
HAL Id: hal-01387362
https://hal.inria.fr/hal-01387362v2

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical Approximation of Optimal Schedulers for
Probabilistic Timed Automata

Pedro d’Argenio, Arnd Hartmanns, Axel Legay, Sean Sedwards

To cite this version:
Pedro d’Argenio, Arnd Hartmanns, Axel Legay, Sean Sedwards. Statistical Approximation of Optimal
Schedulers for Probabilistic Timed Automata. Integrated Formal Methods, Jun 2016, Reykjavik,
Iceland. pp.99-114. �hal-01387362v2�

https://hal.inria.fr/hal-01387362v2
https://hal.archives-ouvertes.fr

Statistical Approximation of Optimal Schedulers
for Probabilistic Timed Automata

Pedro R. D’Argenio1, Arnd Hartmanns2, Axel Legay3, and Sean Sedwards3

1 Universidad Nacional de Córdoba, Córdoba, Argentina
2 University of Twente, Enschede, The Netherlands

3 INRIA Rennes – Bretagne Atlantique, Rennes, France

Abstract. The verification of probabilistic timed automata involves
finding schedulers that optimise their nondeterministic choices with re-
spect to the probability of a property. In practice, approaches based on
model checking fail due to state-space explosion, while simulation-based
techniques like statistical model checking are not applicable due to the
nondeterminism. We present a new lightweight on-the-fly algorithm to
find near-optimal schedulers for probabilistic timed automata. We make
use of the classical region and zone abstractions from timed automata
model checking, coupled with a recently developed smart sampling tech-
nique for statistical verification of Markov decision processes. Our algo-
rithm provides estimates for both maximum and minimum probabilities.
We compare our new approach with alternative techniques, first using
tractable examples from the literature, then motivate its scalability us-
ing case studies that are intractable to numerical model checking and
challenging for existing statistical techniques.

1 Introduction

Probabilistic timed automata (PTA) [17] are a popular modelling formalism for
the analysis of real-time systems. As a generalisation of timed automata (TA) [1],
they support (discrete) nondeterministic choices as well as (continuous) non-
deterministic timing with hard bounds. As a generalisation of Markov decision
processes (MDP), they additionally allow (discrete) probabilistic choices. A PTA
model can thus combine hard real-time aspects (using fixed or nondeterministic
time bounds) with soft real-time features (using probabilistically chosen delays).
PTA also permit abstraction, introducing nondeterminism to reduce the model’s
size, and allow choices between enabled events to be specified as probabilistic
if information on the frequency of their occurrence is available, or as nonde-
terministic otherwise. Examples of verification questions that can be answered
with PTA include “what is the worst-case probability of the modelled process
meeting its deadline?”, “can it terminate with probability greater than p?”, and
“is the probability to spend more than 2 s in an unsafe state greater than zero?”

All PTA verification questions include a quantification over schedulers, i.e.
over resolutions of the nondeterministic decisions: the “worst-case probability”
is the lowest probability achievable for any scheduler; when we ask whether

something “can happen with probability greater than p”, we need to find at least
one scheduler that makes the probability greater than p. The key challenge in
PTA verification thus lies in finding optimal schedulers, i.e. those that maximise
or minimise the probability for the question of interest. If all time constraints
in a PTA rely on integer bounds, optimal schedulers can be found by analysing
an MDP abstraction of the PTA’s semantics using probabilistic model checking.
Whether using regions [17], digital clocks [16] or zones [17, 18] for the abstraction,
this approach inevitably fails for large models due to state-space explosion. While
the number of extra states needed to capture information about time can be
small when using zones, realistic PTA models use compact model descriptions
with a parallel composition operator and discrete state variables, both of which
already cause the underlying state spaces to be intractably large in practice.

For the analysis of purely stochastic systems, such as Markov chains, an al-
ternative to traditional model checking with exhaustive state-space exploration
is statistical model checking (SMC, [10, 20]): a number of simulation runs is per-
formed on the model, generating traces that can be used to statistically estimate
the probability of a given path formula with some level of confidence. By defini-
tion, however, nondeterministic decisions cannot be simulated, so SMC cannot
be applied directly to models like MDP or PTA. For the former, some SMC-like
approaches have recently been developed. They either work by iteratively opti-
mising the decisions of an explicitly-stored scheduler [4, 9], or by sampling from
the scheduler space and iteratively improving a set of candidate near-optimal
schedulers [5]. The former are heavyweight techniques because the size of the
description of the (memoryless) scheduler is significant, and in the worst case is
the size of the state space. The latter is a lightweight approach that uses O(1)
memory to represent each (history-dependent) scheduler.

Uppaal-smc [7] implements a stochastic model of timed automata that can
be used to perform SMC on PTA. By instantiating invariants as either uniform
or exponential distributions over time, it can estimate the expected probability
of a PTA property under a specific stochastic scheduler. Making use of the
same model, Uppaal Stratego [6] handles a more general model than PTA.
It combines a scheduler synthesis phase with a subsequent SMC analysis of
the model under this scheduler, but is limited by an explicit representation of
schedulers.

In this paper we develop a lightweight technique to approximate optimal
schedulers for PTA, based on the lightweight approach for MDP of [5]. While
PTA can be abstracted to MDP, allowing the approach of [5] to be applied di-
rectly, the need to explicitly simulate many small delay steps has a catastrophic
affect on performance. In addition, the region and digital clocks abstractions are
often unnecessarily fine grained, resulting in an explosion of possible schedulers
and potentially making near-optimal schedulers very rare. As simulation is in-
herently a forwards exploration technique, of the zone-based approaches only the
one of [17] would be applicable. Unfortunately, it admits unrealistically powerful
schedulers, and thus delivers upper bounds on maximum and lower bounds on
minimum probabilities. This is fundamentally incompatible with sampling sched-

ulers as in [5], which delivers lower bounds on maximum and upper bounds on
minimum probabilities. Our technique nevertheless uses zones on-the-fly to per-
form a forwards exploration, but selects a single target region after each discrete
jump. This avoids the problems of [17], while the conceptual blow-up of state
space does not affect our technique because it simulates a trace by storing only
one state in memory at a time.

We report on a prototype implementation of our new technique. We test
it with standard models from the literature that are tractable for probabilistic
model checking, in order to compare the near-optimal schedulers that we find
with the optimal schedulers computed by Prism [15]. We then show that our
technique works well for some intractably large examples. We also compare our
results with those produced by the single-scheduler approach of Uppaal-smc.

2 Preliminaries

N is { 0, 1, . . . }, the set of natural numbers. R+ is (0,∞), the set of positive
real numbers. R+

0 is [0,∞), the set of nonnegative real numbers. a.b denotes the
concatenation of two sequences a and b or of two objects interpreted as bitstrings.

Definition 1. A (discrete) probability distribution over a set Ω is a function
µ ∈ Ω → [0, 1] such that support(µ) def= {ω ∈ Ω | µ(ω) > 0 } is countable and∑

ω∈support(µ) µ(ω) = 1. Dist(Ω) is the set of all probability distributions over Ω.

We write D(s) for the Dirac distribution for s, defined by D(s)(s) = 1.

Definition 2. A uniform pseudo-random number generator (PRNG) is a an
object U that, once initialised with a seed i ∈ N (denoted U := PRNG(i)),
can be iterated (denoted U()) to produce a new value that is pseudo-uniformly
distributed in [0, 1) and pseudo-statistically independent of previous iterates. U is
deterministic if, for a given seed, the sequence of iterates is always the same.

We only consider deterministic PRNG. Determinism is standard in commonly
used PRNG [12]. We denote by U(µ) the pseudo-random selection of a value
from support(µ) according to a value sampled from U and the probabilities in
µ. In what follows, when we write “random” w.r.t. a choice made by a PRNG
we implicitly mean “pseudo-random” unless qualified otherwise.

2.1 Markov Decision Processes

Markov decision processes combine nondeterminism and probabilistic choices: to
move from one state to another, first a transition is chosen nondeterministically;
each transition then leads into a probability distribution over successor states.

Definition 3. A Markov decision process (MDP) is a 4-tuple ⟨S,A, T, sinit⟩
where S is a countable set of states, A is a countable set of transition labels,
T ∈ S → 2A×Dist(S) is the transition function with T (s) countable for all s ∈ S,
and sinit ∈ S is the initial state.

A triple ⟨s, a, µ⟩ such that ⟨a, µ⟩ ∈ T (s) is called a transition. We also write
s a−→ µ for the transition ⟨s, a, µ⟩.

2.2 Probabilistic Timed Automata

Probabilistic timed automata deal with time through clocks: variables whose
domain is R+

0 that advance synchronously with rate 1 over time. Given a set of
clocks C, the valuation 0 ∈ Val (with Val = C → R+

0) assigns zero to every clock
c ∈ C. For v ∈ Val and t ∈ R+

0 , we denote by v + t the valuation where all clock
variables have been incremented by t, and by v[X] the one where all clocks in
X ⊆ C have been reset to zero. Clock constraints are expressions of the form

CC ::= true | false | CC ∧ CC | c ∼ n | c1 − c2 ∼ n

where ∼ ∈ {>,≥, <,≤}, c, c1, c2 ∈ C and n ∈ N. The form c1 − c2 ∼ n is
called a diagonal , and a clock constraint without diagonals is diagonal-free. If
all comparison operators used in a clock constraint are in {≥,≤}, it is closed.
[[e]] for e ∈ CC is the set of valuations v ∈ Val such that e evaluated in v is true.

Definition 4. A probabilistic timed automaton (PTA for short) is a 6-tuple
⟨Loc, C, A,E, linit , Inv⟩ where Loc is a countable set of locations, C is a finite set

of clocks, A is a countable set of edge labels, E ∈ Loc → 2CC×A×Dist(2C×Loc) is the
edge function with E(l) finite for all l ∈ Loc, linit ∈ Loc is the initial location,
and Inv ∈ Loc → CC is the invariant function.

A 4-tuple ⟨l, g, a, µ⟩ such that ⟨g, a, µ⟩ ∈ E(l) is called an edge. It consists of the
guard g, the label a and the probability distribution µ over sets of clocks to reset
and target locations. We also write l g,a−−→ µ for the edge ⟨l, g, a, µ⟩. Using PTA to
directly build models of complex systems is cumbersome. Instead, higher-level
formalisms such as Prism’s [15] guarded command language are used. Aside from
a parallel composition operator, they add to PTA variables that take values
from finite domains. In a PTA with variables (VPTA), guards and invariants
can include Boolean expressions over the variables, the set of clock resets is
extended by assignments of new values to variables, and the probabilities of
target locations can be computed based on the current valuation. The semantics
of a VPTA M is a PTA whose locations are pairs ⟨l, v⟩ of a location of M and
a valuation v for the variables. VPTA can compactly describe very large PTA.

The semantics of a PTA is as follows: When in location l, time can pass as
long as the invariant Inv(l) remains satisfied. An edge e ∈ E(l) as above can be
taken if its guard is satisfied at the current point in time. When this happens, a
target ⟨X, l′⟩ is chosen according to the probability distribution µ, the clocks in
X are reset, and we move to the successor location l′.

Example 1. An example PTA is shown in Fig. 1. It has two clocks x and y. The
edge labelled a from location l0 has guard x ≤ 1 and leads into the probability
distribution { ⟨∅, l1⟩ 7→ 1

2 , ⟨{ y }, l2⟩ 7→
1
2 }. The invariant of l2 is y ≤ 0, thus no

time can pass while the system is in that location.

Definition 5. A timed probabilistic transition system (TPTS for short) is a 4-
tuple ⟨S,A, T, sinit⟩ where S is a set of states, A = R+ ⊎A′ is a set of transition
labels partitioned into delays in R+ and jump labels in A′, T ∈ S → 2A×Dist(S) is

l0
true

l1
true

l2
y≤0

l3
true

x≤1, a
1
2 ,∅

1
2 ,{y}

x≥1,

b,{x}

true,c, {x}

Fig. 1. Example PTA

l0
x=0
y=0
x=y

l1
x=0
y=0
x=y

l2
x=0
y=0
x=y

l0
x∈(0,1)

y>0
x=y

l1
x∈(0,1)

y>0
x=y

l2
x∈(0,1)

y=0
x>y

l0
x=1
y>0
x=y

l1
x=1
y>0
x=y

l2
x=1
y=0
x>y

l0
x>1
y>0
x=y

l1
x>1
y>0
x=y

l3
x=0
y=0
x=y

. . .

a a a

δ

δ

δbc c

c

δ

1
2

1
2

δ

δ

1
2

1
2

δ

δ

1
2

1
2

δ

Fig. 2. The region MDP of the example PTA

the transition function, and sinit ∈ S is the initial state. The delay-labelled tran-
sitions must lead into Dirac distributions and be time-deterministic and time-
additive.

TPTS can be seen as uncountably infinite-state, uncountably-branching Markov
decision processes. We use them to formally define the semantics of PTA:

Definition 6. The semantics of a well-formed PTA M = ⟨Loc, C, A,E, linit , Inv⟩
is the TPTS [[M]] = ⟨Loc ×Val ,R+ ⊎A, TM , ⟨linit ,0⟩⟩ where TM is the smallest
function such that the following two inference rules are satisfied:

l g,a−−→E µ v ∈ [[g]]

⟨l, v⟩ a−→TM
µv
M

(jump)
t ∈ R+ ∀ t′ ≤ t : (v + t′) ∈ [[Inv(l)]]

⟨l, v⟩ t−→TM
D(⟨l, v + t⟩)

(delay)

where µv
M (⟨l′, v′⟩) = µ(⟨X, l′⟩) if v′ = v[X] and µv

M (s) = 0 otherwise.

We refer to the transitions resulting from the respective inference rules as jumps
and delays. It is undesirable to be able to jump into a location l′ such that
Inv(l′) is immediately violated. If this is not possible in a PTA, we say that it
is well-formed. Non-well-formed PTA need to be rejected as modelling errors.

2.3 Probabilistic Timed Reachability

A behaviour of a TPTS M = ⟨S,A ⊎ R+, T, sinit⟩ is a path π ∈ Paths(M):
an infinite sequence ⟨s0, a0⟩⟨s1, a1⟩ · · · ∈ (S × A ⊎ R+)ω of states and actions
or delays. The system starts in the initial state s0 = sinit . Assuming that the
current state is si, the choice of the next transition si

ai−→ µi is nondeterministic.
Such a choice is made by a scheduler:

Definition 7. For a TPTS as above, a (memoryless deterministic) scheduler is
a function S ∈ S → A×Dist(S) s.t. S(s) ∈ T (s) for all s ∈ S.

Once the scheduler has chosen S(si) = si
ai−→ µi, the next state si+1 is selected

randomly according to µi. Using the usual cylinder set construction [17], every
schedulerS defines a probability measure PS over the set of all paths. Let δ(π) be
the sum of all transition labels in R+ on path π. Following the standard approach,

we restrict to time-divergent schedulers, i.e. we only consider schedulers S where
PS({π ∈ Paths(M) | δ(π) = ∞}) = 1.

Given a PTA M , we are interested in the verification of probabilistic timed
reachability properties, which are queries of the form “starting from the initial
state, what is the maximum/minimum probability of eventually/within time
t reaching a location l ∈ L when c holds” (quantitative form) resp. “is this
probability less/greater than or equal to p” (qualitative form) for L ⊆ Loc, c ∈
CC, and t ∈ R+

0 . The time-bounded questions can be turned into unbounded ones
by adding a new clock ct to M that is never reset, and using the clock constraint
ct ≤ t∧c in place of c. It thus suffices to consider the time-unbounded questions,
which is why we do not need history-dependent schedulers. L and c together
characterise a set F of states of [[M]]. We are thus interested in the extremal
probabilities supS PS(ΠF) (the maximum probability) and infS PS(ΠF) (the
minimum probability) where ΠF is the set of paths containing a state in F . If
we can compute them, we can also compute e.g. the probabilities of linear-time
(safety) path properties by running M in parallel with a finite state machine
observer and using its final states for L. If schedulers exist that realise the
sup (inf) above (which is always the case for MDP), we call them optimal or
maximising (minimising) schedulers.

Example 2. Two properties of interest on the PTA of Ex. 1 are (1) the maximum
probability to reach l1 with x < 1, which is 1

2 , and (2) the minimum probability
to reach a location in { l1, l2 }, which is 0 (since we can stay in l0 forever).

2.4 Digital Clocks, Regions and Zones

To compute reachability probabilities for a (finite) PTA, we cannot construct its
semantics since this is an uncountably infinite object. However, three countable
(finite) abstractions have been developed to be used for model checking:

Digital clocks. We can replace the clock variables by bounded integers and add
self-loop edges to increment them synchronously as long as the location invari-
ant is satisfied. If all clock constraints are closed and diagonal-free, this turns a
PTA into a (finite) MDP with variables, while preserving reachability probabili-
ties [16]. The number of states of the underlying digital clocks MDP is exponen-
tial in the number of clocks and the maximum constants they are compared to.
In practice, however, it is often small enough to be amenable to model checking.

Regions. The region MDP is a (finite) abstraction that preserves reachability
probabilities for any (finite) PTA [17]. Like the region graph for TA, it is the
quotient of the TPTS semantics of a PTA under the equivalence relation that
groups the states that cannot be distinguished by any clock constraint (up to the
largest value any clock is compared with in the PTA). Its states are thus pairs
⟨l, [v]C⟩ of a location l and a clock equivalence class [v]C . In this paper we write
region to refer to a clock equivalence class, i.e. a set of valuations. The region
graph construction suffers from the same blow-up as the digital clocks approach,
but region graphs are almost always too large to be useful for model checking.

l0
x≥0
y≥0
x=y

l1
x≥0
y≥0
x=y

l2
x≤1
y=0

l3
x≥0
y≥0
x=y

a

δ

δ
δ

1
2

1
2

b

c

Fig. 3. The zone MDP

l0
x=0
y=0

l1
x=0
y=0

l2
x=0
y=0

l0
x=1
y=1

l1
x=1
y=1

l2
x=1
y=0

l0
x=2
y=1

l1
x=2
y=1

l3
x=0
y=0

. . .

a a

δ

δ

δ

b

c
c

δ

1
2

1
2

δ

δ

1
2

1
2

δ

Fig. 4. The digital clocks MDP of the example PTA

Zones. A PTA’s behaviour often is the same for many regions. This observation
has already led to the development of zone-based approaches for TA. A zone
is a set of valuations characterised by a clock constraint, or equivalently, it is
a convex union of regions. Using zones we can construct significantly smaller
MDP abstractions of PTA than with individual regions. However, if the standard
TA forwards reachability procedure is used for PTA, the resulting zone MDP
admits schedulers that are too powerful, and thus the reachability probabilities
computed in this abstraction are upper/lower bounds on the PTA’s respective
maximum/minimum probabilities only [17]. To obtain compact zone graphs that
do not exhibit this problem, a backwards analysis is needed [18].

In the zone-based algorithms that we present later in this paper, we will write
z1 ⊔ z2 for the convex union of the two zones z1 and z2, i.e. the minimal zone
that contains both z1 and z2, z↑ for the delay zone { v+ t | v ∈ z∧ t ∈ R+

0 }, and
Reg(z) for the set of regions in zone z.

Example 3. For the PTA of Ex. 1, we show the region MDP in Fig. 2, the digital
clocks MDP in Fig. 4, and the zone MDP in Fig. 3. Transitions representing de-
lays are labelled δ. If we compute the probabilities of Ex. 2 on these abstractions,
we find that we obtain the correct values with regions and digital clocks. For the
former, this was not guaranteed since property (1) contains a non-closed clock
constraint. On the zone MDP, however, we obtain probability 1 for property (1).
This is because in the original PTA the delay chosen in l0 determines whether l1
can be reached from l2 after the probabilistic jump. In the zone MDP, however,
this choice is effectively moved to l2, giving schedulers extra power.

3 Lightweight Verification of MDP

We briefly recall the lightweight verification technique for MDP of [5] that un-
derpins our new approach for PTA. As a statistical model checking (SMC) tech-
nique, it is based on generating a number of simulation runs through the MDP
and then statistically estimating the (reachability) probability of interest. When
simulating a fully stochastic model, e.g. a Markov chain, the individual prob-
abilistic decisions are resolved randomly, and thus a run is sampled faithfully
from the probability measure over all runs of the system. However, in MDP,

Input: MDP ⟨S,A, T, sinit⟩, path property ϕ, scheduler id σ ∈ Z
Output: Sampled path π

1 s := sinit , π := sinit
2 while ϕ(π) = undecided do
3 Und := PRNG(H(σ.s)) // use hash of σ and s as seed for Und

4 if T (s) = ∅ then break // end of run due to deadlock
5 ⟨a, µ⟩ := ⌈Und() · |T (s)|⌉-th element of T (s) // use Und to select transition
6 s′ := Upr(µ) // use Upr to select target according to µ
7 π := π.s′, s := s′ // append the new state s to π

8 return π

Algorithm 1: Path generation for an MDP and a fixed scheduler

the nondeterministic choices need to be resolved, too. The lightweight approach
of [5] addresses this problem by also sampling individual schedulers from the
overall space of all schedulers. An adapted SMC analysis is performed for each
scheduler, and a set of candidate near-optimal schedulers is iteratively refined
by keeping those that deliver the highest (lowest) probabilities. An iterative
“smart sampling” technique [5] maximises the probability of finding an optimal
scheduler with a finite simulation budget.

To avoid storing schedulers as explicit mappings, our lightweight approach
constructs them on-the-fly using pseudo-random number generators. It uses two
independent PRNG Upr and Und to resolve the probabilistic and nondetermin-
istic choices, respectively. A single integer σ ∈ Z of bσ bits identifies and fully
specifies a scheduler. At its core, the adapted SMC analysis uses Algorithm 1 to
perform simulation runs. We assume that the MDP is given in some compact
representation, e.g. as a network of MDP with variables, where a state of the
concrete MDP can be seen as a valuation for the system variables vi with the
value of each vi being represented by a number of bits bi. A state can thus be
represented by the concatenation of the bits of the system variables. In line 3, the
scheduler identifier σ is concatenated to the bits representing the current state s
(denoted σ.s). Und is then initialised using the hash code h = H(σ.s). H maps σ.s
to a seed that is deterministically dependent on the state and the scheduler. Und

maps the seed to a value that is uniformly distributed but also deterministically
dependent on the trace and the scheduler (line 5). For the fixed σ, this use of
Und thus results in exactly the behaviour of a memoryless scheduler.

In an outer loop, the lightweight approach performs multiple SMC analyses
with different sampled values for σ to estimate the property’s probability for
different schedulers, keeping track of the highest (lowest) overall estimate, which
results from the scheduler closest to optimality that has been sampled so far.
In a typical implementation on current hardware, a hash function and PRNG
may span ∼1019 schedulers. This is usually orders of magnitude more than the
number of schedulers sampled. To avoid a cumulative error when choosing a
single probability estimate from a number of alternatives, [5] defines a Cher-
noff bound for multiple estimates. Note that this ensures that the statistical

confidence w.r.t. individual estimates is well-defined, but does not provide con-
fidence w.r.t. the optimality of the overall estimate: For maximum (minimum)
reachability probabilities, the overall estimate is a lower (upper) bound on the
actual probability.

4 Lightweight Verification of PTA

To adapt the lightweight approach described in the previous section to work for
PTA, we could use it as-is on the digital clocks or region abstraction. While this
works, we find that such a naive adaptation is inefficient: Letting time pass within
a location corresponds to a sequence of states and δ-transitions within the digital
clocks or region MDP. This makes simulation dependent on the absolute value of
delays, reducing performance in models with longer delays because many more
transitions need to be simulated. It also means that there are exponentially more
schedulers to consider and that they are more likely to pick short delays. These
phenomena have the potential to make near-optimal schedulers infeasibly rare.

Example 4. Consider using the region MDP of Fig. 2 with Algorithm 1, and let
s be the initial state. Und is used to select one of the outgoing transitions in
line 5. Given a fixed σ, i.e. scheduler, this is a deterministic selection. σ is fixed
within one SMC analysis, but uniformly randomly chosen for each analysis. The
probability of using a scheduler that chooses a given transition from s is thus 1

2 ,
so the probability to pick one that delays up to the top-rightmost state is only 1

8 .
However, for property (2) of Ex. 2, these schedulers are the only ones that lead
to the actual minimum probability of 0, while all others (which have probability
mass 7

8) lead to probability 1, a correct but useless upper bound.

The example shows that we would prefer schedulers for every delay to be equally
likely. This can be achieved with zones: every state of the zone MDP has an
outgoing jump for each edge that ever becomes enabled over time in the cor-
responding location (cf. Fig. 3). However, as we have already observed, a zone
MDP’s optimal schedulers may lead to true upper (lower) bounds on maximum
(minimum) probabilities. If we were to use the lightweight approach on the zone
MDP, we would get lower bounds on upper bounds on maximum probabilities
(and vice versa for minimum), i.e. some value whose relation to the actual prob-
ability is unknown, which is arguably of little use for formal verification.

To avoid this problem, after deciding to perform a particular jump, we also
select the concrete region from which the jump takes place, using Und again since
this is resolving nondeterminism. Doing so does conceivably blow up the state
space compared to the zone MDP, but this is irrelevant because we only ever
construct the state space local to a simulation. Note that it does not introduce
extra transitions that could lead to the problems we encountered with regions or
digital clocks. Furthermore, we distinguish between being allowed to delay into a
deadlock situation vs. having an enabled edge at the upper bound of a location’s
invariant. In effect, we thus simulate the region MDP, but exploit zones to do so
in a way suitable for the lightweight approach. Algorithm 2 shows the concrete

Input: PTA M = ⟨Loc, C, A,E, linit , Inv⟩, path property ϕ, scheduler id σ ∈ Z
Output: Simulation trace ω

1 l := linit ; z := {0 }; ω := ⟨linit , z⟩
2 while ϕ(ω) = undecided do
3 if z ∩ [[Inv(l)]] is empty then raise error // check that M is well-formed
4 J := ∅; zJ := z; z′ := z↑ ∩ [[Inv(l)]] // let time pass as the invariant allows
5 foreach ⟨g, a, µ⟩ ∈ E(l) where z′ ∩ [[g]] ̸= ∅ do
6 J := J ∪ { ⟨µ, z′ ∩ [[g]]⟩ } // store edge distr., zone where it is enabled
7 zJ := zJ ⊔ (z′ ∩ [[g]]) // zJ always eventually has an enabled edge

8 if J = ∅ then ω := ω.⟨l, z′⟩; break // can only delay into deadlock
9 if z′ ̸= zJ then J := J ∪ {D(⟨∅, l⟩), z′ \ zJ } // possible delay into deadlock

10 Und := PRNG(H(σ.l.z′)) // use hash of σ, l and z′ as seed for Und

11 ⟨µ, zµ⟩ := ⌈Und() · |J |⌉-th element of J // use Und to select one of the edges
12 ⟨X, l′⟩ := Upr(µ) // use Upr to select resets, target according to µ
13 r :=⌈Und()·|Reg(zµ)|⌉-th element of Reg(zµ) // use Und to select region in zµ
14 r′ := r[X] // reset the clocks in X
15 ω := ω.⟨l, z ⊔ r⟩.⟨l′, r′⟩, l := l′, z := r′ // append delay and jump to trace ω

16 return ω

Algorithm 2: Trace generation for a PTA and a fixed scheduler using zones

zone-based simulation that we use for PTA in place of Algorithm 1 for MDP.
Otherwise, the lightweight approach remains as described previously.

Algorithm 2 computes the set of edges that become enabled while time passes
in the current location, subject to the invariant, in lines 4 to 7. Additionally, the
maximum delay after which there is still an enabled edge is computed as zJ .
This is necessary to allow the scheduler to choose delaying into a deadlock, like
delaying beyond x = 1 in l1 in Fig. 1, when this is possible (line 9, implemented
by a self loop into a situation where line 8 will apply). Und is then initialised for
the current scheduler identifier σ together with the current location l and zone z′,
and used in line 11 to select one of the edges. Subsequently, a concrete region
needs to be chosen out of the range of delays allowed by that edge’s guard, which
is done by Und in line 13. The simulation trace is updated in lines 8 and 15, taking
care to include every relevant intermediate state since the property at hand may
refer to clocks as described in Sect. 2.3. In our implementation, the trace is never
stored explicitly, instead the evaluation of ϕ occurs on-the-fly and incrementally.

In line 13 of Algorithm 2, one region is selected from a zone, using Und to
choose a region pseudo-randomly with respect to all possible schedulers (the
choice made by an individual scheduler is of course deterministic). Since we do
not know which region is optimal, we require the choice to be uniformly random.
To maintain efficiency, we also require to select directly from the data structure
defining the zone, without enumerating all the regions. To achieve this we have
implemented two algorithms, one using rejection sampling, to guarantee uniform
coverage, the other using conditional sampling, to maximise efficiency.

Both algorithms assume that the increasing integer and fractional values of
clocks, corresponding to the division of regions, are represented by a monoton-
ically increasing set of integers. A region is then uniquely identified by a tuple
of indices. Some zones are unbounded above, so the maximum region the algo-
rithms consider is the minimum region that exceeds the maximum clock bound
in the model. All choices are thus made from a finite range of indices. Neither
algorithm considers clocks that are not constrained by bounds within the model,
such as the global clock used by the time bounded properties.

The rejection sampling algorithm works by first selecting a value “uniformly
at random” (i.e., using Und) from a cube that encloses the range of indices of the
zone. This is achieved by selecting a value uniformly at random from the range
of indices corresponding to each clock. As each individual ordinate is chosen,
the feasibility of the tentative region is checked against the constraints of the
zone. If at any point the region is judged to be infeasible, the sampling process
is restarted.

Given that the initial zone is non-empty, the rejection sampling algorithm will
eventually terminate with a valid selection, however the execution time scales
exponentially with the number of clocks. The conditional sampling algorithm
avoids this complexity by ensuring that every choice is made from a feasible
interval. Using Und, the algorithm first chooses a “random” order of clocks. This
is necessary because the order in which the clocks are sampled may bias the
choices. Then, for each clock in order, an index is chosen uniformly at random
with respect to the current range of permissible values. After each choice the
data structure representing the zone is updated to reflect the choice, restricting
the bounds of the remaining clocks and thus the range of permissible indices.

Note that while our case studies do not motivate the use of the less efficient
algorithm (i.e., we found no benefit in terms of optimality), we nevertheless
consider efficient uniform region selection a subject of ongoing research.

5 Experiments

We have created a prototype implementation of our new approach for lightweight
PTA analysis. It is intended to become part of the Plasma toolset for statis-
tical model checking [11, 3], to take advantage of Plasma’s integrated develop-
ment environment and distribution algorithms [3]. We use the name Plasma
Seta (Statistical Estimation of Timed Automata) to identify our results in the
figures. The tool is written in Java and uses its own implementation of the
standard difference-bound matrix (DBM) data structure to represent invariants,
clock constraints, zones and regions in memory. Operations on DBM are used
to advance the state of a simulation and check whether the current state satis-
fies a property. We use a textual modelling language that mirrors the annotated
graph-based structure traditionally used to describe timed automata and that fa-
cilitates simple conversion between existing graphical and textual formalisms. In
contrast to SMC for Markov chain-based models, a state of our simulations rep-
resents a set of feasible schedulings (cf. Algorithm 2), whose value with respect

to optimality is dependent on the context of whether a minimum or maximum is
sought. It is therefore not sufficient to use the standard Monte Carlo estimator
and bounded time linear temporal logic. Accordingly, we have implemented a
simple continuous time logic that expresses non-nested time-bounded properties
of the syntactic forms �≤t ϕ, ♢≤t ϕ and ϕU≤t ϕ.

We have applied our implementation to PTA models from the Prism bench-
mark suite [13], in order to evaluate its effectiveness (can it solve examples that
are intractable to related tools?), its efficiency (what is the performance com-
pared to related tools?), and its usefulness (what is the quality of the results,
i.e. the bounds on extremal probabilities that we obtain, and how do these re-
sults compare with those of related tools?). Where possible we compare with (a)
Prism’s default game-based engine [14] for traditional exhaustive PTA model
checking, with (b) Uppaal-smc as a statistical model checker that uses a single
stochastic scheduler, and with (c) the original lightweight approach (as described
in Sect. 3) on a digital clocks abstraction of the PTA.

All experiments were performed on an Intel Xeon 2.8GHz system running
Ubuntu 15.04 with 8GB of memory. We used Prism 4.3 with default settings and
Uppaal 4.1.19 with statistical parameter ϵ = 0.01. Uppaal’s estimates are thus
given ± ≤ 0.01 with probability ≥ 0.95, w.r.t. the value being estimated. For the
original lightweight technique and our new approach, we used smart sampling
with a per-iteration simulation budget of 3× 104 and parameters ϵ = δ = 0.01.
This guarantees that the computed results are ± ≤ 0.01 with probability ≥ 0.99,
w.r.t. the values being estimated.

Firewire. We first look at the firewire abst Prism PTA benchmark, which
models the IEEE 1394 FireWire root contention protocol in an abstract man-
ner. The property we check is ♢≤tdone, for deadline t ∈ {0.4, 0.8, 1.2, . . . , 10}µs
and where done signifies that both stations have completed their transmissions.
The results are shown in Fig. 5. The shaded regions denote a ±0.01 error in-
terval around the values calculated by Prism, corresponding to our specified
confidence. The circles show the probability estimates for the best maximis-
ing/minimising scheduler found by our new approach. The crosses mark the
single probability estimated by Uppaal-smc.

We see that our approach finds schedulers that are very close to the optimal
schedulers found by model checking. For deadlines of 5µs or less, the estimates
produced by our approach are within the specified statistical confidence, noting
that this confidence is not with respect to optimality. For greater deadlines our
minimising estimates are less accurate with respect to the true minima, but
are nevertheless clearly discernible from the maximising estimates. By contrast,
the estimates produced by Uppaal-smc lie arbitrarily between the maxima and
minima. Very approximately, Uppaal-smc’s results denote the performance of
the “average” scheduler found by our approach.

CSMA-2 and CSMA-3. We now turn to larger and more challenging models.
The first is the csma Prism PTA benchmark, which models the IEEE 802.3
CSMA/CD protocol for shared medium access with two senders (CSMA-2). The
second is a new model that adds a third sender (CSMA-3). We also consider a

0 2 4 6 8 10

0
0.
2

0.
4

0.
6

0.
8

1

Deadline	(µs)

Pr
ob
ab
ili
ty

PLASMA	SETA

UPPAAL-SMC

max

min

Fig. 5. Firewire results

1.6 1.8 2 2.2 2.4 2.6

0
0.
2

0.
4

0.
6

0.
8

1

Deadline	(ms)

Pr
ob
ab
ili
ty

PLASMA	SETA

UPPAAL-SMC

max

min

Fig. 6. CSMA-2 results

digital clocks version of CSMA-2. For both, we seek the maximum and minimum
probability that all senders successfully finish sending one message within tms.
The experimental results for CSMA-2 are shown in Fig. 6. Once again our ap-
proach finds schedulers that very closely approximate the optima calculated by
Prism. In this case all the results are within the specified statistical confidence.
As before, the single estimates produced by Uppaal-smc lie arbitrarily between
minimum and maximum: for deadlines less than ∼ 1.9ms they lie close to the
minimum, while above this deadline they lie close to the maximum.

CSMA-2 is tractable for Prism using values of t from 0 to 3ms and well
beyond. With CSMA-3, however, Prism runs out of memory with even the lowest
interesting deadline. Our approach remains tractable with CSMA-3 and arbitrary
deadlines, albeit with increased running time. We report the following results
for CSMA-3, although we currently have no means to independently verify their
accuracy:

deadline (ms) 2 3 4 6 8
max. prob. 0.0 0.544 0.640 0.650 0.671
min. prob. 0.0 0.192 0.246 0.249 0.244

Performance. Our results have been produced using a single execution thread,
but a significant benefit of statistical approaches is that they may be easily par-
allelised to give near-linear speedup with additional threads. For the specified
confidence and interesting deadlines, we need about the same time to generate a
result as Prism (between 400 and 500 s) for CSMA-2. With parallelisation, we ex-
pect one or two orders of magnitude improvement with our statistical approach.

To further motivate our new approach, we consider a digital clocks version
of the CSMA-2 model, which is possible because its non-closed clock constraints
can be worked around for the property we consider. We can thus use the original
lightweight technique for MDP. The use of discrete time, however, incurs the
penalty of having to explicitly consider every delay step in the time bound of
the property. Our results with CSMA-2 suggest that this penalty leads to at least
an order of magnitude increase in computational time.

We have also profiled our implementation using the CSMA-2 model. We find
that around 56% of the total runtime is spent on DBM operations excluding
region selection (as described at the end of Sect. 4), which account for a fur-
ther 10%. Around 32% is used by the simulation loop to enumerate choices
and compute synchronisations in the model. Profiling with the more challeng-
ing CSMA-3 model reveals that DBM operations continue to account for around
55% of the execution time, while the amount of time dedicated to region se-
lection is approximately doubled to 22%. Synchronising and selecting actions
accounts for a further 22%. It is clear that optimising all DBM operations, in-
cluding those for region selection, will be a profitable direction of future work to
improve performance.

6 Conclusion

We have provided the first algorithm and implementation for statistical approx-
imation of optimal schedulers for PTA. This enables statistical model checking
of PTA with proper consideration of nondeterminism. Our algorithm is built
on top of the smart sampling technique [5] using zones first, for selecting an en-
abled edge, and then regions to define the particular (abstract) moment in which
the scheduler determines the execution of a transition. This two-step technique
minimises possible bias towards selecting fast or slow schedulers. Using zones
improves performance compared to a digital clocks or region-based techniques.

Our experiments have validated our technique, reporting near-optimal es-
timates that are close to the true optima calculated via probabilistic model
checking with Prism. As a simulation-based tool, our technique can report re-
sults when probabilistic model checking runs out of memory, as shown for the
CSMA-3 example. We have also compared it with Uppaal-smc, the only other
tool that can simulate PTA. Uppaal-smc assumes that the sojourn time at a
location is either uniformly distributed, if the invariant limits it, or exponen-
tially distributed otherwise. It thus uses a single fully stochastic scheduler and
reports only a single estimated value. As we have seen in the experiments, this
value can occur at any point within the interval bounded by the actual mini-
mum and maximum probabilities. We cannot in general quantify how close our
approximations are to the true optima, however they must lie within the interval
spanned by the true optimal values or else lie outside with quantified statistical
confidence. Thus the reported values can always be used to reject the model
when the desired maximum (minimum) probability is smaller (greater) than the
estimated one.

Future work. This work opens new directions of possible research. We could con-
sider priced PTA to estimate e.g. energy consumption or financial costs. Ideas
in this direction have already been reported in [19] for non-timed models. If ex-
tended to stochastic timed automata (STA) [2], our approach could be useful in
combination with the STA model checking technique of [8], which delivers up-
per/lower bounds, while we obtain lower/upper bounds on maximum/minimum

probabilities. We would also like to reduce the sample space of schedulers to
increase the likelihood of choosing near-optimal schedulers in our algorithm.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Bohnenkamp, H., D’Argenio, P., Hermanns, H., Katoen, J.P.: MoDeST: A com-
positional modeling formalism for real-time and stochastic systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

3. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A flexible, dis-
tributable statistical model checking library. In: QEST, LNCS, vol. 8054, pp. 160–
164. Springer (2013)

4. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kret́ınský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of Markov decision processes using learn-
ing algorithms. In: ATVA. LNCS, vol. 8837, pp. 98–114. Springer (2014)

5. D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.M.: Smart sampling for
lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015)

6. David, A., Jensen, P.G., Larsen, K.G., Mikucionis, M., Taankvist, J.H.: Uppaal
stratego. In: TACAS. LNCS, vol. 9035, pp. 206–211. Springer (2015)

7. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. STTT 17(4), 397–415 (2015)

8. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. ECEASST 70 (2014)

9. Henriques, D., Martins, J.G., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical
model checking for Markov decision processes. In: Quantitative Evaluation of Sys-
tems, 2012 Ninth International Conference on. pp. 84–93. IEEE (2012)

10. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: VMCAI. LNCS, vol. 2937, pp. 73–84. Springer (2004)

11. Jégourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical
model checking – PLASMA. In: TACAS. LNCS, vol. 7214, pp. 498–503. Springer
(2012)

12. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3.
Addison-Wesley, 2nd edn. (1998)

13. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Proc.
9th International Conference on Quantitative Evaluation of SysTems (QEST’12).
pp. 203–204. IEEE CS Press (September 2012)

14. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic games for verification
of probabilistic timed automata. In: FORMATS. LNCS, vol. 5813, pp. 212–227.
Springer (2009)

15. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591. Springer (2011)

16. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. FMSD 29(1), 33–78 (2006)

17. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

18. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

19. Legay, A., Sedwards, S., Traonouez, L.: Estimating rewards & rare events in non-
deterministic systems. ECEASST 72 (2015)

20. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV. LNCS, vol. 2404, pp. 223–235. Springer (2002)

