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Abstract. Genomic and metagenomic fields, generating huge sets of short genomic
sequences, brought their own share of high performance problems. To extract relevant
pieces of information from the huge data sets generated by current sequencing tech-
niques, one must rely on extremely scalable methods and solutions. Indexing billions of
objects is a task considered too expensive while being a fundamental need in this field.
In this paper we propose a straightforward indexing structure that scales to billions of
element and we propose two direct applications in genomics and metagenomics.
We show that our proposal solves problem instances for which no other known solution
scales up. We believe that many tools and applications could benefit from either the
fundamental data structure we provide or from the applications developed from this
structure.

Keywords: Bioinformatics; Sequences comparison; Genomics; Metagenomics; Data
structures; Minimal Perfect Hash Functions; Indexing;

Introduction

A genome or a chromosome can be seen as a word of millions characters long, writ-
ten in a four letters (or bases) alphabet. Modern molecular genome biology relies
on sequencing, where the information contained in a genome is chopped into small
sequences (around one hundred bases), called reads. By providing millions of short
genomic reads along with reasonable sequencing costs, high-throughput sequencing
technologies [31] (HTS) introduced an era where data generation is no longer a bot-
tleneck while data analysis is, as this amount of sequences needs to be pulled together
in a coherent way. Thanks to HTS improvements, it is possible to sequence hundreds
of single genomes and RNA molecules, giving insight to diversity and expression of
the genes. HTS even allow to go beyond the study of an individual by sequencing dif-
ferent species/organisms from the same environment at once, going from genomics to
metagenomics. This massive sequencing represents a breakthrough: for instance one
now can access and directly investigate the majority of the microbial world, which
cannot be grown in the lab [17]. However, because of the diversity and complexity
of microbial communities, such experiments produce tremendous volumes of data,
which represent a challenge for bioinformaticians to deal with. The fragmented na-
ture of genomic information, shredded in reads, craves algorithms to organize and
make sense of the data.

A fundamental algorithmic need is to be able to index read sets for a fast infor-
mation retrieval. In particular, given the amount of data an experiment can produce,
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methods that scale up to large data sets are needed. In this paper we propose a novel
indexation method, called the quasi-dictionary, a probabilistic data structure based
on Minimal Perfect Hash Functions (MPHF). This technique provides a way to asso-
ciate any kind of data to any piece of sequence from a read set, scaling to very large
(billions of elements) data sets, with a low and controlled false positive rate.

A number of studies have focused on optimizing non-probabilistic text indexa-
tion, using for instance FM-index [13], or hash tables. However, except the Bloomier
filter [9], to the best of our knowledge, no probabilistic dictionary has yet been pro-
posed for which the false positive or wrong answer rates are mastered and limited.
The quasi-dictionary mimics the Bloomier filter solution as it enables to associate
a value to each element from a set, and to obtain the value of an element with a
mastered false positive probability if the element was not indexed. Existing published
results in [9] indicate that the Bloomier filter and the quasi-dictionary have similar
execution times, while our results tend to show that the quasi-dictionary uses approx-
imately ten times less memory. Moreover, there are no available/free Bloomier filter
yet implemented.

We propose two applications that use quasi-dictionary for indexing k-mers, en-
abling to scale up large (meta)genomic instances. As suggested by their names (short
read connector counter and short read connector linker, as presented below), these
applications have the ability to connect any read to either its estimated abundance in
any read set or to a list of reads in any read set. A key point of these applications is
to estimate read similarity using k-mers diversity only. This alignment-free approach
is widely used and is a good estimation of similarity measure [12].

Our first application, called short read connector counter (SRC counter), consists
in estimating the number of occurrences of a read (i.e. its abundance) in a read set.
This is a central point in high-throughput sequencing studies. Abundance is first
very commonly used as indicator value for reads trimming: i.e. reads with relatively
low abundance value are considered as amplification errors and/or sequencing errors,
and these rare reads are generally removed before thorough analyses [21, 30]. The
abundance of reads is then interpreted as a quantitative or semi-quantitative metric:
i.e. reads abundance is used as a measure of genic or taxon abundance, themselves
very commonly used for comparisons of community similarity [2, 19].

The second proposed application in this work, called short read connector linker
(SRC linker), consists in providing a list of similar reads between read sets. We define
the read set similarity problem as follows. Given a read set bank and a read set
query, provide a similarity measure between each pair of reads bi × qj, with bi a
read from the bank set and qj a read from the query set. Note that the bank and
the query sets may refer to the same data set. Computing read similarity intra-read
set or inter-read sets can be performed by a general purpose tool, such as those
computing similarities using dynamic programming, and using heuristic tools such
as BLAST [1]. However, comparing all versus all reads requires a quadratic number
of read comparisons, leading to prohibitive computation time, as this is shown in
our proposed results. There exist tools dedicated to the computation of distances
between read sets [7, 25, 26], but none of them can provide similarity between each
pair of reads bi × qj. Otherwise, some tools such as starcode [35] are optimized for
pairwise sequence comparisons with mainly the aim of clustering DNA barcodes. As
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shown in results, such tools also suffer from quadratic computation time complexity
and thus do not scale up data sets composed of numerous reads.

Availability and license Our proposed tools SRC counter and SRC linker were de-
veloped using the GATB library [11]. They may be used as stand alone tools or as
libraries. They are licensed under the GNU Affero General Public License version 3
and can be downloaded from http://github.com/GATB/short read connector. Also
licensed under the GNU Affero General Public License version 3, the quasi-dictionary
can be downloaded from http://github.com/pierrepeterlongo/quasi dictionary.

1 Methods

We first recall basic notations: a k-mer is a word of length k on an alphabet Σ. Given
a read set1 R, a k-mer is said solid in R with respect to a threshold t if its number of
occurrences in R is bigger or equal to t. Let |w| denote the length of a word w ∈ Σ∗
and |R| denote the number of elements contained in R.

1.1 Quasi-dictionary index

In the following, we present our indexing solution. Based on this solution, two appli-
cations are proposed sections 1.3 and 1.4.

The index we propose associates each solid k-mer from a read set R to a unique
value in [0, N −1], with N being the total number of solid k-mers in R. Ideally, when
querying a non indexed k-mer (i.e. a non solid k-mer or a k-mer absent from R) the
index returns no value. In our proposal, a non indexed k-mer may be associated to a
value in [0, N − 1] with a probability p > 0. This is why we refer to our index as the
quasi-dictionary, since it is a probabilistic index. However, note that querying any
indexed k-mer provides a unique and deterministic answer.

We define the quasi-dictionary as follows :
Given a static set composed of N distinct elements, a quasi-dictionary is composed

of two structures: a minimal perfect hash function MPHF (see for instance [5]) and
a table of fingerprints FingerPrints.

The MPHF for S is a function such that:

∀e ∈ S, MPHF(e) = i ∈ [0, N − 1]

∀e1, e2 ∈ S, (MPHF(e1) = MPHF(e2))⇔ (e1 = e2)

The fingerprint table for S is composed of N elements. It assigns to each element
form S an integer value in [0, 2f − 1], with f the size of the fingerprint in bits. This
table is used to verify the membership of an element e to the indexed set of elements
using the MPHF. When S represents a set of k-mers, the fingerprint table uses f ≤ 2k
since a k-mer can be coded as a word of 2k bits. The false positive rate is then

2(2k−f) − 1

22k
≈ 1

2f
.

1 Note that formally R should be denoted as a “collection” instead of a “set” as a read may appear
twice or more in R. However, to make the reading easier, we use in this manuscript the term “set”
usually employed for describing HTS outputs.
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1.2 Indexing solid k-mers using a quasi-dictionary

Algorithm 1: create quasidictionary
Data: Read set R, k ∈ N, t ∈ N, f ∈ N
Result: A quasi-dictionary QD

1 k-mer set K = get solid kmers(R, k, t) ;
2 QD.MPHF = create MPHF (K) ;
3 foreach k-mer w in K do
4 index = QD.MPHF (w);
5 QD.FingerPrints[index] = create fingerprint(w, f);

6 return QD;

Algorithm 1 presents the construction of the quasi-dictionary. The set of solid
k-mers (algorithm 1, line 1) is obtained using the DSK [28] method. The MPHF
(algorithm 1, line 2) is computed using the MPHF library2.

The fingerprint of a word w (algorithm 1, line 5) is obtained thanks to a hashing
function

create fingerprint : Σ|w| → [0, 2f − 1],

with f ≤ 2k. In practice we chose to use a xor-shift [27] for its efficiency in terms of
throughput and hash distribution.

Algorithm 2: query quasidictionary
Data: Quasi-dictionary QD, word w
Result: A unique value in [0, N − 1] (with N the number of indexed elements) or -1 if w

detected as non indexed
1 index = QD.MPHF (w);
2 if index ≥ 0 and QD.FingerPrints[index] = create fingerprint(w) then
3 return index;
4 return −1;

The querying of a quasi-dictionary with a word w is straightforward, as presented
in Algorithm 2. The index of w is retrieved using the MPHF. Then the fingerprint
stored for this index is compared to the fingerprint of w. If they differ, then w is
not indexed and the −1 value is returned. If they are equal, the value index ≥ 0 is
returned. Note that two distinct words have the same fingerprint with a probability
≈ 1

2f
. It follows that there is a probability ≈ 1

2f
that the quasi-dictionary returns

a false positive value despite the fingerprint checking, i.e. an index 6= −1 for a non
indexed word. On the other hand, the index returned for an indexed word is the
correct one. In practice we use f = 12 that limits the false positive rate to ≈ 0.02%.
Note that our implementation authorizes any value f ≤ 64.

DNA strands DNA molecules are composed of two strands, each one being the reverse
complement3 of the other. As current sequencers usually do not provide the strand
of each sequenced read, each indexed or queried k-mer should be considered in the

2 https://github.com/rizkg/BooPHF, commit number 852cda2
3 The reverse complement of a DNA sequence is the palindrome of the sequence, in which A and T

are swapped and C and G are swapped. For instance the reverse complement of ACCG is CGGT .
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Figure 1. Quasi dictionary structure composed of a MPHF and a table of fingerprints. The finger-
prints are obtained by hashing the corresponding k-mers. Thanks to the MPHF a unique index is
associated to each k-mer where the fingerprint is stored. The fingerprint is associated to the value
we want to link to the k-mer. When a k-mer is queried the fingerprint obtained is checked against
the fingerprint stored to limit false positives.

forward or in the reverse complement strand. This is why, in the proposed implemen-
tations, we index and query only the canonical representation of each k-mer, which
is the lexicographically smaller word between a k-mer and its reverse complement.

Time and memory complexities Our MPHF implementation has the following char-
acteristics. The structure can be constructed in O(N) time and uses ≈ 4 bits by
elements. We could use parameters limiting memory fingerprint to less than 3 bits
per element, but we chose parameters to greatly speed up MPHF construction and
query. The fingerprint table is constructed in O(N) time, as the create fingerprint
function runs in O(1). This table uses exactly N × f bits. Thus the overall quasi-
dictionary size, with f = 12 is ≈ 16 bits per element. Note that this value does not
take into account the size of the values associated to each indexed element.

The querying of an element is performed in constant time and does not increase
memory complexity.

1.3 Approximating the number of occurrences of a read in a read set

Algorithm 3: SRC counter: Quasi-dictionary used for counting k-mers
Data: Read set B, read set Q, k ∈ N, t ∈ N, f ∈ N
Result: For each read from Q, its k-mer similarity with set B

1 quasi-dictionary QD = create quasidictionary(B, k, t, f) ;
2 create a table count composed of N integersa;
3 foreach Solid k-mer w from B do
4 count[query quasidictionary(w)] = number of occurrences of w in B;
5 foreach read q in Q do
6 create an empty vector count q;
7 foreach k-mer w in q do
8 if query quasidictionary(w) ≥ 0 then
9 add count[query quasidictionary(w)] to count q ;

10 Output the q identifier, and (mean, median, min and max values of count q);

a with N the number of solid k-mers from B

As presented in Algorithm 3, we propose a first straightforward application using
the quasi-dictionary. This application is called SRC counter for short read connector
counter. It approximates the number of occurrences of reads in a read set.
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Two potentially equal read sets B and Q are considered. The indexation phase
works as follows. Each solid k-mer of B is indexed using a quasi-dictionary. A third-
party table named count stores the counts of indexed k-mers. Elements of this table
are accessed via the quasi-dictionary index value of indexed items (Algorithm 3 lines 4
and 9). The number of occurrences of each solid k-mer from B (line 4) is obtained
from DSK output, used during the quasi-dictionary creation (line 1). Then starts the
query phase. Once the count table is created, for each read q from set Q, the count
of all its k-mers indexed in the quasi-dictionary are recovered and stored in a vector
(lines 8 and 9). Finally, collected counts from k-mers from q are used to output an
estimation of its abundance in read set B. The abundance is approximated using the
mean number of occurrences of k-mers from q, to supplement we output the median,
the min and the max number of occurrences of k-mers from q. In rare occasions, false
positives of the method can lead to an over-estimation of the count.

This algorithm is extremely simple. In addition to the quasi-dictionary creation
time and memory complexities, it has a constant memory overhead (8 bits by element
in our implementation) and it has an additional O(

∑
Q∈Q |Q|) time complexity.

1.4 Identifying similar reads between read sets or inside a read set

Algorithm 4: SRC linker: Quasi-dictionary used for identifying read similarities
Data: Read set B, read set Q, k ∈ N, t ∈ N, f ∈ N
Result: For each read from Q, its k-mer similarity with each read from set B

1 quasi-dictionary QD = create quasidictionary(B, k, t, f) ;
2 create a table ids composed of N vectors of integersa ;
3 foreach read b in B do
4 foreach k-mer w in b do
5 index = query quasidictionary(w);
6 if index ≥ 0 then
7 add identifier of b to vector ids[index] ;

8 foreach read q in Q do
9 create a hash table associating targets (target read id) to couple(next free position,

count);
10 foreach i in [0, |q| − k] do
11 w = k-mer occurring position i in q;
12 index = query quasidictionary(w);
13 if index ≥ 0 then
14 foreach tg id in vector ids[index] do
15 if targets[tg id] is empty then
16 targets[tg id].next free position = 0
17 targets[tg id].count+ = max (k, i + k − targets[tg id].next free position)

targets[tg id].next free position = i + k
18 Output the id of q and eachb tg id associate to its count from targets table;

a with N the number of solid k-mers from B
b In practice only tg id whose count value is higher or equal to a user defined threshold are output

Our second proposal, called SRC linker for short read connector linker, compares
reads from two potentially identical read sets B and Q. For each read q from Q, a
similarity measure with reads from B is provided.

The similarity measure we propose for a couple of reads q × b is the number of
positions on q that is covered by at least a k-mer that also occur on b. Note that this
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measure is not symmetrical as one does not verify that the k-mers do not overlap on
b.

The indexation phase of SRC linker works as follows. A quasi-dictionary is created
and a third-party table ids of size N is created. Each element of this table stores for
a solid k-mer w from B a vector containing the identifiers of reads from B in which
w occurs. See lines 2 to 7 of Algorithm 4.

The query phase (lines 8 to the end of Algorithm 4) is straightforward. In practice,
for each targeted read bj in B we remind the ending position of the last shared k-mer
on q with bj denoted by next free position in the Algorithm 4. Given a new shared
k-mer, the number of positions that was not already covered by another shared k-mer
is added to the similarity measure (line 17 of Algorithm 4).

Once all k-mers of a read q are treated, the identifier of q is output and for each
read bj from B its identifier is output together with the number of shared k-mers with
q. In practice, in order to avoid quadratic output size and to focus on similar reads,
only reads sharing a number of k-mers higher or equal to a user defined threshold are
output.

In addition to the quasi-dictionary data structure creation, considering a fixed read
size, Algorithm 4 has O(N ×m) memory complexity and a O(N +

∑
Q∈Q |Q| ×m)

time complexity, with m the average number of distinct reads from B in which a k-

mer from Q occurs. In the worst case m = N , for instance with B = Q =
{
A|read|

}N
.

In practice, in our tests as well as for real sets composed of hundred of million reads,
m is limited to ≈ 2.22.

Storing read identifiers on disk Storing the read identifiers as proposed in Algo-
rithm 4 presents important drawbacks as it requires a large amount of RAM. In order
to get rid of this limitation we propose a disk version of this algorithm, in which the
table ids is stored on disk. As shown in Algorithm 5 (see Appendix), the algorithmic
solution is not straightforward as one needs to know for each indexed k-mer w its
number of occurrences in the read set B plus the number of occurrences of k-mers
6= w from B (false positives) that have the same quasi-dictionary index.

This disk based solution enables to scale up very large instances with frugal RAM
needs, at the price of a longer computation time, as show in results.

2 Results

This section presents results about the fundamental quasi-dictionary data structure
and about potential applications derived from its usage. To this end, we use a metage-
nomic Tara Oceans [18] read set ERR599284 composed of 189,207,003 reads of average
size 97 nucleotides. From this read set, we created six sub-sets by selecting first 10K,
100K, 1M, 10M, 50M and 100M reads (with K meaning thousand and M meaning
million).

Tests were performed on a linux 20-CPU nodes running at 2.60 GHz with an
overall of 252 GBytes memory.

4 http://www.ebi.ac.uk/ena/data/view/ERR599280
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2.1 SRC counter tests and performances

We first provide SRC counter results enabling to evaluate the gain of our proposed
data structure when compared to a classical hash table. Secondly we provide results
that enable to estimate the impact of false positives on results.

Indexed Dataset
(nb solid k-mers)

k-mer count
time (s)

Construc. time (s) Memory (GB) Query Time(s)

QD Hash QD QD62 Hash QD Hash
1M (64,321,167) 2 1 106 0.25 2.45 2.46 10 13

10M (621,663,812) 15 7 1091 1.80 5.45 23.58 11 17
50M (2,812,637,134) 72 77 5027 8.00 16.37 106.25 11 19
100M (5,191,190,377) 196 220 9335 14.71 44.93 202.91 13 19
Full (8,783,654,120) 486 532 24.83 75.96 15

Table 1. Wallclock time and memory used by the SRC counter algorithm for creating and for
querying the quasi-dictionary using the default fingerprint size f = 8 (denoted by “QD”) and the
C++ unordered map, denoted by “Hash”. Column “k-mer count time” indicates the time DSK spent
counting k-mers. Tests were performed using k = 31 and t = 1 (all k-mers are solid). The query
read set was always the 10M set. We additionally provide memory results using the quasi-dictionary
with a fingerprint size f = 62 (denoted by “QD62”). Construction and query time for QD62 are not
shown as they are almost identical to the QD ones. On the full data set, using a classical hash table,
the memory exceeded the maximal authorized machine limits (252 GB).

SRC counter performances compared to standard hash table index We
tested the SRC counter performances by indexing iteratively the six read subsets
plus the full ERR59928 set, each time querying reads from set 10M. We compared
our solution performances with a classical indexation scheme done using the C++
unordered map hash table. Results are presented in Table 1. These results show that
the quasi-dictionary is much faster to compute than this hash table solution, in par-
ticular because of parallelisation. Moreover, the quasi-dictionary memory footprint
is ≈ 13 times smaller on large enough instances (10 million indexed reads or more).
These results show that the hash table is not a viable solution scaling up current
read sets composed of several billions k-mers. Results also highlight the fact that the
query is fast and only slightly depends on the number of indexed elements.

Importantly, using a fingerprint large enough (here f = 62 for k-mers of length
k = 31), we can force the quasi-dictionary to avoid false positives. As expected, the
quasi-dictionary data structure size increases with the size of f but interestingly, on
this example and as shown in Table 1, the size of the quasi-dictionary with f = 62
remains in average 4 times smaller than the size of the hash-table on large problem
instances. Keeping in mind that the quasi-dictionary is faster to construct and to
query, the usage of this data structure avoiding false positives presents only advan-
tages compared to the hash table usage for indexing a static set. However, one should
recall that this is true because we are using an alphabet of size four, so any 31-mer
on the alphabet {A,C,G, T} can be assigned to a unique value in [0, 262−1] and vice
versa. With larger alphabets such as the amino-acids or the Latin ones, the usage of
a hash table is recommended if false positives are not tolerated.

Approximating false positives impact We propose an experiment to assess the
impact on result quality when using a probabilistic data structure instead of a deter-
ministic one for estimating read abundances.
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We used the read set 100M both for the indexation and for the querying, thus
providing an estimation of the abundance of each read in its own read set. We made
the indexation using k = 31, c = 2 and f = 8. Note that, with c = 2 only k-mers
seen twice or more in the set are solid and thus are indexed. In this example only
756,804,245 k-mers are solid among the 5,191,190,377 distinct k-mers present in the
read set. This means that during the query, 85.4% of queried k-mers are not indexed.
This enables to measure the impact of the quasi-dictionary false positives. We applied
the count algorithm as described in Algorithm 3, and the tuned version using a hash
table instead of a quasi-dictionary. We analyzed the count output composed of the
average number of occurrences of k-mers of each read in the 100M read set.

Because of the quasi-dictionary false positives, results obtained using this struc-
ture are an over-estimation of the real result. Thus, we computed for each read the
observed difference in the counts between results obtained using the quasi-dictionary
implementation and the hash table implementation. The max over-approximation is
26.9, and the mean observed over-approximation is 7.27 × 10−3 with a 3.59 × 10−3

standard deviation. Thus, as the average estimated abundance of each read which is
≈ 2.22, the average count over-estimation represents ≈ 0.033% of this value. Such
divergences are negligible.

2.2 Identifying similar reads

We set a benchmark of our method with comparisons to state of the art tools that
can be used in current pipelines for the read similarity identification presented in
this paper. We compared our tool with the classical method BLAST [1] (version
2.3.0), with default parameters. BLAST is able to index big data sets, and consumes
a reasonable quantity of memory, but the throughput of the tool is relatively low and
only small data sets were treated within the timeout (10h, wallclock time). We also
included two broadly used mappers in the comparison. We used Bowtie2 [22] (version
2.2.7), and BWA [23] (version 0.7.10) in any alignment mode (-a mode in Bowtie2,
-N for BWA) in order to output all alignment found instead of the best ones only.
Both tools are not well suited to index large set of short sequences nor to find all
alignments and therefore use considerably more resources than their standard usage.

We also compared SRC linker to starcode (1.0), that clusters DNA sequences by
finding all sequences pairs below a Levenshtein distance metric. One should notice
that benchmark comparisons with tools as starcode is unfair as such tool provides
much more precise distance information between pair of reads than SRC linker and
performs additional task as clustering. However, our benchmark highlights the fact
that such approaches suffer from intractable number of read comparisons, as demon-
strated by presented results.

We focused on a practical use case for which our method could be used, namely
retrieving similarities in a read set against itself. We used default SRC linker param-
eters (k = 31, f = 12, c = 2). Because of the limitations of the methods we used for
the benchmark, reported in Table 2, we could compare against all methods only up
to 1M reads. BWA performed better than the two other tools in terms of memory,
being able to scale up to 10M reads, while Bowtie2 and BLAST could only reach
1M reads comparison. On this modest size of read set, we show that we are already
ahead both in terms of memory and time. However the gap between our approach
and others increases with the amount of data to process. Dealing with the full Tara
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Time(s) Memory(GB)
Indexed
Dataset

Blast Bowtie2 BWA starcode SRC linker Blast Bowtie2 BWA starcode SRC linker

10K 4 3 6 2 1 0.7 0.29 0.04 11.36 1.01
100K 52 51 106 29 5 18.5 0.77 0.49 12.06 1.07
1M 795 10,644 3,155 1,103 45 24.5 5.54 3.4 18.18 1.28
10M 62,912 131,139 587 5.9 73.5 3.61
100M 14,748 44.37
Full 40,828 110.84

Table 2. CPU time and memory consumption for indexing and querying a data set versus itself.
We set a timeout of 10h. BLAST crashed for 10M data set, Bowtie2 reached the timeout we set
with more than 200h (CPU) for 10M reads. BWA performs best among the mappers, reaching the
timeout for 100M reads (more than 200h (CPU) on this data set). On the 100M data set, starcode
reached the timeout. Only SRC linker finished on all data sets. On the full data set, it lasted an
order of magnitude comparable to what BWA performed on only 10M.

data set reveals the specificity of our approach (Table 2) that requires low resources
in comparison to others and is able to deal with bigger data sets.

Indexation Time (s) Query Time (s) Memory
One

thread
20

threads
One

thread
20

threads
(GB)

RAM Full 18,067 1,768 17,558 992 110
Disk Full 106,766 28,471 24,873 1,736 19

Table 3. Multithreading and disk performances. The full read set was used to detail the perfor-
mances of the RAM and Disk algorithm on a large data set. We used default parameters k = 31,
f = 12, c = 2. Times are wallclock times.

Finally, we highlight that we provide a parallelised tool (10× speedup for the index
and 17× speedup for query for RAM algorithm as shown in Table 3) on the contrary
to classical methods that are partly-parallelised as only the alignment step is well
suited for parallelisation. The disk version does not fully benefit from multiple cores
since the bottleneck is disk access. The main interest of this technique is a highly
reduced memory usage at the price of an order of magnitude lower throughput, as
presented Table 3.

3 Discussions and conclusion

In this contribution, we propose a new indexation scheme based on a Minimal Perfect
Hash Function (MPHF) together with a fingerprint value associated to each indexed
element. Our proposal is a probabilistic data structure that has similar features than
Bloomier filters, with smaller memory fingerprint. This solution is resource-frugal
(we have shown experiments on sets containing more than eight billion elements
indexed in ≈ 3 hours and using less than 25GB RAM) and opens the way to new
(meta)genomic applications. As proofs of concept, we proposed two novel applications:
SRC counter and SRC linker. The first estimates the abundance of a sequence in a
read set. The second detects similarities between pair of reads inter or intra-read sets.
These applications are a start for broader uses and purposes.

Two main limitations of our proposal due to the nature of the data structure
can be pointed out. Firstly, compared to standard hash tables, our indexing data
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structure presents an important drawback: the exact set of keys to index has to be
defined during the data structure creation and it has to be static. This may be a
limitation for non fixed set of keys. Moreover, our data structure can generate false
positives during query. Even with the proposed false positive ratio limited to ≈ 10−2%
with defaults parameters, this may be incompatible with some applications. However
we can force our tools to avoid false positives by using as a fingerprint the key itself.
Interestingly, this still provides better time and memory performances than using a
standard hash table in the DNA k-mer indexing context, with k = 31, which is a
very common value for read comparisons [7]. Secondly, one should notice that our
indexation proposal saves space regarding the association between an element and
a specific array offset (if the element was indexed). However, our proposal does not
limit the space needed for storing the value associated to each indexed element. Thus,
with respect to classical hash tables, the memory gain is limited in problem instances
in which large values are associated to each key. Indeed, in this case, the memory
footprint is mainly due to the value over the indexing scheme. In order to benefit
from our proposal even in such cases we proposed an application example in which
the values are stored on disk. However, our approach is namely designed for problems
where a huge number of elements to index are at stake, along with a small quantity
of information to match with.

We could improve our technique to recognize key from the original set, using a
technique from the hashing field [20] or from the set representation field [6]. In such
framework, a set can be represented with less memory than the sum of the memory
required by the keys. We could thus hope being able to represent a non-probabilistic
dictionary without storing keys. Otherwise, we could use the hashing information to
achieve a smaller false positive rate with the same or a reduced memory usage. The
main challenge will be to keep fast query operation for such complex data structure.

The results we provided show that alignment-based approaches do not scale when
it comes to find similar reads in data sets composed of millions of sequences. The
fact that HTS data count rarely less than millions reads justifies our approach based
on k-mer similarity. Moreover our approach is more straightforward and requires less
parameters and heuristics than mapping approaches, that can sometimes turn them
into blackboxes. However, such an approach remains less precise than mapping, since
the k-mer order is not taken into account and is less sensitive because of the fixed size
of k. An important future work will be to evaluate the differences between matches
of our pseudo-alignment and matches of well-known and widely used tool as BLAST.

Our tools property of enabling the test of a read set against itself opens the door
to applications such as read clustering. Latest sequencing technologies, called Third
Generation Sequencers (TGS), provide longer reads [32, 33] (more than a thousand
bases instead of a few hundreds for HTS). With previous HTS short reads, de novo
approaches to reconstruct DNA or RNA molecules were using assembly [16, 29], based
on de Bruijn graphs. For RNA, these TGS long reads mean a change of paradigm as
assembly is no more necessary, as one read is long enough to represent one full-length
molecule. The important matter becomes to segregate families of RNA molecules
within a read set, a purpose our approach could be designed for.

Furthermore, the methods we provide have straightforward applications exam-
ples in biology, such as the building of sequences similarity networks (SSN) [3] using
SRC linker. SSN are extremely useful for biologists because, in addition to allowing
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a user-friendly visualization of the genetic diversity from huge HTS data sets, they
can be studied analytically and statistically using graph topology metrics. SSN have
recently been adapted to address an increasing number of biological questions inves-
tigating both patterns and processes: e.g. population structuring [15, 14]; genomes
heterogeneity [8]; microbial complexity and evolution [10]; microbiome adaptation [4,
34] or to explore the microbial dark matter [24]. In metagenomic microbial stud-
ies, SSN offer an alternative to classical and potentially biased methods, and thus
facilitate large-scale analyses and hypotheses generation, while notably including un-
known/dark matter sequences in the global analysis [15, 24]. Currently SSN are built
upon general purposes tools such as BLAST. They thus hardly scale up large data
sets. A future work will consist in checking the feasibility of applying SRC linker for
constructing SSN and, in case of success, to use it on large SSN problem instances
on which other classical tools cannot be applied.
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4 Appendix

Appendix contains a presentation of the SRC linker algorithm using disk for storing
values (Algorithm 5).
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Algorithm 5: SRC linker Disk: Quasi-dictionary used for identifying read sim-
ilarities
Data: Read set B, read set Q, k ∈ N, t ∈ N, f ∈ N
Result: For each read from Q, its k-mer similarity with each read from set B

1 quasi-dictionary QD = create quasidictionary(B, k, t, f) ;
2 create a table ids composed of N integersa all valued to 0;
3 foreach read b in B do
4 foreach k-mer w in b do
5 index = query quasidictionary(w);
6 if index ≥ 0 then
7 add 1 to ids[index];

8 foreach Solid k-mer w from B do
9 index = query quasidictionary(w);

10 if index ≥ 0 then
11 count = ids[index];
12 ids[index] = Temporary F ile.position;
13 write count + 1 ’0’ on Temporary F ile;

14 foreach read b in B do
15 foreach k-mer w in b do
16 index = query quasidictionary(w);
17 if index ≥ 0 then
18 position = ids[index];
19 Temporary F ile.goto(position);
20 write id of b in place of the first 0 found;

21 foreach read q in Q do
22 create a hash table targets (target read id) → couple(next free position, count);
23 foreach i in [0, |q| − k] do
24 w = k-mer occurring position i in q;
25 index = query quasidictionary(w);
26 if index ≥ 0 then
27 position = ids[index];
28 Temporary F ile.goto(position);
29 read from Temporary F ile and put in vector V all integer until a 0 is found;
30 foreach tg id in vector V do
31 if targets[tg id] is empty then
32 targets[tg id].next free position = 0
33 targets[tg id].count+ = max (k, i + k − targets[tg id].next free position)

targets[tg id].next free position = i + k
34 Output the id of q and eachb tg id associate to its count from targets table;

a with N the number of solid k-mers from B
b In practice only tg id whose count value is higher or equal to a user defined threshold are output
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