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Abstract: Many project-speci�c languages, including in particular �ltering languages, are de�ned
using non-formal speci�cations written in natural languages. This leads to ambiguities and errors in
the speci�cation of those languages. This paper reports on an experiment on using a tool-supported
language speci�cation framework (K) for the formal speci�cation of the syntax and semantics of a
�ltering language having a complexity similar to those of real-life projects. In the context of this
experimentation, the cost and bene�ts of formally specifying a language using a tool-supported
framework in general (as well as the expressivity and ease of use of the K framework in particular)
are evaluated.
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Retour d'expérience sur l'utilisation du framework K pour

la spéci�cation formelle d'un language de �ltrage de trames

Résumé : De nombreux langages spéci�ques à un projet, entre autre les langages de �ltrage,
sont dé�nis dans une spéci�cation non-formelle écrite en langage naturel. Ces spéci�cations
sont par conséquence souvent ambiguës et erronées. Ce rapport est un retour d'expérience sur
l'utilisation d'un framework outillé de spéci�cation de langage (le framework K) pour la spé-
ci�cation formelle de la syntaxe et sémantique d'un langage de �ltrage de trames ayant une
complexité similaire à celle rencontrée sur des projets réels. Dans le contexte de cette expéri-
mentation, ce rapport évalue les coûts et béné�ces liés à une démarche de spéci�cation formelle
d'un langage en s'appuyant sur un framework outillé en général, et plus particulièrement dans
le cas du framework K.

Mots-clés : Spéci�cation formelle, Langage, Sémantique, Filtrage de trames, Framework K
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1 Introduction

Packet �ltering (accepting, rejecting, modifying or generating packets, i.e. strings of bits, be-
longing to a sequence) is a recurring problematic in the domain of information systems security.
Such �lters can serve, among other uses, to reduce the attack surface by limiting the capacities
of a communication link to the legitimate needs of the system it belongs to. This type of �ltering
can be applied to network links (which is the most common use), product interfaces, or even
on the communication buses of a product. If the �ltering policy needs to be adapted during
the deployment or operational phases of the system or product, it is often required to design a
speci�c language L (syntax and semantics) to express new �ltering policies during the lifetime of
the system or product. This language is the basis of the �lters that are applied to the system or
product. Hence, it plays an important role in the security of this system or product. It is there-
fore important to have strong guarantees regarding the expressivity, precision, and correction of
the language L. Those guarantees can be partly provided by a formal design (and development)
process.

Among diverse duties, the DGA (Direction Générale de l'Armement, a french procurement
agency) is involved in the supervision of the design and development of �ltering components or
products. Those �lters come in varying shapes and roles. Some of them are network apparatuses
�ltering standard Internet protocol packets (such as �rewalls); while others are small parts of
integrated circuits �ltering speci�c proprietary packets transiting on computer buses. Their
common de�nition is: �a tool sitting on a communication channel, analyzing the sequence of
packets (strings of bits with a beginning and an end) transiting on that channel, and potentially
dropping, modifying or adding packets in that sequence�. Whenever the �ltering algorithm
applied is �xed for the lifetime of the component or product, this algorithm is often �hard coded�
into the component or product with the potential addition of a con�guration �le allowing to
slightly alter the behavior of the �lter. However, sometimes the �ltering algorithm to apply may
depend on the deployment context, and may have to evolve during the lifetime of the component
or product to adapt to new uses or attackers. In this case, it is often necessary to be able to
easily write new �ltering algorithms for the speci�c product and context. Those algorithms are
then often described using a Domain Speci�c Language (DSL) that is designed for the expression
of a speci�c type of �lters for a speci�c product. The de�nition of the syntax and semantics of
this DSL is an important task. This DSL is the link between the �ltering objectives and the
process that is really applied on the packet sequences. The DSL used must be expressive enough
to describe the desired �ltering algorithm and precise enough to avoid mismatches between the
intention and the realization, while being simple to use.

This paper is an experience report on the use of a tool-supported language speci�cation
framework (theK framework) for the formal speci�cation of the syntax and semantics of a �ltering
language having a complexity similar to those of real-life projects. The tool used to formally
specify the DSL is introduced in Sect. 2. For con�dentiality reasons, in order to be allowed by
the DGA to communicate on this experimentation, the language speci�ed for this experiment is
not linked to any particular product or component. It is a generic packet �ltering language that
tries to cover the majority of features required by packet �ltering languages. This language is
introduced in Sect. 3 while its formal speci�cation is described in Sect. 4. This language is tested
in Sect. 5 by implementing and simulating a �ltering policy enforcing a sequential interaction
for a made-up protocol similar to DHCP. Before concluding in Sect. 7, this paper discusses the
results of the experimentation in Sect. 6.
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4 Le Guernic & Galindo

2 Introduction to the K Framework

Surprisingly, even if it is a niche for tools, there exists quite a number of tools speci�cally
dedicated to the formal speci�cation of languages (our focus in this work is on specifying rather
than implementing DSLs). Those tools include among others: PLT Redex [6, 12], Ott [21],
Lem [17], Maude MSOS Tool [3], and the K framework [18, 24]. All those tools focus on the
(clear formal) speci�cation of languages rather than their (e�cient) implementation, which is
more the focus of tools and languages such as Rascal [15, 2, 14] or its ancestor The Meta-
Environment [13, 23], Kermeta [8, 9], and others. PLT Redex is based on reduction relations.
PLT Redex is an extension (internal DSL) of the Racket programming language. Ott and Lem
are more oriented towards theorem provers. Ott and Lem allow to generate formal de�nitions
of the language speci�ed for Coq, HOL, and Isabelle. In addition, Lem can generate executable
OCaml code. Ott is more programming language syntax oriented, while Lem is a more general
purpose semantics speci�cation tool. Ott and Lem can be used together in some contexts. The
Maude MSOS Tool, whose development has stopped in 2011, is based on an encoding of modular
structural operational semantics (MSOS) rules into Maude. Similarly to the Maude MSOS Tool,
the K framework is based on rewriting and was also originally implemented on top of Maude.
Its implementation is now moving to Java.

The goal set for the experiment reported in this paper is to evaluate the usability of an
�appropriate� tool for the �formal� speci�cation of a packet �ltering language by an �average�
engineer. The �appropriate� tool needs then to: be easy to use; be able to produce (or take as
input) �human readable� language speci�cations; provide some �formal� correctness guarantees;
and be executable (simulatable) in order to test (evaluate) the language speci�ed. The K frame-
work seems to meet those requirements and has been chosen to be the �appropriate� tool after
a short review of available tools. There is no claim in this paper that the K framework is better
than the other tools, even in our speci�c setting.

This section introduces the K framework [19] by relying on the example of a language allowing
to compute additions over numbers using Peano's encoding [7]. The K source code of this
language speci�cation is provided in Fig. 1. A K de�nition is divided into three parts: the
syntax de�nition, the con�guration de�nition, and the semantics (rewriting rules) de�nition. The
de�nition of the language syntax is given in a module whose name is su�xed with �-SYNTAX�.
It uses a BNF-like notation [1, 16]. Every non-terminal is introduced by a syntax rule. For
example, the de�nition of the notation for numbers (Nb) in this language, provided on line 2 of
Fig. 1, is equivalent to the de�nition given by the regular expression �(Succ)* Zero�.

•
Map

env

$PGM :K

k

Figure 2: Peano's K con�guration

The con�guration de�nition part is introduced by the
keyword configuration and de�nes a set of (potentially
nested) cells described in an XML-like syntax. This con�g-
uration describes the �abstract machine� used for de�ning
the semantics of the language. The initial state (or con�gu-
ration) of the abstract machine is the one described in this
con�guration part. The parsed program (using the syntax
de�nition of the previous part) is put in the cell containing the $PGM variable (of type K). For the
Peano language, the env cell is used to store variable values in a map initially empty (.Map is
the empty map). From this de�nition, the K framework can produce a graphical representation
of the con�guration, provided in Fig. 2

The semantics de�nition part is composed of a set of rewriting rules, each one of them
introduced by the keyword rule. In the K source �le, rules are roughly denoted as �CCF =>

NCF � where CCF and NCF are con�guration fragments. The meaning of �CCF => NCF � can
be summarized as: if CCF is a fragment of the current abstract machine state (or con�guration)

Inria
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1 module PEANO -SYNTAX

syntax Nb ::= "Zero" | "Succ" Nb

3 syntax Exp ::= Nb | Id | Exp "+" Exp [strict ,left]

syntax Stmt ::= Id ":=" Exp ";" [strict (2)]

5 syntax Prg ::= Stmt | Stmt Prg

endmodule

7

module PEANO imports PEANO -SYNTAX

9 syntax KResult ::= Nb

11 configuration

<env color="green"> .Map </env >

13 <k color="cyan"> $PGM:K </k>

15 rule N:Nb + Zero => N

rule N1:Nb + Succ N2:Nb => ( Succ N1 ) + N2

17

rule

19 <env > ... Var:Id |-> Val:Nb ... </env >

<k> ( Var:Id => Val:Nb ) ... </k>

21

rule

23 <env > Rho:Map (.Map => Var |-> Val ) </env >

<k> Var:Id := Val:Nb ; => . ... </k>

25 when notBool (Var in keys(Rho))

27 rule

<env > ... Var |-> ( _ => Val ) ... </env >

29 <k> Var:Id := Val:Nb ; => . ... </k>

31 rule S:Stmt P:Prg => S ~> P [structural]

endmodule

Figure 1: K source �le of the Peano example

then the rule may apply and the fragment matching CCF in the current con�guration would
then be replaced by the new con�guration fragment NCF . In order to increase the expressivity
of rules, CCF may contain free variables that are reused in expressions in NCF . If a speci�c
valuation of the free variables V in CCF allows a fragment of the current con�guration to match
CCF , then this fragment may be replaced by NCF where the variables V are replaced by their
matching valuation.

The rules for addition over numbers (Nb and not Exp), on lines 15 and 16 of Fig. 1, follows
closely this representation. For those rules, CCF is a program fragment that can be matched
in any cell of the con�guration. For those two rules, the K framework can then produce the
following graphical representations:

rule

N :Nb + Zero

N

rule

N1 :Nb + Succ N2 :Nb

( Succ N1 ) + N2

For other rules, the con�guration fragment matching is more complex and involves precise
con�guration cells that are explicitly identi�ed. In order to compress the representation, CCF
and NCF are not stated separately anymore. The common parts are stated only once, and the
parts di�ering are again denoted �CCFi => NCFi�, where CCFi is a sub-fragment in CCF and
NCFi is the corresponding sub-fragment in NCF . Cells that have no impact on a rule R and

RR n° 8967



6 Le Guernic & Galindo

are not impacted by R do not appear explicitly in the rule. Cells heads and tails (potentially
empty) that are not modi�ed by a rule can be denoted �...�, instead of using a free variable
that would not be reused.

rule

Var :Id 7→ Val :Nb

env

Var :Id

Val :Nb

k

Figure 3: Peano's K rule for variables

For example, the rule which starts on line 18 of
Fig. 1 is the rule used to evaluate variables. The cur-
rent con�guration needs to contain a mapping from
a variable Var to a value Val (�X |-> V� denotes a
mapping from X to V) somewhere in the map con-
tained in the env cell. It also needs to contain the
variable Var at the beginning of cell k. This rule has
the e�ect of replacing the instance of Var at the be-
ginning of cell k by the value Val. For this rule, the
K framework generates the graphical representation given in Fig. 3.

The last rule on line 31 involves other internal aspects of the K framework. It roughly states
that, in order to evaluate a statement S followed by the rest P of the program, S must �rst be
evaluated to a KResult (de�ned on line 9) and then P is evaluated.

3 GPFL Context

The language speci�ed in the experiment reported in this paper, named GPFL, is a generic
packet �ltering language. For obvious con�dentiality reasons, GPFL is not a language actually
used in any speci�c real product. GPFL has been made-up in order to be able to communicate
on the experimentation on tool supported formal speci�cation of �ltering languages reported in
this paper. However, GPFL covers the majority of features needed in packet �ltering languages
dealt with by the DGA. GPFL can be seen as the �mother� of the majority of packet �ltering
languages.

GPFL aims at expressing a wide variety of �lters. Those �lters can be placed at the level of
network, interfaces, or even communication buses between electronic components. They can be
applied on standard protocols such as IP, TCP, UDP, . . . or on proprietary protocols, which are
more common for component communication protocols. However, all those �lters are assumed
to be placed on a communication link. Messages (packets) that get through the �lter can only
get through in two ways, either �going in� or �going out�; there is no switching taking place in
GPFL �lters. Those di�erent use cases are illustrated in Fig. 4.

GPFL focuses on the internal logic of the �lter. Decoding and encoding of packets is assumed
to be handled outside of GPFL programs (�lters), potentially using technologies such as ASN.1
[10, 5]. For GPFL programs, a packet is a record (a set of valued �elds). A GPFL program
(dynamically) inputs a sequence of records and outputs a sequence of records. Figure 5 describes
the architecture of GPFL-based �lters. An incoming packet (on either side) is �rst parsed
(decoded) before being handed over to the GPFL program. If the packet can not be parsed,
depending on the type of �lter (white list or black list), the packet is either dropped or passed
to the other side without going through the GPFL program. Any packet (record) output by
the GPFL program (on either side) is encoded before being sent out. In addition, the GPFL
program can generate alarms due to packets not complying with the encoded �ltering policy.

The GPFL language must allow to: drop, modify or accept the current packet being �ltered;
generate new packets; and generate alarms. GPFL must allow to base the decision to take any of
those actions on information pieces concerning the current packet being �ltered and previously
�ltered packets. Those information pieces must include: some timing information, current or
previous packets directions through the �lter (�in� or �out�), and characteristics of current or

Inria
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in
out

GPFL �lter

(a) Network �ltering

in
out

GPFL �lter

in
out

GPFL �lter

(b) Interface �ltering

in
out

GPFL �lter

in
out

GPFL �lter

(c) Bus �ltering

Figure 4: Use cases for GPFL-based �lters

GPFL
Filter

Alarm

Decoder Encoder

DecoderEncoder

bin

bin

P
o
r
t

P
o
r
t

white

list
black list

white

list

black list

Figure 5: Architecture of GPFL-based �lters

previous packets including �eld values and computed properties such as, for example, a packet
�type� or total length. The computation of those properties and decoding of packet �elds is
outside of the scope of GPFL; it is left to the decoders.

In order to gradually build a decision, GPFL must allow to interact with variables (reading,
writing, and computing expressions) and automata (triggering a transition in an automaton and
querying its current state). The intent for automata is to be used to track the current step of ses-
sions of complex protocols. GPFL must allow to combine �ltering statements using: sequential
control statements (executing two statements in sequence); conditional control statements (exe-
cuting a statement only if a condition is true); iterating control statements (repeatedly executing
a statement for a �xed number of repetitions). There is no requirement for a loop (or while)
statement whose exit condition is controlled by an expression recomputed after every iteration.
For the experiment reported in this paper (on formal speci�cation of a �ltering language), the
iterating statement is considered su�cient for the intended use of GPFL and close enough to a
loop statement from a semantics point of view, while exhibiting interesting properties for future
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8 Le Guernic & Galindo

analyses (for example, any GPFL program terminates).

4 Formal Speci�cation of GPFL

4.1 Syntax

The syntax of GPFL is formally de�ned by the K source fragment provided in Fig. 6. A GPFL

syntax ExpVal ::= Int | Bool | String | AEvtId | Port

10

syntax BuiltInId ::= "_inPort"

12 syntax VarId ::= Id

syntax FieldId ::= "$" Id

14 syntax AutomatonId ::= "#" Id

syntax ExpId ::= BuiltInId | VarId | FieldId | AutomatonId

16

syntax UnaryOp ::= "--" | "!"

18 syntax BinaryOp ::= "+" | "-" | "*" | "/" | "&" | "|"

| "==" | "<" | ">" | "<=" | ">="

20

syntax Exp ::= ExpVal | ExpId

22 | UnaryOp Exp [strict (2)]

| Exp BinaryOp Exp [strict (1,3), left]

24 | "(" Exp ")" [bracket]

26 syntax Cmd ::= "nop" | "accept" | "drop" | "send(" Port "," Fields ")"

| "alarm(" Exp ")" [strict (1)]

28 | "set(" Id "," Exp ")" [strict (2)]

| "newAutomaton(" String "," AutomatonId ")"

30 | "step(" AutomatonId "," Exp "," Stmt ")" [strict (2)]

syntax Stmt ::= Cmd

32 | "cond(" Exp "," Stmt ")" [strict (1)]

| "iter(" Exp "," Stmt ")" [strict (1)]

34 | "newInterrupt(" Int "," Bool "," Stmt ")"

| Stmt Stmt [right]

36 | "{" Stmt "}" [bracket]

38 syntax AutomataDef ::= "AUTOMATA" String AutomataDefTail

syntax AutomataDefTail ::= "init" "=" AStateId ATransitions | ATransitions

40 syntax ATransitions ::= List{ATransition ,""}

syntax ATransition ::= AStateId "-" AEvtId "->" AStateId

42 syntax AStateId ::= String

syntax AEvtId ::= String

44 syntax InitSeq ::= "INIT" Stmt

syntax PrologElt ::= AutomataDef | InitSeq

46 syntax Prologues ::= PrologElt | PrologElt Prologues

48 syntax Program ::= "PROLOGUE" Prologues "FILTER" Stmt

Figure 6: K source �le of GPFL syntax

program is composed of a prologue, executed only once in order to initialize the execution envi-
ronment, and a �lter statement, executed once for every incoming packet.

A prologue is composed of automaton kind de�nitions and initialization sequences. An au-
tomaton kind de�nition speci�es an identi�er K, an initial state for automata of kind K and a
set of transitions for automata of kind K. A transition de�nition is composed of: two automaton
states F and T , and an automaton event that triggers the transition from F to T .

Inria



Formal Speci�cation of a Packet Filtering Language Using the K Framework 9

A GPFL statement is composed of GPFL commands or statements combined sequentially.
Some statements can be guarded by an expression and executed only if that expression evaluates
to true (cond). Some statements, associated with an expression e, can be executed multiple
times (iter), as much times as the expression e evaluates to before the �rst iteration. Finally,
the newInterrupt statement registers a statement to be executed in the future, potentially
periodically.

GPFL commands are the basic units having an e�ect on the execution environment. The nop
command has no e�ect and serves mainly as a place holder. The accept, resp. drop, command
states to accept, resp. drop, the current packet and stop the �ltering process for this packet. The
send command sends a packet on one of the ports. The alarm command generates a message on
the alarm channel. The set command sets the value of a variable. The newAutomaton command
initializes an automaton of the provided kind and assigns the provided identi�er to interact with
this newly created automaton. The step command tries to trigger an automaton transition by
sending an event e to an automaton a. If there is no transition from the current state of a
triggered by the event e, then the associated statement is executed.

Expressions in GPFL are quite standard. Primitive values include integers, booleans, strings,
automata events and ports. The only �somewhat� uncommon aspect of GPFL is that automaton
identi�ers in expressions are evaluated to the current state of the associated automaton.

4.2 Con�guration

The con�guration used to execute GPFL programs is presented graphically in Fig. 7. A con�gu-
ration contains a set of automaton kind de�nitions (automatonDef), with the same information
as de�ned in Sect. 4.1. The prg cell contains the GPFL program. After initialization of the
program, the filter cell contains the �lter (GPFL statement) that is to be executed for every
packet. The env cell is the main dynamic part of the execution environment. It corresponds to
a �record� of maps that associate: automaton kind and current state to automaton identi�ers
(automata cell), and values to variables.

The only time related feature available to GPFL execution machinery (in addition to packet
arrival time) are interrupts. The con�guration contains an interrupts cell. This cell contains
a set of interrupt de�nitions (interrupt*). An interrupt is a triplet composed of: the time
when the interrupt is to be triggered, the code to be executed, and a �Time� value equal to the
interruption period for a periodic interruption or nothing for a non-periodic interruption. In
addition, the interrupts cell contains an ordered list of the next �times� when an interrupt is
to be executed.

The input cell contains the current packet to be �ltered, with its arrival time and port. The
con�guration also contains a k cell that holds the GPFL statement under execution. Each time
a new packet is input, the content of the k cell is replaced by the content of the filter cell.

Finally, the streams cell contains: the packet input stream divided into the next packet to
arrive (inHead) and the rest of the stream (inTail), the packet output stream, and the alarm
output stream. In the input stream, resp. output stream, packets arriving, resp. leaving, on
both ports are mixed together, but contains information on the port of entry, resp. exit. Some
choices made to represent those streams are not an intrinsic part of the formal speci�cation of
GPFL. The division of the input stream into a head and a tail is such a choice. Those choices
are made in order to be able to execute the speci�cation. It is then required to implement, in
the K framework, a mechanism to retrieve and parse strings describing packet sequences sent
to the �lter. In order to help distinguish between the formal speci�cation of GPFL and the
mechanisms put in place to execute it, whenever possible, implementation choices, such as the
format of strings describing packets, are de�ned in another �le which is loaded with the require
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10 Le Guernic & Galindo

$PGM :K

prg

•K

automataKind
•K

initialState
•Map

transitions

automataKindDef*

automataKindDefs

•K

�lter

0

clock

•Map

kinds
•Map

states

automata
•Map

vars

env
•K

k

•List

nextInterrupts

•K

intTime
•K

intCode
•K

period

interrupt*

interrupts

•K

time
•K

port
•Map

�elds

input

•K

inHead
•List

inTail

in
•List

alarm
•List

out

streams

Figure 7: K con�guration of GPFL

instruction.

4.3 Semantics

The formal speci�cation of GPFL's semantics relies on two auxiliary speci�cations. The �rst one
de�ne speci�c data types and associated functions (Fig. 8). The second one de�nes auxiliary
conversion functions between those data types and String (Fig. 9).

The formal speci�cation of GPFL's semantics includes the usual rules for handling expressions
that can be found in many K examples or tutorials. The strict attributes of the syntax rules
on lines 22 and 23 of Fig. 6 specify that operation arguments in expressions have to be evaluated
to values �rst. The rules in Fig. 10 specify the semantics of variables, which consists simply in
retrieving their values in the corresponding con�guration cell. The K source provided in Fig. 11
speci�es the semantics of operations applied to values.

The rest of GPFL's semantics is decomposed in three execution phases: (a) the program
initialization, (b) the selection of the next statement to execute, and (c) the execution of the
selected statement. Phase (a) occurs only once at the beginning of the execution; then phases (b)
and (c) are repeatedly executed one after the other. Phase (b) selects the statement associated

Inria



Formal Speci�cation of a Packet Filtering Language Using the K Framework 11

module GPFPL -DATA

2

syntax Time ::= Int

4

syntax Time ::= Time "+Time" Time [function]

6 rule T1:Int +Time T2:Int => T1 +Int T2 [structural]

8 syntax Bool ::= Time "<Time" Time [function]

rule T1:Int <Time T2:Int => T1 <Int T2 [structural]

10

syntax Port ::= "inSide" | "outSide"

12

syntax Bool ::= Port "==Port" Port [function]

14 rule P1:Port ==Port P2:Port => P1 ==K P2 [structural]

16 syntax Port ::= "oppositePort(" Port ")" [function]

rule oppositePort( inSide:Port ) => outSide

18 rule oppositePort( outSide:Port ) => inSide

20 syntax Fields ::= Map

22 syntax Bool ::= Id "in" Fields [function]

rule X:Id in MF:Map => (X in keys(MF)) [structural]

24

syntax K ::= Fields ".getValueOfField(" Id ")" [function]

26 rule MF:Map .getValueOfField( X:Id ) => MF[X] [structural]

28 syntax PktDescr ::= "(" Time "," Port "," Fields ")"

30 syntax Time ::= "getTimeFromPkt(" PktDescr ")" [function]

rule getTimeFromPkt( ( T:Time , _:Port , _:Fields ) ) => T

32

syntax Port ::= "getPortFromPkt(" PktDescr ")" [function]

34 rule getPortFromPkt( ( _:Time , P:Port , _:Fields ) ) => P

36 syntax Fields ::= "getFieldsFromPkt(" PktDescr ")" [function]

rule getFieldsFromPkt( ( _:Time , _:Port , MF:Fields ) ) => MF

38

endmodule

Figure 8: K source �le of speci�c data types
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12 Le Guernic & Galindo

1 require "dataDefs.k3"

3 module STRING -CONVERSIONS

5 imports GPFPL -DATA

7 syntax TimeStr ::= Int

9 syntax String ::= "time2Str(" Time ")" [function]

rule time2Str( T:Int ) => Int2String( T )

11 syntax Time ::= "str2Time(" TimeStr ")" [function]

rule str2Time( T:Int ) => T

13

syntax PortStr ::= Port

15

syntax String ::= "port2Str(" Port ")" [function]

17 rule port2Str( inSide ) => "inSide"

rule port2Str( outSide ) => "outSide"

19 syntax Port ::= "str2Port(" PortStr ")" [function]

rule str2Port( P:Port ) => P

21

syntax FieldStr ::= Id "=" String

23 syntax FieldsStr ::= List{ FieldStr , "," }

25 syntax String ::= "fields2Str(" Fields ")" [function]

rule fields2Str( .Map ) => ""

27 rule fields2Str( F:Id |-> V:String ) => ( Id2String(F) +String "=" +String

"\"" +String V +String "\"" )

rule fields2Str( F:Id |-> V:String FTail:Map ) => ( fields2Str(F |-> V) +

String "," +String fields2Str(FTail) )

29

syntax Fields ::= "str2Fields(" FieldsStr ")" [function]

31 rule str2Fields( M:FieldsStr ) => str2mfInternals(M)

syntax Map ::= "str2mfInternals(" FieldsStr ")" [function]

33 rule str2mfInternals( .: FieldsStr ) => .Map

rule str2mfInternals( F:Id = V:String ) => (F |-> V)

35 rule str2mfInternals( F:Id = V:String , MFS:FieldsStr ) => (F |-> V)

str2mfInternals(MFS)

37 syntax PktStr ::= "(" TimeStr ";" PortStr ";" FieldsStr ")"

39 syntax String ::= "pkt2Str(" Time "," Port "," Fields ")" [function]

rule pkt2Str( T:Time , P:Port , M:Map ) => ( "(" +String time2Str(T) +

String "; " +String port2Str(P) +String "; " +String fields2Str(M) +

String ")" )

41

syntax PktDescr ::= "pktStr2pktDescr(" PktStr ")" [function]

43 rule pktStr2pktDescr( ( T:TimeStr ; P:PortStr ; MF:FieldsStr ) ) => (

str2Time(T) , str2Port(P) , str2Fields(MF) )

45 endmodule

Figure 9: K source �le of String conversion functions
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rule

X :VarId

V

k

(X 7→ V :ExpVal)

vars

rule

# X :Id

V

k

(X 7→ V :AEvtId)

states

automata

rule requires X in MF

$ X :Id

(MF .getValueOfField( X ))

k

MF :Fields

�elds

rule

_inPort

P

k

P :Port

port

Figure 10: GPFL's semantics for variables

1 rule -- I:Int => ~Int I

rule I1:Int + I2:Int => I1 +Int I2

3 rule I1:Int - I2:Int => I1 -Int I2

rule I1:Int * I2:Int => I1 *Int I2

5 rule I1:Int / I2:Int => I1 /Int I2 requires I2 =/= Int 0

7 rule ! B:Bool => notBool B

rule B1:Bool & B2:Bool => B1 andBool B2

9 rule B1:Bool | B2:Bool => B1 orBool B2

11 rule I1:Int == I2:Int => I1 =Int I2

rule I1:Int < I2:Int => I1 <Int I2

13 rule I1:Int > I2:Int => I1 >Int I2

rule I1:Int <= I2:Int => I1 <=Int I2

15 rule I1:Int >= I2:Int => I1 >=Int I2

17 rule S1:String + S2:String => S1 +String S2

rule S1:String == S2:String => S1 == String S2

19

rule P1:Port == P2:Port => P1 ==Port P2

Figure 11: K source �le of GPFL expressions semantics
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14 Le Guernic & Galindo

to the next thing to do, i.e. �lter a packet or execute an interruption. Phase (c) executes the
selected statement.

4.3.1 Program Initialization Phase.

As speci�ed by the rules in Fig. 12, the execution of a GPFL program is initialized by splitting
the program in two. The prologue goes into the prg cell and the �lter statement goes into the
filter cell. Then the prologue elements are executed one by one.

rule

PROLOGUE P :Prologues FILTER F :Stmt

P

prg

•K

F

�lter

rule

(P :PrologElt T :Prologues)

P y T

prg

Figure 12: GPFL program top-level semantics in K

The semantics of AUTOMATON prologues (Fig. 13) is to create a new automataKindDef cell
containing the de�nition of the automata kind.

And, as speci�ed by the rule in Fig. 14, the semantics of INIT prologues is to execute the
associated statements. Any statement put in the k cell is to be executed, as speci�ed in the
remaining of this section.

4.3.2 Statement Selection Phase.

Once the prologue as been executed, and after every execution of an interruption or after �ltering
a packet, the semantics of GPFL is to select the next statement to be executed: either the
�ltering statement (in the filter cell), or the statement associated with the next interruption
if this interruption is triggered before the next packet arrives.

The process deciding which statement to execute next is speci�ed in Fig. 15. This process
starts by loading (from the inTail stream cell) and parsing the next packet to �lter while reset-
ting the time, port and fields cells. Then, depending on which event happens �rst between the
arrival of a new packet and the triggering of the next interruption, one of two helper commands
(loadInterrupt or loadNextPkt) is put into the k cell to indicate which action is to be taken
next. It is to be noted that this process is not intrinsically part of the speci�cation of GPFL's
semantics. For practical reasons, this speci�cation �pre-loads�, into the inHead cell, future pack-
ets that have not arrived yet. An implementation of GPFL would not �pre-load� packets; for an
implementation, the input stream (concatenation of the inHead and inTail) is a whole. This
fact is re�ected by the fact that all the rules of Fig. 15 are structural.

The formally speci�ed semantics of loadInterrupt is shown in Fig. 16. The loadInterrupt
command in the k cell is replaced by the statement associated with one of the interruptions
scheduled to be triggered next (there can be many interruptions scheduled to be triggered at the
same time). If the interruption triggered (I) is a recurring interruption, then I is scheduled to
be triggered again at T + P where T is the current time and P is the period of the recurring
interruption I. Otherwise, the interrupt cell of I is simply removed.

Fig. 17 graphically displays the formal semantics of loadNextPkt. Every �eld of the packet
P in the head of the input stream is loaded into the map of the fields environment cell. The
time and port cells are set to the corresponding values associated to P . Finally, P is removed
from the head of the input stream, and the �ltering statement in the filter cell is loaded into
the k cell in replacement of the loadNextPkt command.
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rule

AUTOMATA K :String init = S :AStateId T :ATransitions

AUTOMATA K T

prg

•Bag

K

automataKind

S

initialState

automataKindDef

syntax ATransitionPremise ::= AStateId AEvtId

rule

AUTOMATA K :String (F :AStateId - E :AEvtId -> T :AStateId)TT :ATransitions

TT

prg

K

automataKind

�:Map •Map

(F E) 7→ T

transitions

automataKindDef

rule

AUTOMATA K :String •ATransitions

•K

prg

Figure 13: Automaton prologue semantics

rule

INIT F :Stmt

•K

prg

•K

F

k

Figure 14: Initialization statement semantics
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syntax Holder ::= loadInterrupt | loadNextPkt

rule [structural]

•K

prg
•K

k

•K

pktStr2pktDescr( #parse (Input , "PktStr"))

inHead

ListItem (Input :String)

•List

inTail

�:K

•K

time

�:K

•K

port

�:Map

•Map

�elds

input

rule [structural]

•K

loadNextPkt

k

M :PktDescr

inHead
•List

nextInterrupts

rule [structural] requires getTimeFromPkt( P) <Time TInt

•K

loadNextPkt

k

P :PktDescr

inHead

ListItem (TInt)

nextInterrupts

rule [structural] requires ¬Bool( getTimeFromPkt( P) <Time TInt)

•K

loadInterrupt

k

P :PktDescr

inHead

ListItem (TInt)

nextInterrupts

Figure 15: Semantic rules deciding which statement to execute next
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rule [structural]

loadInterrupt

S

k

ListItem (T :Int)

•List

nextInterrupts

T

intTime

S :Stmt

intCode
•K

period

interrupt

•Bag

�

T

clock

rule [structural]

loadInterrupt

S

k

ListItem (T :Int)

•List

TL:List

insertIntoOrderedTimeList (T +Time P ,TL)

nextInterrupts

T

T +Int P

intTime

S :Stmt

intCode

P :Int

period

interrupt

�

T

clock

Figure 16: Semantics of loadInterrupt

rule [structural]

F :Stmt

�lter

loadNextPkt

F

k

P :PktDescr

•K

inHead

�

getTimeFromPkt( P)

clock

•K

getTimeFromPkt( P)

time

•K

getPortFromPkt( P)

port

•Map

getFieldsFromPkt( P)

�elds

input

Figure 17: Semantics of loadNextPkt
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18 Le Guernic & Galindo

4.3.3 Statement Execution Phase.

The de�nition of the newInterrupt statement semantics (Fig. 19) uses one helper function,
named insertIntoOrderedTimeList, which inserts an integer into an ordered list (Fig. 18).
As speci�ed by the rules of Fig. 19, the semantics of a newInterrupt statement is simply to

syntax List ::= insertIntoOrderedTimeList (Time,List) [function]

rule

insertIntoOrderedTimeList (I :Time, •List)

ListItem (I )

rule requires I <Time J
insertIntoOrderedTimeList (I :Time, ListItem (J ) T :List)

ListItem (I ) ListItem (J ) T

rule requires ¬Bool(I <Time J )

insertIntoOrderedTimeList (I :Time, ListItem (J ) T :List)

ListItem (J ) insertIntoOrderedTimeList (I ,T )

Figure 18: GPFL's newInterrupt helper semantics

create a new interruption in a new interrupt cell and to register this new interruption in the
nextInterrupts cell.

GPFL's other statements semantics (speci�ed in Fig. 20) is quite simple. To execute a pair
of statements, the �rst statement is executed and then the second one. The strict attribute of
the conditional statement (cond) syntax rule (Fig. 6) speci�es that the guard of the statement
must be evaluated to a value �rst; then the rules in Fig. 20 specify that the sub-statement is
executed only if the guard is true. Similarly, the strict attribute of the iteration statement
syntax rule speci�es that the controlling expression must be evaluated to a value �rst. If this
controlling value is 0 then the execution of the iteration statement is over; otherwise its sub-
statement is executed once and the iteration statement is executed again with its controlling
expression decreased by 1.

The semantics of the variable assignment command is quite standard (Fig. 21). The value
associated to the variable in the map of the environment cell vars is updated to the new value
of the variable. If the variable is not already present in the map of the vars cell, a structural
rule adds it to the map, thus allowing the previous rule to apply.

The semantics of automata-related commands is given in Fig. 22. The newAutomaton com-
mand �creates� an new automaton of kind K and associates it to the variable X. The maps of
the automata cell are updated to associate the kind K to the automaton referenced by X, and
associate to X the initial state of automata of kind K. The step command sends the event E to
the automaton referenced by X. If a transition triggered by E exists from the current state of the
automaton, then the current state associated to X in the map of the states cell is updated with
the new state; otherwise the error sub-statement S is executed.

The alarm command semantics is provided in Fig. 23. Its semantics is simply to generate a
packet on the alarm output stream.

The packet related commands semantics (Fig. 24) relies on two internal commands: iSend,
which sends a packet on the output stream; and iHalt, which halt the �ltering process for the
current packet. The accept command outputs the current packet and terminates the execution
of the �lter. The drop command terminates the execution of the �lter. And send outputs a
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rule

newInterrupt( T :Int , true,S :Stmt)

•K

k

IntL:List

insertIntoOrderedTimeList (CT +Time T , IntL)

nextInterrupts

CT :Time

clock •Bag

CT +Time T

intTime

S

intCode

T

period

interrupt

rule

newInterrupt( T :Int , false,S :Stmt)

•K

k

IntL:List

insertIntoOrderedTimeList (CT +Time T , IntL)

nextInterrupts

CT :Time

clock •Bag

CT +Time T

intTime

S

intCode
•K

period

interrupt

Figure 19: GPFL's newInterrupt statement semantics

rule [structural]

S1 :Stmt S2 :Stmt

S1 y S2

rule

cond( true,F :Stmt)

F

rule

cond( false,�)

•K

rule

iter( 0,�)

•K

rule requires I >Int 0
iter( I :Int ,F :Stmt)

F y iter( I −Int 1,F )

Figure 20: GPFL's other statements semantics

rule

set( X :Id ,V :ExpVal)

•K

k

X 7→ �

V

vars

rule [structural] requires ¬Bool(X in keys (ρ))

set( X :Id ,V :ExpVal)

k

ρ:Map •Map

X 7→ •K

vars

Figure 21: GPFL's set command semantics
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rule requires ¬Bool(X in keys (KMap) ∨Bool X in keys (SMap))

newAutomaton( K :String , # X :Id)

•K

k

K

automataKind

S

initialState

automataKindDef

KMap:Map •Map

X 7→ K

kinds

SMap:Map •Map

X 7→ S

states

automata

rule

step( # X :Id ,E :AEvtId ,�:Stmt)

•K

k

K

automataKind

(F :AStateId E) 7→ T

transitions

automataKindDef

X 7→ K

kinds

X 7→ F :AStateId

T

states

automata

rule requires ¬Bool((Fr E) in keys (Transitions))

step( # X :Id ,E :AEvtId ,S :Stmt)

S

k

K

automataKind

Transitions:Map

transitions

automataKindDef

X 7→ K

kinds

X 7→ Fr :AStateId

states

automata

Figure 22: Automata commands semantics
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rule

alarm( N :String)

•K

k

T :Time

clock

•List

ListItem ("ALARM @ "+String time2Str( T ) +String ": "+String N +String "\n")

alarm

Figure 23: Alert commands semantics

packet.

syntax InternalCmd ::= iSend( Port,Fields) | iHalt

rule [structural]

iSend( P ,F )

•K

k

T

clock

•List

( ListItem ( pkt2Str( T ,P ,F ) +String "\n"))

out

rule [structural]

( iHalty �)

•K

k

�

•K

time

�

•K

port

�

•Map

�elds

input rule

send( P ,F )

iSend( P ,F )

k

rule

drop

iHalt

k

rule

accept

iSend( oppositePort( P),MF ) iHalt

k

P :Port

port

MF :Fields

�elds

input

Figure 24: packet-related commands semantics

5 Testing GPFL's Speci�cation

The above speci�cation of GPFL syntax and semantics is not necessarily perfect. By a matter of
fact, the imperfections of GPFL's speci�cation are of interest to the experimentation reported in
this paper. Indeed, the goal of the experimentation is to see how a tool such as the K framework
can help to spot imperfections in �ltering language speci�cations, and help correct them. One
way to do so, is by �testing� the new language speci�ed, which is possible if the framework used
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to specify the language supports the execution or simulation of language speci�cations, which is
the case for the K framework.

The test scenario used assumes a network of clients and servers. The clients request resources
to servers using a made-up protocol called �DHCP cherry�. The test scenario assumes that
servers behave poorly when interacting concurrently with di�erent clients. The objective of the
test scenario is then to �lter communications towards servers, as architectured in Fig. 25, in
order to prevent any concurrent client-server interactions with any given server.

Figure 25: Network architecture of the test scenario

This test scenario is obviously made-up for this experimentation, which is a requirement due
to con�dentiality issues. However, it is still covering the most frequently used features of �ltering
languages similar to GPFL, while remaining simple enough for a sub-part of an experimentation.

5.1 DHCP cherry

The protocol used for this test scenario is a simpli�ed version of the DHCP protocol. Packet
formats and nominal sequences are described below.

5.1.1 Protocol

The protocol for DHCP cherry follows the packet sequences described in Fig. 26. The client

Acquire

Release

hmsc Global
sequencing

Server

Server 1

Client

Client

Server

Server 2

Disc Disc

O�(R1) O�(R2)

Req(R1) Rej(R2)

locks R1
Ack

Ack

msc Nominal acquire sequence

Server

Server 1

Client

Client

Rel(R1)

unlocks R1

Ack

msc Nominal release sequence

Figure 26: Nominal packet sequences of DHCP cherry protocol

starts by broadcasting a request for resource (Discover packet). Servers answer with resource
o�ers (O�er packet), but do not lock the resource for the client yet. The client chooses one of
the o�ered resources (R1) and sends a request for that resource (Request packet) and rejections
(Reject packet) for the other resources. Servers which received a rejection packet then send an
acknowledgment packet (Acknowledge packet). The server, which received a request packet, locks
the associated resource for the client and sends him an acknowledgment. The client is then free
to use the resource for as long as he wishes. Once done with the resource, the client releases
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the resource to the server (Release packet). And the server acknowledges reception of the release
packet.

A client that does not receive any o�er to a discovery request, or an expected acknowledgment,
is supposed to try again later to emit the packet to which it did not receive an answer. However,
there is no explicit recovery mechanism in the protocol. If a packet sequence stops between the
Request packet and the Release packet, the associated resource is �lost�.

5.1.2 Packet formats

The format of packets is given in Fig. 27. A packet is 8 or 12 bits long. A packet starts by a 4

Pkt Type Client Id Resource Id

0 3 4 7 8 11

Packet MSC Type encoding Resource part Pkt length

Discover Disc 0 NO 8 bits
O�er O�(R) 1 YES 12 bits
Request Req(R) 2 YES 12 bits
Reject Rej(R) 3 YES 12 bits
Release Rel(R) 4 YES 12 bits
Acknowledge Ack 5 NO 8 bits

Figure 27: Format of DHCP cherry packets

bits long packet type identi�er (Discover, O�er, . . . ), followed by a 4 bits long client identi�er
identifying the client involved in the session. If the packet carries a resource identi�er, a 4 bits
long resource identi�er is appended at the end of the packet.

5.2 The Filtering Policy to Enforce

From the point of view of servers, non-concurrent interactions are sequential instances of only
three generic atomic packet sequences. Those atomic packet sequences are the ones accepted by
the automaton in Fig. 28. In this automaton, �in:MP �, resp. �out:MP �, is a transition trigger

0

1 2

3 4

5 6

7 8

in:Di
sc(C

)
out:O�(C,R)

in:Re
q(C,

R)
out:Ack(C)

in:Rej(C,R)
out:Ack(C)

in:Rel(C,R)
out:Ack(C)

Figure 28: Automaton of Server-side Atomic Packet Sequences

matching any incoming packet (from the rest of the network to the server), resp. outgoing
packet (from the server to the rest of the network), matching packet pattern MP . C and R are
variables. C is a client identi�er variable. R is a resource identi�er variable. C, resp. R, has to
be instantiated in the same way (have the same value) for any packet of the same atomic packet
sequence accepted by the automaton.
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The automaton of Fig. 28 is re�ned into a �ltering policy automaton described in Fig. 29.
Variables C and R have the same constraints as for the automaton of Fig. 28. The variable
�∗� matches any value, packet pattern �out:∗� matches any outgoing packet, and packet pattern
�out:∗ - Ack(C)� matches any outgoing packet except Ack(C). This �ltering policy accepts every

0 1 23

out:∗

in:Disc(C)

out:∗ in:Req(C,∗)

in:Rej(C,∗)
out:∗ -
Ack(C)

out:Ack(C)

in:Rel(C,∗)out:∗ -
Ack(C)

out:Ack(C)

Figure 29: Filtering Policy Automaton

outgoing packet; thus having no e�ect on the packets generated by the server. For incoming
packets, if the current state of the automaton has no transition whose trigger matches the packet
then the packet is discarded; otherwise, the packet is accepted and the associated transition is
triggered.

This �ltering policy assumes that clients comply with the DHCP cherry protocol and ensures
only that the �ltered server only interacts sequentially with clients. If there is no idle server
ready to receive a packet from a client, this client gets no answer and is expected to retry later.

5.3 The Filter Code in GPFL

The GPFL's code for this �ltering policy is contained the �le dhcp.gpfpl, displayed below.

PROLOGUE

2 AUTOMATA "DHCP incoming controller"

init = "0"

4 "0" -"Disc"-> "1"

"1" -"Req"-> "2"

6 "1" -"Rej"-> "2"

"2" -"Ack"-> "0"

8 "0" -"Rel"-> "3"

"3" -"Ack"-> "0"

10 INIT

newAutomaton("DHCP incoming controller", #A)

12 set(ignoredPktCnt , 0) set(ignoredPktThreshold , 5)

newInterrupt (60, true , set(ignoredPktCnt , 0))

14

FILTER

16 cond(_inPort == inSide ,

cond( ($pktType == "Ack") & ($clientId == currentClient),

18 step(#A, "Ack", nop)

set(currentClient , "")

20 )

accept

22 )

cond(_inPort == outSide ,

24 cond($pktType == "Disc",

step(#A, "Disc",

26 set(ignoredPktCnt , ignoredPktCnt + 1)

cond(ignoredPktCnt >= ignoredPktThreshold ,

28 alarm("Many external messages ignored!")

set(ignoredPktCnt , 0)
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30 )

drop

32 )

set(currentClient , $clientId)

34 accept

)

36 cond( ($pktType == "Req") | ($pktType == "Rej"),

cond(! ($clientId == currentClient),

38 set(ignoredPktCnt , ignoredPktCnt + 1)

cond(ignoredPktCnt >= ignoredPktThreshold ,

40 alarm("Many external messages ignored!")

set(ignoredPktCnt , 0)

42 )

drop

44 )

step(#A, $pktType ,

46 set(ignoredPktCnt , ignoredPktCnt + 1)

cond(ignoredPktCnt >= ignoredPktThreshold ,

48 alarm("Many external messages ignored!")

set(ignoredPktCnt , 0)

50 )

drop

52 )

accept

54 )

cond($pktType == "Rel",

56 step(#A, "Rel",

set(ignoredPktCnt , ignoredPktCnt + 1)

58 cond(ignoredPktCnt >= ignoredPktThreshold ,

alarm("Many external messages ignored!")

60 set(ignoredPktCnt , 0)

)

62 drop

)

64 set(currentClient , $clientId)

accept

66 )

drop

68 )

alarm("Unhandled message") drop

The states of the �ltering automaton of Fig. 29 are directly encoded in an automata kind def-
inition in the prologue, with generic triggering conditions that only encode the type of packet
received. A unique instance (#A) of this kind of automata is created. For every packet received
by the �lter, additional triggering conditions (packet input port, client identi�er, . . . ) are han-
dled in the FILTER code itself. If a packet is received with a type compatible with additional
triggering conditions, the packet type is sent to the automaton #A to verify that the current state
is compatible with the reception of this type of packet, and update the state of the automaton.

In addition, every dropped packet increments a counter (ignoredPktCnt), which is reset to
0 every 60 �time unit� by a recurrent interruption initialized in the prologue. If this counter
reaches the threshold (5), an alarm is raised to warn that �many� packets are dropped by the
�lter.

5.4 Simulating the Filter

The above �ltering code written in GPFL can then be simulated by running the following com-
mand (in Linux Bash) :
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krun dhcp.gpfpl < dhcp_input-dataset.txt > dhcp_output.txt

where dhcp_input-dataset.txt contains a sequence of �parsed� packets (decoded packets,
Fig. 5) input to the �lter. The output of the simulation of the code (dhcp.gpfpl) written
in the speci�ed language (GPFL) is written in dhcp_output.txt.

The following input (dhcp_input-dataset.txt):

1 ( 002 ; outSide ; pktType="Disc " , c l i e n t I d="A" )
(005 ; i nS ide ; pktType="Off " , c l i e n t I d="A" , r e s s ou r c e I d="D" )

3 ( 006 ; outSide ; pktType="Disc " , c l i e n t I d="7" )
( 009 ; outSide ; pktType="Off " , c l i e n t I d="7" , r e s s ou r c e I d="5" )

5 ( 012 ; outSide ; pktType="Req" , c l i e n t I d="7" , r e s s ou r c e I d="5" )
( 014 ; outSide ; pktType="Disc " , c l i e n t I d="F" )

7 ( 015 ; outSide ; pktType="Req" , c l i e n t I d="A" , r e s s ou r c e I d="D" )
(017 ; outSide ; pktType="Ack" , c l i e n t I d="7" )

9 ( 018 ; i nS ide ; pktType="Ack" , c l i e n t I d="A" )
(102 ; outSide ; pktType="Disc " , c l i e n t I d="B" )

11 ( 105 ; i nS ide ; pktType="Off " , c l i e n t I d="B" , r e s s ou r c e I d="E" )
(106 ; outSide ; pktType="Disc " , c l i e n t I d="7" )

13 ( 109 ; outSide ; pktType="Off " , c l i e n t I d="7" , r e s s ou r c e I d="5" )
( 112 ; outSide ; pktType="Req" , c l i e n t I d="7" , r e s s ou r c e I d="5" )

15 ( 114 ; outSide ; pktType="Disc " , c l i e n t I d="F" )
(115 ; outSide ; pktType="Rej" , c l i e n t I d="B" , r e s s ou r c e I d="E" )

17 ( 117 ; outSide ; pktType="Ack" , c l i e n t I d="7" )
( 124 ; outSide ; pktType="Disc " , c l i e n t I d="F" )

19 ( 138 ; i nS ide ; pktType="Ack" , c l i e n t I d="B" )
(202 ; outSide ; pktType="Rel" , c l i e n t I d="A" , r e s s ou r c e I d="D" )

21 ( 205 ; outSide ; pktType="Disc " , c l i e n t I d="F" )
(206 ; outSide ; pktType="Disc " , c l i e n t I d="7" )

23 ( 207 ; outSide ; pktType="Disc " , c l i e n t I d="F" )
(209 ; outSide ; pktType="Off " , c l i e n t I d="7" , r e s s ou r c e I d="5" )

25 ( 211 ; outSide ; pktType="Disc " , c l i e n t I d="F" )
(212 ; outSide ; pktType="Rej" , c l i e n t I d="7" , r e s s ou r c e I d="5" )

27 ( 214 ; outSide ; pktType="Disc " , c l i e n t I d="F" )
(216 ; outSide ; pktType="Ack" , c l i e n t I d="7" )

29 ( 217 ; outSide ; pktType="Disc " , c l i e n t I d="F" )
(218 ; i nS ide ; pktType="Ack" , c l i e n t I d="A" )

31 ( 324 ; outSide ; pktType="Disc " , c l i e n t I d="F" )

produces the following expected output (dhcp_output.txt):

1 ( 2 ; i nS ide ; pktType="Disc " , c l i e n t I d="A" )
( 5 ; outSide ; r e s s ou r c e I d="D" , pktType="Off " , c l i e n t I d="A" )

3 ( 1 5 ; i nS ide ; r e s s ou r c e I d="D" , pktType="Req" , c l i e n t I d="A" )
( 1 8 ; outSide ; pktType="Ack" , c l i e n t I d="A" )

5 ( 102 ; inS ide ; pktType="Disc " , c l i e n t I d="B" )
(105 ; outSide ; r e s s ou r c e I d="E" , pktType="Off " , c l i e n t I d="B" )

7 ( 115 ; inS ide ; r e s s ou r c e I d="E" , pktType="Rej" , c l i e n t I d="B" )
(138 ; outSide ; pktType="Ack" , c l i e n t I d="B" )

9 ( 202 ; inS ide ; r e s s ou r c e I d="D" , pktType="Rel" , c l i e n t I d="A" )
ALARM @ 212 : Many ex t e rna l messages ignored !

11 ( 218 ; outSide ; pktType="Ack" , c l i e n t I d="A" )
(324 ; inS ide ; pktType="Disc " , c l i e n t I d="F" )

appended with a description of the �nal con�guration (which is not displayed here).

6 Discussion on the Experimentation

The primary goal of this paper is not to set out the �ltering policy described in Sect. 5 or,
even, GPFL's speci�cation described in Sect. 4. This paper is an experience report on a primary
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evaluation of the cost and bene�ts of using formal speci�cation tools in general, and the K
framework in particular, to formally specify the syntax and semantics of �ltering languages.
Overall, it seems to the authors that using the K framework helped greatly to improve GPFL's
speci�cation quality. It forced the speci�cation authors to be precise, and helped spot various
errors and missing speci�cation fragments.

With regard to the �cost�, this experimentation argues in favor of tool supported formal
speci�cations for high quality speci�cations of �ltering languages. Of course, using natural
language, it is possible to produce a cheaper, but ambiguous and approximate, speci�cation.
However, it is the opinion of the authors that using natural language to produce a speci�cation
with a similar level of precision and correctness would be more costly. With a decent knowledge
of operational semantics concepts, the cost for newcomers to the K framework is relatively low,
thanks to the numerous tutorials (in text and video), manuals and examples.

Compared to formal speci�cation without tool support, the cost of the constraints imposed
by the K framework seems to the authors to be lower than the �bene�ts� provided by the tool
support. Typically, the ability to �execute� the formal speci�cation of the �ltering language
requires a particular handling of input/output related rules. However, this same ability to
�execute� the formal speci�cation of the �ltering language is highly bene�cial when validating
the correctness of the speci�cation and expressivity of the language.

Other bene�ts of tool supported formal speci�cations of languages are numerous. In natural
language documents specifying new languages, it is too common for program examples to be
inconsistent with the language grammar. It is easily explained by the modi�cations brought to
the language grammar during the speci�cation document development. Examples directly related
to the modi�ed statements are usually modi�ed accordingly. However, examples related to other
aspects of the language are often forgotten. Using a tool supported formal speci�cation, it is easy
to adopt a �continuous/frequent integration� approach where examples are: written in separate
�les, regularly parsed to verify that they comply with the current grammar, and automatically
imported in the speci�cation document (the creation of this paper used this approach).

Additionally, use of a tool-supported formal speci�cation approach modi�es the work�ow of-
ten applied when using natural language speci�cation documents. With natural language speci-
�cations, the speci�cation document writing process usually starts early after a short engineering
phase (it may not be true for a language development process, however it is often the case in
�pure� language speci�cation processes), and the main part of the language speci�cation is done
during the speci�cation document writing process. With a tool-supported formal speci�cation
approach, the speci�cation of the language tend to be �rst developed inside the tool, and then
the language speci�cation is clari�ed during the speci�cation document writing process. With a
tool-supported formal speci�cation approach, the language speci�cation becomes a two phases
process with two di�erent views on the language speci�cation. The �two di�erent views� aspect
is particularly true with the K framework were semantics rules are entered textually in the source
�le and can be rendered graphically for the speci�cation document. This two phases work�ow
(development then clari�cation and documentation) helps spot: di�erences of treatments (in
particular for con�guration cells), generalization and reuse opportunities (for example, in this
experimentation, the use of only two internal commands, iSend and iHalt, to encode the three
packet commands accept, drop and send), di�erent concepts that are candidates to modular-
ization (for example, in this experimentation, the externalization of packet data type de�nitions
and string conversions), errors that manifest themselves in rare occasions (for example, in an
earlier version of GPFL, automaton states and variable values where stored in the same map,
which could trigger a key clash caused by variable and automaton identi�ers having the same
�name� part), or general simpli�cations (for example, during this report writing process, GPFL's
con�guration has been heavily reformatted to simplify the language speci�cation and be closer
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to the concepts manipulated). From the authors experience, in general, a tool-supported formal
speci�cation helps simplify and clarify a language speci�cation.

Moreover, the ability to execute the formal speci�cation allows to adopt an incremental
approach for the speci�cation of the di�erent statements semantics. In such an approach, the
syntax of the language is �rst speci�ed. Then a program example making use of all the statements
of the language in as much context as reasonable is written. The semantics of the statements is
then de�ned statements by statements. The program is executed using K's run time; and the
execution stops when reaching a statement whose semantics is not de�ned yet. All the semantics
rules associated to this statement are then de�ned. When stopping an execution, K's run time
displays the current state of the con�guration which can help specify the missing semantics
rules. As the test program execution goes further and further during the language semantics
speci�cation process, this incremental approach is more rewarding for people in charge of the
speci�cation. The impact of using this incremental approach (which is not required by the K
framework) on the quality of the speci�cations produced remain to be investigated.

Finally, the ability to execute the formal speci�cation allows to test and validate the language
speci�cation. Two important points to validate are: the expressivity of the language and its
expected semantics. The GPFL's code provided in Sect. 5.3 emphasizes the limitations of the
simple automata that can be de�ned using GPFL. It could be useful to have automaton state
variables, and triggering conditions that test and check automaton state variable values. However,
adding automaton state variables would complexify automata de�nitions. Similarly, the GPFL
code provided in Sect. 5.3 contains a recurring code sequence to handle alarms that are triggered
only a threshold of a speci�c event occurrences is reached. It could be useful to add a speci�c
command to GPFL which would have the same semantics as this recurring sequence. The ability
to test programs does not solve expressivity questions (which have to be answered on a per
language basis), however it helps explicit those questions. With regard to expected semantics,
writing test programs helps validate that programs have the semantics that users would expect.
The initial version of the �lter code provided in Sect. 5.3 did not behave as expected. It ended
up being a misplaced statement in the �lter code, but could also have been a problem with
the semantics speci�cation. Discovering the cause of a misbehavior of a test program (error in
the semantics or the program) could be greatly simpli�ed by K's debugger which can �execute�
formal speci�cations step by step; especially as Domain Speci�c Languages (speci�cations and
implementations) usually have limited debugging facilities (which is in accordance with their
philosophy of limited expressivity for the sake of simpli�cation). However, sadly, K's debugger
crashed on our program with the version of the K framework used for this experimentation
(version 3.6). This can be explained by the fact that K development e�ort is now focused on
the next version to come (version 4.0). The authors plan to migrate this experimentation once
version 4.0 exits the beta stage. Finally, the ability to execute the formal speci�cation helps to
validate a set of test programs that can be used as smoke test for language implementations.

7 Conclusion

This paper reports on an experiment to formally specify the syntax and semantics of a �ltering
language (GPFL) using the tool-supported framework K. The �ltering language speci�ed in this
report has been made up for this experimentation; however, it covers the majority of concepts
usually encountered in �ltering languages. No comparison between di�erent tools is made in
this experiment. The goal of the experiment is to study the feasibility of using a tool-supported
formal approach for the speci�cation of domain-speci�c �ltering languages having a complexity
similar to �ltering languages encountered in real-life projects.
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The K framework proved to be su�ciently expressive to naturally express the syntax and
semantics of GPFL in a formal way. The e�ort required by this formal speci�cation is judged
reasonable by the authors, and within reach of average engineers which have been exposed
previously to operational semantics theories. Newcomers life is made easier by the numerous
manuals, examples and tutorials available for the K framework. The tool support is a welcome
help during the speci�cation process. In particular, the ability to execute (or simulate) K formal
speci�cations helps greatly when developing and �ne tuning the language speci�cation, and when
producing smoke tests for the implementation.

Following such a speci�cation process may seem to be in complete contradiction to any agile
development principles [4]. However, using a tool-supported executable speci�cation methodology
allows to comply with one of the pillars of agile development: early feedback. As the language
speci�cation is executable, it is possible to ask �nal users (if some are available) to test the
language and provide feedbacks on di�erent aspects of the language, including its expressivity.
In fact, IBM's Continuous Engineering development methodology [22] advocates for the use of
executable models at every steps of the development.

With regard to the bene�ts of putting the e�ort to produce a formal speci�cation, the authors
opinion, on improved quality and usefulness of formal speci�cations compared to non formal
speci�cations written in natural language, is relatively well summarized in the following statement
by David Schmidt [20].

�Since data structures like symbol tables and storage vectors are explicit, a language's
subtleties are stated clearly and its �aws are exposed as awkward codings in the
semantics. This helps a designer tune the language's de�nition and write a better
language manual. With a semantics de�nition in hand, a compiler writer can produce
a correct implementation of the language; similarly, a user can study the semantics
de�nition instead of writing random test programs.�

David Schmidt in ACM Computing Surveys [20]

This statement is supported by the numerous ambiguities in common programming languages,
like C/C++ or Java. Some of those ambiguities, as the memory model of multi-threaded Java�
programs [11], required a formal speci�cation in order to be solved.

�Unfortunately, the current speci�cation has been found to be hard to understand and
has subtle, often unintended, implications. Certain synchronization idioms sometimes
recommended in books and articles are invalid according to the existing speci�cation.
Subtle, unintended implications of the existing speci�cation prohibit common com-
piler optimizations done by many existing Java virtual machine implementations. [...]
Several important issues, [...] simply aren't discussed in the existing speci�cation.�

JSR-133 expert group [11]

In the experimentation reported in this paper, no formal analysis of the formal speci�cation
produced has been attempted. In future work, the authors plan to try some of the experi-
mental tools available with the K framework on GPFL's speci�cation. If time allows, a similar
experimentation could be repeated with other tools oriented toward the formal speci�cation of
languages.
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A Full K code

The following three listings contain the full K code specifying GPFL.

module GPFPL -DATA
2

syntax Time ::= Int
4

syntax Time ::= Time "+Time" Time [function]
6 rule T1:Int +Time T2:Int => T1 +Int T2 [structural]

8 syntax Bool ::= Time "<Time" Time [function]
rule T1:Int <Time T2:Int => T1 <Int T2 [structural]

10

syntax Port ::= "inSide" | "outSide"
12

syntax Bool ::= Port "==Port" Port [function]
14 rule P1:Port ==Port P2:Port => P1 ==K P2 [structural]

16 syntax Port ::= "oppositePort(" Port ")" [function]
rule oppositePort( inSide:Port ) => outSide

18 rule oppositePort( outSide:Port ) => inSide

20 syntax Fields ::= Map

22 syntax Bool ::= Id "in" Fields [function]
rule X:Id in MF:Map => (X in keys(MF)) [structural]

24

syntax K ::= Fields ".getValueOfField(" Id ")" [function]
26 rule MF:Map .getValueOfField( X:Id ) => MF[X] [structural]

28 syntax PktDescr ::= "(" Time "," Port "," Fields ")"

30 syntax Time ::= "getTimeFromPkt(" PktDescr ")" [function]
rule getTimeFromPkt( ( T:Time , _:Port , _:Fields ) ) => T

32

syntax Port ::= "getPortFromPkt(" PktDescr ")" [function]
34 rule getPortFromPkt( ( _:Time , P:Port , _:Fields ) ) => P

36 syntax Fields ::= "getFieldsFromPkt(" PktDescr ")" [function]
rule getFieldsFromPkt( ( _:Time , _:Port , MF:Fields ) ) => MF

38

endmodule

Listing: dataDefs.k3

1 require "dataDefs.k3"

3 module STRING -CONVERSIONS

5 imports GPFPL -DATA

7 syntax TimeStr ::= Int

9 syntax String ::= "time2Str(" Time ")" [function]
rule time2Str( T:Int ) => Int2String( T )

11 syntax Time ::= "str2Time(" TimeStr ")" [function]
rule str2Time( T:Int ) => T

13

syntax PortStr ::= Port
15

syntax String ::= "port2Str(" Port ")" [function]
17 rule port2Str( inSide ) => "inSide"

rule port2Str( outSide ) => "outSide"
19 syntax Port ::= "str2Port(" PortStr ")" [function]

rule str2Port( P:Port ) => P
21

syntax FieldStr ::= Id "=" String
23 syntax FieldsStr ::= List{ FieldStr , "," }

25 syntax String ::= "fields2Str(" Fields ")" [function]
rule fields2Str( .Map ) => ""
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27 rule fields2Str( F:Id |-> V:String ) => ( Id2String(F) +String "=" +String "\"" +
String V +String "\"" )

rule fields2Str( F:Id |-> V:String FTail:Map ) => ( fields2Str(F |-> V) +String "," +
String fields2Str(FTail) )

29

syntax Fields ::= "str2Fields(" FieldsStr ")" [function]
31 rule str2Fields( M:FieldsStr ) => str2mfInternals(M)

syntax Map ::= "str2mfInternals(" FieldsStr ")" [function]
33 rule str2mfInternals( .: FieldsStr ) => .Map

rule str2mfInternals( F:Id = V:String ) => (F |-> V)
35 rule str2mfInternals( F:Id = V:String , MFS:FieldsStr ) => (F |-> V) str2mfInternals(

MFS)

37 syntax PktStr ::= "(" TimeStr ";" PortStr ";" FieldsStr ")"

39 syntax String ::= "pkt2Str(" Time "," Port "," Fields ")" [function]
rule pkt2Str( T:Time , P:Port , M:Map ) => ( "(" +String time2Str(T) +String "; " +

String port2Str(P) +String "; " +String fields2Str(M) +String ")" )
41

syntax PktDescr ::= "pktStr2pktDescr(" PktStr ")" [function]
43 rule pktStr2pktDescr( ( T:TimeStr ; P:PortStr ; MF:FieldsStr ) ) => ( str2Time(T) ,

str2Port(P) , str2Fields(MF) )

45 endmodule

Listing: stringConversions.k3

1 require "dataDefs.k3"
require "stringConversions.k3"

3

module GPFPL -SYNTAX
5

imports GPFPL -DATA
7 imports STRING -CONVERSIONS

9 syntax ExpVal ::= Int | Bool | String | AEvtId | Port

11 syntax BuiltInId ::= "_inPort"
syntax VarId ::= Id

13 syntax FieldId ::= "$" Id
syntax AutomatonId ::= "#" Id

15 syntax ExpId ::= BuiltInId | VarId | FieldId | AutomatonId

17 syntax UnaryOp ::= "--" | "!"
syntax BinaryOp ::= "+" | "-" | "*" | "/" | "&" | "|"

19 | "==" | "<" | ">" | "<=" | ">="

21 syntax Exp ::= ExpVal | ExpId
| UnaryOp Exp [strict (2)]

23 | Exp BinaryOp Exp [strict (1,3), left]
| "(" Exp ")" [bracket]

25

syntax Cmd ::= "nop" | "accept" | "drop" | "send(" Port "," Fields ")"
27 | "alarm(" Exp ")" [strict (1)]

| "set(" Id "," Exp ")" [strict (2)]
29 | "newAutomaton(" String "," AutomatonId ")"

| "step(" AutomatonId "," Exp "," Stmt ")" [strict (2)]
31 syntax Stmt ::= Cmd

| "cond(" Exp "," Stmt ")" [strict (1)]
33 | "iter(" Exp "," Stmt ")" [strict (1)]

| "newInterrupt(" Int "," Bool "," Stmt ")"
35 | Stmt Stmt [right]

| "{" Stmt "}" [bracket]
37

syntax AutomataDef ::= "AUTOMATA" String AutomataDefTail
39 syntax AutomataDefTail ::= "init" "=" AStateId ATransitions | ATransitions

syntax ATransitions ::= List{ATransition ,""}
41 syntax ATransition ::= AStateId "-" AEvtId "->" AStateId

syntax AStateId ::= String
43 syntax AEvtId ::= String

syntax InitSeq ::= "INIT" Stmt
45 syntax PrologElt ::= AutomataDef | InitSeq

syntax Prologues ::= PrologElt | PrologElt Prologues
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47

syntax Program ::= "PROLOGUE" Prologues "FILTER" Stmt
49

endmodule
51

module GPFPL
53

imports GPFPL -SYNTAX
55

configuration
57 <prg color="stmtColor"> $PGM:K </prg >

<automataKindDefs color="automataColor">
59 <automataKindDef color="automataColor" multiplicity="*">

<automataKind color="automataColor"> .: String </automataKind >
61 <initialState color="automataColor"> .: AStateId </initialState >

<transitions color="automataColor"> .Map </transitions >
63 </automataKindDef >

</automataKindDefs >
65 <br/>

<filter color="stmtColor"> .:Stmt </filter >
67 <clock color="timeColor"> 0:Time </clock >

<env color="envColor">
69 <automata color="automataColor">

<kinds color="automataColor"> .Map </kinds >
71 <states color="envColor"> .Map </states >

</automata >
73 <vars color="envColor"> .Map </vars >

</env >
75 <k color="stmtColor"> .K </k>

<br/>
77 <interrupts color="interruptsColor">

<nextInterrupts color="interruptsColor"> .List </nextInterrupts >
79 <interrupt multiplicity="*" color="interruptsColor">

<intTime color="timeColor"> .:Time </intTime >
81 <intCode color="stmtColor"> .:Stmt </intCode >

<period color="timeColor"> .:Time </period >
83 </interrupt >

</interrupts >
85 <br/>

<input color="pktColor">
87 <time color="timeColor"> .:Time </time >

<port color="pktColor"> .:Port </port >
89 <fields color="pktColor"> .Map:Fields </fields >

</input >
91 <streams color="streamsColor">

<in color="streamsColor">
93 <inHead color="pktColor"> .: PktDescr </inHead >

<inTail stream="stdin" color="streamsColor"> .List </inTail >
95 </in >

<alarm stream="stdout" color="alarmColor"> .List </alarm >
97 <out stream="stdout" color="streamsColor"> .List </out >

</streams >
99

syntax KResult ::= ExpVal | Port
101

rule -- I:Int => ~Int I
103 rule I1:Int + I2:Int => I1 +Int I2

rule I1:Int - I2:Int => I1 -Int I2
105 rule I1:Int * I2:Int => I1 *Int I2

rule I1:Int / I2:Int => I1 /Int I2 requires I2 =/=Int 0
107

rule ! B:Bool => notBool B
109 rule B1:Bool & B2:Bool => B1 andBool B2

rule B1:Bool | B2:Bool => B1 orBool B2
111

rule I1:Int == I2:Int => I1 =Int I2
113 rule I1:Int < I2:Int => I1 <Int I2

rule I1:Int > I2:Int => I1 >Int I2
115 rule I1:Int <= I2:Int => I1 <=Int I2

rule I1:Int >= I2:Int => I1 >=Int I2
117

rule S1:String + S2:String => S1 +String S2
119 rule S1:String == S2:String => S1 == String S2
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121 rule P1:Port == P2:Port => P1 ==Port P2

123 rule
<k> X:VarId => V ... </k>

125 <vars > ... (X |-> V:ExpVal) ... </vars >

127 rule
<k> # X:Id => V ... </k>

129 <automata >
...

131 <states > ... (X |-> V:AEvtId) ... </states >
...

133 </automata >

135 rule
<k> $ X:Id => ( MF.getValueOfField(X) ) ... </k>

137 <fields > MF:Fields </fields >
when X in MF

139

rule
141 <k> _inPort => P ... </k>

<port > P:Port </port >
143

rule
145 <prg >PROLOGUE P:Prologues FILTER F:Stmt => P</prg >

<filter > . => F </filter >
147

rule
149 <prg > ( P:PrologElt T:Prologues ) => P ~> T </prg >

151 rule
<prg > AUTOMATA K:String init = S:AStateId T:ATransitions => AUTOMATA K T ... </prg >

153 (. =>
<automataKindDef >

155 ...
<automataKind > K </automataKind >

157 <initialState > S </initialState >
...

159 </automataKindDef >
)

161

syntax ATransitionPremise ::= AStateId AEvtId
163

rule
165 <prg > AUTOMATA K:String ( (F:AStateId - E:AEvtId -> T:AStateId) TT:ATransitions =>

TT ) ... </prg >
<automataKindDef >

167 ...
<automataKind > K </automataKind >

169 <transitions > _:Map (.Map => (F E):ATransitionPremise |-> T) </transitions >
...

171 </automataKindDef >

173 rule
<prg > AUTOMATA K:String .ATransitions => . ... </prg >

175

rule
177 <prg > INIT F:Stmt => . ... </prg >

<k> . => F </k>
179

syntax Holder ::= "loadInterrupt" | "loadNextPkt"
181

rule
183 <prg > . </prg >

<k> . </k>
185 <inHead > . => pktStr2pktDescr (# parse(Input ,"PktStr")) </inHead >

<inTail > ListItem(Input:String) => .List ... </inTail >
187 <input >

<time > _:K => . </time >
189 <port > _:K => . </port >

<fields > _:Map => .Map </fields >
191 </input >
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[structural]
193

rule
195 <k> . => loadNextPkt </k>

<inHead > M:PktDescr </inHead >
197 <nextInterrupts > .List </nextInterrupts >

[structural]
199

rule
201 <k> . => loadNextPkt </k>

<inHead > P:PktDescr </inHead >
203 <nextInterrupts > ListItem(TInt) ... </nextInterrupts >

when getTimeFromPkt(P) <Time TInt
205 [structural]

207 rule
<k> . => loadInterrupt </k>

209 <inHead > P:PktDescr </inHead >
<nextInterrupts > ListItem(TInt) ... </nextInterrupts >

211 when notBool ( getTimeFromPkt(P) <Time TInt )
[structural]

213

rule
215 <k> loadInterrupt => S </k>

<nextInterrupts > ListItem(T:Int) => .List ... </nextInterrupts >
217 ( <interrupt >

...
219 <intTime > T </intTime >

<intCode > S:Stmt </intCode >
221 <period > . </period >

...
223 </interrupt > => . )

<clock > _ => T </clock >
225 [structural]

227 rule
<k> loadInterrupt => S </k>

229 <nextInterrupts > ( ListItem(T:Int) => .List ) ( TL:List =>
insertIntoOrderedTimeList( T +Time P , TL ) ) </nextInterrupts >
<interrupt >

231 ...
<intTime > T => T +Int P </intTime >

233 <intCode > S:Stmt </intCode >
<period > P:Int </period >

235 ...
</interrupt >

237 <clock > _ => T </clock >
[structural]

239

rule
241 <filter > F:Stmt </filter >

<k> loadNextPkt => F </k>
243 <inHead > P:PktDescr => . </inHead >

<clock > _ => getTimeFromPkt(P) </clock >
245 <input >

<time > . => getTimeFromPkt(P) </time >
247 <port > . => getPortFromPkt(P) </port >

<fields > .Map => getFieldsFromPkt(P) </fields >
249 </input >

[structural]
251

syntax List ::= "insertIntoOrderedTimeList" "(" Time "," List ")" [function]
253 rule insertIntoOrderedTimeList( I:Time , .List ) => ListItem(I)

rule insertIntoOrderedTimeList( I:Time , ListItem(J) T:List ) => ListItem(I) ListItem(
J) T when I <Time J

255 rule insertIntoOrderedTimeList( I:Time , ListItem(J) T:List ) => ListItem(J)
insertIntoOrderedTimeList( I , T ) when notBool ( I <Time J )

257 rule
<k> newInterrupt( T:Int , true:Bool , S:Stmt ) => . ... </k>

259 <nextInterrupts > IntL:List => insertIntoOrderedTimeList( CT +Time T , IntL ) </
nextInterrupts >
<clock > CT:Time </clock >
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261 (. =>
<interrupt >

263 <intTime > CT +Time T </intTime >
<intCode > S </intCode >

265 <period > T </period >
</interrupt >

267 )

269 rule
<k> newInterrupt( T:Int , false:Bool , S:Stmt ) => . ... </k>

271 <nextInterrupts > IntL:List => insertIntoOrderedTimeList( CT +Time T , IntL ) </
nextInterrupts >
<clock > CT:Time </clock >

273 (. =>
<interrupt >

275 <intTime > CT +Time T </intTime >
<intCode > S </intCode >

277 <period > . </period >
</interrupt >

279 )

281 rule S1:Stmt S2:Stmt => S1 ~> S2 [structural]

283 rule cond( true , F:Stmt ) => F
rule cond( false , _ ) => .K

285

rule iter( 0:Int , _ ) => .K
287 rule iter( I:Int , F:Stmt ) => F ~> iter( I -Int 1 , F ) requires I >Int 0

289 rule
<k> set( X:Id , V:ExpVal ) => . ... </k>

291 <vars > ... X |-> (_ => V ) ... </vars >

293 rule
<k> set( X:Id , V:ExpVal ) ... </k>

295 <vars > Rho:Map (.Map => X |-> .) </vars >
when notBool (X in keys(Rho))

297 [structural]

299 rule
<k> newAutomaton( K:String , # X:Id ) => . ... </k>

301 <automataKindDef > ...
<automataKind > K </automataKind >

303 <initialState > S </initialState >
... </automataKindDef >

305 <automata >...
<kinds > KMap:Map (.Map => X |-> K ) </kinds >

307 <states > SMap:Map (.Map => X |-> S) </states >
... </automata >

309 when notBool (X in keys(KMap) orBool X in keys(SMap))

311 rule
<k> step( # X:Id , E:AEvtId , _:Stmt ) => . ... </k>

313 <automataKindDef > ...
<automataKind > K </automataKind >

315 <transitions > ... (F:AStateId E) |-> T ... </transitions >
... </automataKindDef >

317 <automata >...
<kinds > ... X |-> K ... </kinds >

319 <states > ... X |-> (F:AStateId => T) ... </states >
... </automata >

321

rule
323 <k> step( # X:Id , E:AEvtId , S:Stmt ) => S ... </k>

<automataKindDef > ...
325 <automataKind > K </automataKind >

<transitions > Transitions:Map </transitions >
327 ... </automataKindDef >

<automata >...
329 <kinds > ... X |-> K ... </kinds >

<states > ... X |-> Fr:AStateId ... </states >
331 ... </automata >

when notBool ( (Fr E) in keys(Transitions) )

RR n° 8967



38 Le Guernic & Galindo

333

rule
335 <k> alarm( N:String ) => .K ... </k>

<clock > T:Time </clock >
337 <alarm > ... .List => ListItem("ALARM @ " +String time2Str(T) +String ": " +String N

+String "\n") </alarm >

339 syntax Cmd ::= InternalCmd

341 syntax InternalCmd ::= "iSend(" Port "," Fields ")" | "iHalt"

343 rule
<k> iSend( P , F ) => .K ... </k>

345 <clock > T </clock >
<out > ... .List => ( ListItem( pkt2Str( T , P , F ) +String "\n" ) ) </out >

347 [structural]

349 rule
<k> ( iHalt ~> _ ) => .K </k>

351 <input >
<time > _ => . </time >

353 <port > _ => . </port >
<fields > _ => .Map </fields >

355 </input >
[structural]

357

rule
359 <k> send( P , F ) => iSend( P , F ) ... </k>

361 rule
<k> drop => iHalt ... </k>

363

rule
365 <k> accept => iSend( oppositePort(P) , MF ) iHalt ... </k>

<input >
367 ...

<port > P:Port </port >
369 <fields > MF:Fields </fields >

...
371 </input >

373 endmodule

Listing: gpfpl.k3
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