
HAL Id: hal-01386777
https://hal.inria.fr/hal-01386777

Submitted on 24 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Server-side performance evaluation of NDN
Xavier Marchal, Thibault Cholez, Olivier Festor

To cite this version:
Xavier Marchal, Thibault Cholez, Olivier Festor. Server-side performance evaluation of NDN. 3rd
ACM Conference on Information-Centric Networking (ACM-ICN’16), ACM SIGCOMM, Sep 2016,
Kyoto, Japan. pp.148 - 153, �10.1145/2984356.2984364�. �hal-01386777�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49322484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01386777
https://hal.archives-ouvertes.fr


Server-side performance evaluation of NDN

Xavier MARCHAL, Thibault CHOLEZ, Olivier FESTOR
LORIA, UMR 7503 (University of Lorraine, CNRS, INRIA)

Vandoeuvre-les-Nancy, F-54506, France
{xavier.marchal, thibault.cholez, olivier.festor}@loria.fr

ABSTRACT
NDN is a promising protocol that can help to reduce conges-
tion at Internet scale by putting content at the center of com-
munications instead of hosts, and by providing each node
with a caching capability. NDN can also natively authenti-
cate transmitted content with a mechanism similar to website
certificates that allows clients to assess the original provider.
But this security feature comes at a high cost, as it relies
heavily on asymmetric cryptography which affects server
performance when NDN Data are generated. This is partic-
ularly critical for many services dealing with real-time data
(VOIP, live streaming, etc.), but current tools are not adapted
for a realistic server-side performance evaluation of NDN
traffic generation when digital signature is used. We pro-
pose a new tool, NDNperf, to perform this evaluation and
show that creating NDN packets is a major bottleneck of ap-
plication performances. On our testbed, 14 server cores only
generate ∼400 Mbps of new NDN Data with default packet
settings. We propose and evaluate practical solutions to im-
prove the performance of server-side NDN Data generation
leading to significant gains.

1. INTRODUCTION
Nowadays the majority of the Internet traffic is about

delivering content like video streaming which is the first
source of data consumption with around 64% of the In-
ternet traffic in 2014 [2]. This ratio increases every year
with an estimation around 80% of the Internet traffic in
2019. But current Internet protocols are not optimized
for such usage. For example, when many people ask
for the same video content over a TCP connection, the
distant server responds as many times as the number of
demands. In the case of live video streaming, when a
user sends data at a rate of 3Mbps and has 1000 viewers,
the servers send 1000 times the data rate (3Gbps).

The Named Data Networking (NDN1) protocol [4][8]
was mainly designed with the intention of reducing net-
work congestion by gathering Interest for a same con-
tent at network level and forwarding only the first one,
so that the server only needs to respond once for all
users. But NDN also provides in-network caching to
store data close to users and limit the distance travelled

1NDN project: http://named-data.net/

by popular content. In NDN, Data packets must have at
least a SHA-256 hash that should be digitally signed to
link the data and its name to the provider. Thus, this
hash/signature must be verified in order to check the
packet integrity, and, if signed, to authenticate the con-
tent provider. However, by using signatures, NDN ex-
changes can become CPU intensive when Data packets
are generated. This is a critical constraint for real-time
applications (live-video, online-games, VoIP, etc.) that
generate fresh Data and cannot be signed in advance.

Most research papers are focused on NDN caching
performance evaluation but none considers the perfor-
mance of NDN Data packets generation while this is
also of prime importance for the aforementioned appli-
cations. In this paper, we give the first comprehensive
evaluation of NDN throughput at the server side while
measuring the CPU consumption under different sce-
narios thanks to NDNperf, an open source tool for NDN
performance evaluation we made.

The rest of the paper is organized as follows. Section
II presents the related work on NDN performance evalu-
ation and the available tools. Section III introduces ND-
Nperf and the testbed we use in Section IV to conduct
our experiments on server-side performance evaluation
of NDN. Section V presents and evaluates some pos-
sible improvements to reduce the signature overhead.
Finally, Section VI concludes the paper.

2. RELATED WORK
Although real performance evaluation was not at the

center of current research efforts of the NDN protocol
due to its youth, some studies show performance tests
to highlight the benefits of their own solutions.

Guimarães et al. [3] extend the experimentation done
by Van Jacobson [4] in a virtual network over the In-
ternet with their testbed named FITS. They highlight
the poor performance of CCN in point-to-point trans-
fers compared to TCP despite the latter being limited
by a small link capacity (10 Mbps). Oueslati et al. [5]
and Carofiglio et al. [1], members of the CONNECT
project, work on control flow at two levels: at the re-
ceiver level with an implementation of the AIMD algo-
rithm and at the router level with fair sharing between

1



flows for single and multi-path to avoid congestion and
give an efficient bandwidth distribution among users.

Some studies considered both software and hardware
performance evaluation of NDN packet forwarding. Yu-
an et al. [7] performed a study of the CCN forward-
ing daemon in a multi client/server environment with
throughput monitoring and profiling. They expose the
operational flow of the forwarder and highlight issues
regarding the software scalability, like too complex op-
erational flows, and propose some ideas that will help
to improve it. Won So et al. [6] work on an imple-
mentation of an NDN forwarder on Cisco routers with
integrated service modules that can take advantage of
multi-core processors. They report that their imple-
mentation can theoretically achieve high throughput
(20 Gb/s) based on the number of packets forwarded.

To our knowledge, no study investigated the impact
of NDN Data packet generation on server performances,
what we conduct in the following sections.

3. EXPERIMENTAL ENVIRONMENT
We designed NDNperf, an open source tool2 for NDN

server-side performance evaluation and sizing purposes,
in order to have an idea of the throughput a server can
achieve when it has to generate and transmit NDN Data
packets. It is very similar to iPerf and also needs a
client and a server to perform the measurements while
minimizing the number of instructions between Interest
reception and Data emission. It exists in two flavors
(Java and C++) and has the following features:

• Periodic report of performances: end-to-end
throughput, latency, processing time;

• Fresh NDN Data generation or NDN Data delivery
from caches;

• Multi-threaded (one main thread for event lookup
and N threads for NDN Data generation);

• Able to use all available signatures implemented
in the NDN library, choose the size of the key, and
the transmission size of Data packets;

• Message broker implementation (Java version only).

NDNperf features many options regarding the signing
process because we identified it as the main bottleneck
of application performances. Indeed, code profiling us-
ing Valgrind on a running NDN server showed that most
of the processing time is dedicated to signing (between
87% and 64% respectively for a Data packet with a pay-
load size of 1024 and 8192 octets) which constitutes the
main driver of performance improvement. The second
most costly operation is the wire encoding, accounting
for 6% for a payload size of 1024 octets and 30% for
8192 octets.

2http://madynes.loria.fr/software/ndnperf_cpp.zip

Figure 1: Testbed implementation

Figure 2: Throughput of new NDN Data for dif-
ferent NDNperf implementations

Our evaluation testbed is composed of two DELL
PowerEdge R730 servers. Each server features two Intel
2.4 GHz octo-core Xeon processors (E5-2630 v3) with
Hyper-Threading and Turbo enabled, 64GB of RAM
and two 400GB SAS SSD in RAID0 for the operating
system (Ubuntu 15.04 server). The servers are directly
interconnected through Intel 10Gbps Ethernet network
interfaces (Intel X540). NDNperf uses the version 0.4.0
of the NDN libraries and each server runs is own NDN
Forwarding Daemon (NFD) instance (Figure 1).

In Figure 2 is given an overview of the achievable
throughput for RSA signature (SignatureSha256With-
Rsa) by the three different implementations of NDNperf
(C++, Java, Java with message broker) with different
window sizes and a payload of 8192 octets. Due to
a higher IO latency and the fact that signing packets
seems more CPU intensive in Java, this implementa-
tion is much slower. Our message broker implementa-
tion with RabbitMQ performs better when a large win-
dow is used (+75% compared to Java) but at the cost
of another dedicated server helping for the signing pro-
cess. Considering the better performances of the C++
version, it will be used in the next experiments.

Before each test, we send a warm-up traffic to fill the
data structures of the two NFD instances. In the up-
coming experiments, we use a MTU of 1500 and an In-
terest window size of 8 packets at the client side. Indeed,
Figure 3 shows the average throughput for different
window sizes, signing configurations (DigestSha256 or
SignatureSha256WithRsa) and packet sizes for a single-
thread content-provider. According to these results, the
best window for our testbed is of 8 packets, with no real
gain past this value. We noticed similar results for other
encryption algorithms and for cached Data. When us-

2



Figure 3: Throughput of new NDN Data for dif-
ferent window sizes

Figure 4: Throughput of new NDN Data with
DigestSha256 and the associated CPU usages

ing the multi-threaded content-provider, we will multi-
ply this 8-packets window size by the number of threads
to take advantage from the available CPU cores.

4. EVALUATION

4.1 Evaluation of a single-threaded
content provider

Our first evaluation is based on a single-threaded ver-
sion of NDNperf. The achievable throughput is tested in
these four conditions: New Data generation with (1) Di-
gestSha256 or (2) SignatureSha256WithRsa, and Con-
tent present in (3) client-side NFD cache or (4) server-
side NFD cache.

In the following experiment, we use a freshness value
of 0 ms for NDN Data so that the client can never get
Data packets from any cache. Figure 4 displays the
throughput in packets per second and the percentage
of CPU usage for each of the 4 running applications
(NDNperf client, client-side NFD, server-side NFD and
NDNperf server), and this, for different payload sizes.
Packet throughput decreases with the payload size (ab-
out -10% for 4096 and 8192 octets payload size) but
this is vastly counterbalanced by the fact that the pay-
load size doubles each time, so the global data through-

Figure 5: Throughput of new Data with
Sha256WithRsa and the associated CPU usages

Figure 6: Throughput of client-side NFD cache
with the associated CPU usages

put still increases with a maximum average throughput
of 487Mbps. In the case of a simple SHA-256 hash,
a mono-threaded application is enough to saturate the
NDN Forwarding Daemon (NFD) which constitutes the
bottleneck of this experiment.

In the next experiment (Figure 5), a RSA digital sig-
nature is used. Signing packets can be very CPU in-
tensive according to the RSA key length. For this test
is applied the default key size used by NFD which is a
RSA 2048 bits key. As shown in Figure 5, the limit-
ing factor is now by far the server application that fully
uses its allocated processor core in all configurations.
The RSA signature costs too much to be handled by
only one thread and the result is that only about 21%
of the NFD forwarding capability is used. Throughput
is limited around 550 packets per second which repre-
sents up to 34Mbps of new NDN Data with the largest
payload size (8192 octets).

4.2 Evaluation of NFD
The next two Figures (6 and 7) represent the NFD

cache performance throughput. For these tests we in-
creased the Content Store capacity of the NDN forward-
ing daemon from 216 to 221 packets, to have enough
NDN Data packets to hold at least one minute per test.
For each payload size we generate Data packets with
SignatureSha256WithRsa before doing our tests, and
these packets will constitute the cache.

3



Figure 7: Throughput of server-side NFD cache
with the associated CPU usages

Figure 6 shows the throughput and CPU usage for
the client application and the client-side NFD instance
from which the NDN Data are retrieved. In compari-
son with the previous tests, the achieved throughput is
really far above and more than three times greater than
the throughput of the server sending unsigned Data (Di-
gestSha256 ) in Figure 4. With a payload of 8192 octets,
the throughput is about 1792Mbps. This difference can
be explained because the client-side NFD only needs to
look in its Content Store to retrieve the Data packets
and doesn’t have to access the PIT nor the FIB. This
also demonstrates that NDN performs well when cached
data are transmitted.

Then, in Figure 7, we retrieve the NDN Data packets
from the server-side NFD cache: the client-side NFD
doesn’t have any of the requested Data packet and for-
wards the Interests to the serve-side NFD instance which
directly answers from its Content Store filled with the
needed packets. With a maximum of 671Mbps, the
throughput is disappointing but is still above the through-
put achieved with newly generated NDN Data. Like
with DigestSha256, we can observe a slight decrease in
packet throughput with the payload size (∼ -5%), ex-
cept for a payload of 1024 octets for which the result is
surprisingly low. For larger payload sizes, the limiting
factor is clearly the client-side NFD whereas the server-
side NFD only uses around 60% of its CPU core. From
this, we conclude that the PIT and FIB lookup process
on the client-side NFD have a very high price.

4.3 Evaluation of a multi-threaded
content provider

For the next experiment, we use NDNperf as a multi-
threaded application and compare the throughput in-
crease for authenticated packets compared to the single-
thread setup of Figure 5. Figure 8 shows the throughput
regarding the number of threads used on the server. The
experiment was done with the default RSA 2048 bits
key and a payload of 8192 octets while we run up to
32 signing threads concurrently to match the number
of logical cores available on our server. In these con-
ditions, we can saturate an instance of NFD with ap-

Figure 8: Throughput of new NDN Data with
Sha256WithRsa with the associated CPU us-
ages (multi-thread server)

proximately 25 logical cores generating new NDN Data.
But using nearly all the processing resources to prepare
NDN Data packets seems inefficient.

In conclusion, NFD is the bottleneck of our testbed
configuration when NDN Data are present in caches or
generated without RSA signature. When digital signa-
ture is used, the content-provider clearly becomes the
bottleneck unless it is multi-threaded and can allocate
much computation power for signing purpose. This can
be a major burden for applications using real-time au-
thenticated NDN Data.

5. REDUCING SERVER SIGNING
OVERHEAD

5.1 Changing the signing configuration
The NDN library allows us to use two asymmetric

algorithms. Actually we can use RSA and ECDSA,
but there are also some hints for future algorithms like
HMAC and AES. With the C++ version of the NDN
libraries, we can only generate two different key sizes
for RSA (1024, 2048) and ECDSA (256, 384). Figure 9
reports the throughput for new NDN Data with these
different algorithms and key lengths combinations with
the associated CPU usage. This experiment is done
without Intel HyperThreading, so the CPU usage cor-
responds to real processor cores and not logical ones.

For RSA, reducing the key size can drastically reduce
the CPU usage of the application with only 6 threads
needed instead of 14 to saturate NFD. Of course, de-
creasing the key size also means decreasing the secu-
rity level, but this may be an acceptable trade-off for
some applications. Then for ECDSA, the throughput is
nearly the same than RSA but it provides a higher secu-
rity level. Indeed, according to the literature, ECDSA-
256 provides an equivalent security level than RSA-
3072. Moreover, ECDSA is more efficient regarding the
computation as ECDSA-256 only needs about 8 threads
to saturate NFD instead of 14 for RSA-2048. According
to these results, we can currently recommend ECDSA-
256 to authenticate NDN Data packets: it provides a

4



Figure 9: Throughput of new Data with avail-
able signatures and associated CPU core usage

Table 1: Throughput and server load under dif-
ferent scenarios

Source of NDN Data Throughput Nb of server
cores

Client-side cache 1792 Mbps 0

Server-side cache 671 Mbps 0

Server with SHA256 487 Mbps 1
Server with RSA-1024 460 Mbps 6

Server with RSA-2048 394 Mbps 14

Server with ECDSA-256 439 Mbps 8

Server with ECDSA-384 397 Mbps 14

similar throughput and a better security level for a lower
CPU cost than RSA-2048 which is still the NDN default
signature algorithm. Overall, the best results achieved
on our tested for a payload of 8192 octets are synthe-
sized in Table 1.

5.2 Improving the NDN signing function
Each time we ask for a packet signature, the NDN

library reads the file containing the private key, what is
not efficient. Moreover, the public and private keys’ file
names are a hash of the NDN name of the key-pair, and
the library needs to compute each time twice the hash
(one for each key) in order to compute the signature.
All these operations slow down the signature genera-
tion and could be easily avoided. The idea is to allow
the content-provider to store the key he wants to use
and the associated information like the SignatureType
in a dedicated data structure passed as a parameter to
the signing function. Figure 10 shows that the delay
to sign is vastly reduced (in average 250 microseconds
saved per call) with our custom function compared to
the one provided by the NDN library for both RSA and
ECDSA signatures. This optimization has a positive
effect on the throughput when the server is the bottle-
neck as illustrated in Figure 11. This test was done
with 4 signing threads, a payload of 8192 octets and

Figure 10: Processing time repartition for RSA
and ECDSA with the two signing functions

Figure 11: Throughput comparison of the two
signing functions with RSA and ECDSA

a RSA-2048 or 256-ECDSA key. In these conditions,
our signing function increases by 13% the throughput
of RSA signature and by 20% for ECDSA.

5.3 Increasing the size of NDN Data
packets

Another way to reduce the overhead is to reduce the
number of signatures needed to transmit a resource. A
simple way to do that is to increase the amount that a
Data packet can carry, but NDN packets are currently
limited to 8800 octets. If we analyze this limit regard-
ing the measured size of web contents3, the current size
can only cover around 60% of the web resources popu-
lation in a single packet. Moreover, larger elements like
videos would need fewer packets to be sent and so fewer
signatures. As shown in Figure 12, increasing the max-
imum size of NDN Data packet has a positive effect on
the throughput. Even if the number of processed pack-
ets decreases with the size, the total throughput still
increases with an average of 917Mbps with a payload
of 32786 octets. The capacity of applications to benefit
from this last improvement may depend of their traffic
pattern and delay tolerance.

3Data from httpparchive.org, march 15 2016

5



Figure 12: Throughput of new NDN Data with
Sha256WithRsa for different payload sizes

Figure 13: Throughput of new NDN Data ac-
cording to the CPU capacity for different signing
configurations

Finally, Figure 13 compares the efficiency of NDN
default signature configuration with the three practical
improvements used all together. For a given CPU ca-
pacity, the optimized configuration vastly outperforms
the throughput achieved by default. For example, with
4 CPU cores, the default NDN signature limits the
server throughput to 125Mb/s while it could generate
800Mb/s with the optimized configuration.

6. CONCLUSION
We conducted in this paper a rigorous server-side per-

formance evaluation of NDN. We developed NDNperf,
a tool measuring the maximum throughput achievable
by a real NDN application. All the tests confirm that
no more than one client thread is needed to saturate
NFD. On the server side, our findings are different. If
we exclude the specific case when no authentication
is needed (simple DigestSha256 ), applying signatures
using asymmetric cryptography when preparing NDN
Data packets needs an important CPU processing power
and a multi-threaded content-provider to achieve a de-
cent throughput. Even so, with the current NDN de-
fault signature, a dedicated server is not even sufficient
to saturate NFD and becomes the bottleneck. But our
tests also highlight that ECDSA-256 is a more efficient
way to sign NDN packets. We evaluated other possible
optimizations like an optimized signing function and a

larger packet size and showed that they highly reduce
the server load. In our future work, we will leverage
more advanced technologies like GPU computation to
speed up NDN packet processing and signing.

Acknowledgement
This work is partially funded by the French National
Research Agency (ANR), DOCTOR project, under grant
<ANR-14-CE28-0001>.

7. REFERENCES
[1] G. Carofiglio, M. Gallo, and L. Muscariello. ICP:

Design and evaluation of an Interest control
protocol for content-centric networking. In IEEE
INFOCOM Workshops, pages 304–309, 2012.

[2] Cisco. Visual Networking Index: Forecast and
Methodology, 2014-2019 White Paper, 2015.

[3] P. H. V. Guimaraes, L. H. G. Ferraz, J. V. Torres,
D. M. Mattos, P. Murillo, F. Andres, L. Andreoni,
E. Martin, I. D. Alvarenga, C. S. Rodrigues, et al.
Experimenting Content-Centric Networks in the
future internet testbed environment. In IEEE
International Conference on Communications
Workshops (ICC), pages 1383–1387. IEEE, 2013.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton,
M. F. Plass, N. H. Briggs, and R. L. Braynard.
Networking named content. In Proceedings of the
5th international conference on Emerging
networking experiments and technologies, pages
1–12. ACM, 2009.

[5] S. Oueslati, J. Roberts, and N. Sbihi. Flow-aware
traffic control for a Content-Centric Network. In
Proceedings of IEEE INFOCOM 2012, pages
2417–2425, 2012.

[6] W. So, A. Narayanan, D. Oran, and M. Stapp.
Named Data Networking on a router: forwarding
at 20gbps and beyond. In ACM SIGCOMM
Computer Communication Review, volume 43,
pages 495–496. ACM, 2013.

[7] H. Yuan, T. Song, and P. Crowley. Scalable NDN
forwarding: Concepts, issues and principles. In
Computer Communications and Networks
(ICCCN), 21st International Conference on, pages
1–9. IEEE, 2012.

[8] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson,
P. Crowley, C. Papadopoulos, L. Wang, B. Zhang,
et al. Named Data Networking. ACM SIGCOMM
Computer Communication Review, 44(3):66–73,
2014.

6


