈ CM , then the Karush Kuhn Tucker conditions give that µ` = 0 and
hence the lagrangian reduce to Eq. (9). Then, Eq. 10 leads to Eq. 17.

Finally, ` ∈ CM iff

xM` ≤ xI` i.e.
xM` ∆

(C` −∆− xM`)(C` − xM`)
≥ α

But
xM` ∆

(C` −∆− xM`)(C` − xM`)
=
λ∆
√
C` −∆

√
λ

√
C` −∆

√
λ

.

Therefore

` ∈ CM iff C` ≥
1

λ

(
∆− α∆

∆− α/λ

)2

.

12

Note that α represents the degradation induced by playerΠδ. One can readily
check that α = 0 ⇔ CM = ∅ which leads to Eq. 8, that is the optimal strategy
for Πδ when there is no capacity degradation.

Algorithm 3: A water-distributed algorithm for optimal strategy of player
Πx with unknown attack

1 Sort links with decreasing capacity C`
2 ε← 0.01, εα ← 0.1 // Set it to the desired accuracy
3 TA← 0 // The traffic to be redistributed
4 `M ← 1 // The link index up to which we reduce the flow
5 `I ← 1 // The link index up to which we increase the flow
6 x← Solution of Algorithm 1 with no attack (δ = 0)
7 α← x1

C1−∆−x1
− x1

C1−x1
8 value← x1

C1−∆−x1
+
∑L
l=2

xl
Cl−xl

9 prec← value+ 1
10 while value < prec do
11 α← α− εα, prec← value, `I ← `M
12 for ` = 1 to `M do // Reduce all Links in M
13 TA← TA+ x`

14 x` ← C` − ∆
2

+ ∆
2α

(
1−

√
4αC`

∆
+ (α− 1)2

)
15 TA← TA− x`
16 while TA > 0 do // Redistribute TA among the links
17 while `M < L and α ≤ D(x`M+1, C`M+1 −∆)−D(x`M+1, C`M+1) do
18 `M + +

19 `I ← `M
20 while `I < L and ND`I (x,C) ≥ ND`I+1(x,C) do
21 `I + +

22 for j = `M + 1 to `I do

23 η ← ε(Cj − xj)2√
Cj + ε(Cj − xj)

24 xj ← xj + η
25 TA← TA− η

26 value← x1
C1−∆−x1

+
∑L
l=2

xl
Cl−xl

6.2 An Algorithmic Solution

We use the equivalent optimization problem given in Eq. (19). Since it is a convex
optimization problem, standard optimization tools (e.g. a projected gradient
descent on the Lagrangian) can be used, although they exhibit poor performance,
in particular because of the nature of the needed projection and the system’s size.

13

0 2 4 6 8 10

0.4

0.45

0.5

0.55

x1

T
o
ta

l
D

el
ay

δ = (0,∆)

δ = (∆, 0)

(a) Case C1 = 33: then
CM = {1, 2}, CI = ∅

4 5 6 7 8 9 10

0.34

0.36

0.38

x1
T

o
ta

l
D

el
ay

δ = (0,∆)

δ = (∆, 0)

(b) Case C1 = 40: then
CM = {1}, CI = {2}

0 2 4 6 8 10
0.2

0.3

0.4

0.5

x1

T
o
ta

l
D

el
ay

δ = (0,∆)

δ = (∆, 0)

(c) Case C1 = 55: then
CM = {1}, CI = ∅

Fig. 3: Different sets CM and CI . In the three examples, C2 = 30, X = 10
and ∆ = 2. The min-max solution is represented with the black point. In each
plot, the two graphs (red and blue) represent the overall delay that would be
experienced by the user if the attack was concentrated on a single link (1 and 2
respectively).

Therefore, we propose an algorithm, in a similar vein to water-filling algorithms,
which we refer to as water-distributed algorithm. It can be seen as a water-filling
algorithm with a top cap on the water level (represented by α).

The mechanism is given by Algorithm 3. We initialize it by using Algorithm 1
to compute the optimal allocation x if there was no attack. We deduce the initial
value of α.

We then iteratively decrease the value of α and compute the corresponding
allocation x. The algorithm ends when no gain in the delays is obtained.

Instead of computing the whole allocation at each iteration of the algorithm,
we compute the amount of flow which is removed to the links of CM as a con-
sequence of the decrease of α (lines 21 to 25) and then redistribute this amount
to the other links (Line 26 to 36).

6.3 Different CM and CI

Note that the set CM and CI both depend on the parameter X, ∆ and the link
capacities C`, 1 ≤ ` ≤ L.

As long as ∆ > 0, the set CM is always non-empty (as it should include the
link of highest capacity). In contrast, the set CI can be empty or not. Further, the
set CM ∪ CI may cover all links or not. The different situations are illustrated
in the scenario of Figure 3. The system has a set of two links. In Figure 3a
both of them are in CM . In this case, the set CI is empty. Figure 3c shows a
scenario where CI is also empty and CM consists of only the link of highest
capacity. Finally, Figure 3b shows a case where CM only contains the link of
higher capacity, while the other one is in CI .

14

7 Conclusion

We have studied in this paper a game between a router that has a fixed demand
to ship and a malicious controller that affects the system capacity by some fixed
amount and can decide how to split this among different links. It turned out to be
a non standard zero-sum game since the cost is convex for both the minimizer
and maximizer and thus does not have a saddle point. We thus focused on
computing the max-min and the min-max value and proposed efficient solution
algorithms. While the max-min problem is solved using a water-filling algorithm,
the solution of the minmax problem requires a more complex algorithm which we
call water-distributing algorithm. We plan in the future to extend the problem
to several players that try selfishly to minimize their cost in the presence of
adversarial capacity degradation controller.

References

1. P. Smith, D. Hutchison, J. Sterbenz, M. Scholler, A. Fessi, M. Karaliopoulos, C. Lac,
and B. Plattner, “Network resilience: a systematic approach,” Communications
Magazine, IEEE, vol. 49, no. 7, pp. 88–97, July 2011.

2. A. Orda, R. Rom, and N. Shimkin, “Competitive routing in multiuser
communication networks,” IEEE/ACM Trans. Netw., vol. 1, no. 5, pp. 510–521,
Oct. 1993. [Online]. Available: http://dx.doi.org/10.1109/90.251910

3. T. Harks, “Stackelberg strategies and collusion in network games with splittable
flow,” Approximation and Online Algorithms, 2009.

4. E. Koutsoupias and Papadimitriou, “Worst-case equilibria,” in STACS, 1999.
5. G. Blocq and A. Orda, “Worst-case coalitions in routing games,” Arxiv, Aug. 2014.
6. E. Altman, A. Singhal, C. Touati, and J. Li, “Resilience of routing in parallel link

networks,” Hal, Tech. Rep., 2015, https://hal.inria.fr/hal-01249188.

15

