
HAL Id: hal-01387575
https://hal.inria.fr/hal-01387575

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Task-Based Polar Decomposition on
Manycore Architectures

Dalal Sukkari, Hatem Ltaief, Mathieu Faverge, David Keyes

To cite this version:
Dalal Sukkari, Hatem Ltaief, Mathieu Faverge, David Keyes. Asynchronous Task-Based Polar De-
composition on Manycore Architectures. [Research Report] KAUST. 2016. �hal-01387575�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49321817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01387575
https://hal.archives-ouvertes.fr


 
 

Asynchronous Task-Based Polar Decomposition on Manycore
Architectures

 
 

KAUST
Repository

Item type Technical Report

Authors Sukkari, Dalal; Ltaief, Hatem; Faverge, Mathieu; Keyes,
David E.

Downloaded 25-Oct-2016 16:18:32

Item License http://creativecommons.org/licenses/by/4.0/

Link to item http://hdl.handle.net/10754/621202

http://repository.kaust.edu.sa/kaust
http://repository.kaust.edu.sa/kaust
http://creativecommons.org/licenses/by/4.0/
http://hdl.handle.net/10754/621202


Asynchronous Task-Based Polar Decomposition on
Manycore Architectures

Dalal Sukkari, Hatem Ltaief and David Keyes
Extreme Computing Research Center

King Abdullah University of Science and Technology
Thuwal, Jeddah 23955

Email: Firstname.Lastname@kaust.edu.sa

Mathieu Faverge
Bordeaux INP, CNRS, INRIA et Université de Bordeaux

Talence, France
Email: Mathieu.Faverge@inria.fr

Abstract—This paper introduces the first asynchronous, task-
based implementation of the polar decomposition on manycore
architectures. Based on a new formulation of the iterative QR
dynamically-weighted Halley algorithm (QDWH) for the calcula-
tion of the polar decomposition, the proposed implementation re-
places the original and hostile LU factorization for the condition
number estimator by the more adequate QR factorization to en-
able software portability across various architectures. Relying on
fine-grained computations, the novel task-based implementation
is also capable of taking advantage of the identity structure of the
matrix involved during the QDWH iterations, which decreases
the overall algorithmic complexity. Furthermore, the artifactual
synchronization points have been severely weakened compared
to previous implementations, unveiling look-ahead opportunities
for better hardware occupancy. The overall QDWH-based polar
decomposition can then be represented as a directed acyclic graph
(DAG), where nodes represent computational tasks and edges
define the inter-task data dependencies. The StarPU dynamic
runtime system is employed to traverse the DAG, to track
the various data dependencies and to asynchronously schedule
the computational tasks on the underlying hardware resources,
resulting in an out-of-order task scheduling. Benchmarking
experiments show significant improvements against existing state-
of-the-art high performance implementations (i.e., Intel MKL and
Elemental) for the polar decomposition on latest shared-memory
vendors’ systems (i.e., Intel Haswell/Broadwell/Knights Landing,
NVIDIA K80/P100 GPUs and IBM Power8), while maintaining
high numerical accuracy.

Keywords-Polar decomposition; Asynchronous execution; Dy-
namic runtime system; Fine-grained execution; Directed acyclic
graph; High performance computing

I. INTRODUCTION

Today’s most powerful supercomputers are composed of
fat computational nodes over-provisioned by floating-point
units [1], which may distort the balance of characteristics
systems with respect to other hardware resources (the Kiviat
diagram), such as memory per core, aggregated bandwidth, I/O
nodes, interconnect, etc. Although real scientific applications
are often memory-bound with low arithmetic intensity ker-
nels, and therefore limited by the bus bandwidth, we revisit
the polar decomposition, an important dense linear algebra
(DLA) algorithm, which can make an effective use of the
predominant floating-point units provided by the current state-
of-the-art hardware vendor chips (for instance, Intel Knights
Landing and NVIDIA Pascal P100). Based on the QR-based

dynamically weighted Halley (QDWH) iteration introduced
by Nakatsukasa et. al [2], the polar decomposition is a key
algorithm for various scientific applications, e.g., in continuum
mechanics to decompose stress tensors and to simulate the
deformation of an object, in aerospace computations [3] during
strapdown inertial navigation and other aerospace systems to
describe the rotation of one coordinate system relative to a
reference coordinate system, and in chemistry [4] to help the
understanding of properties in terms of electron pair (chemical
bond) transferability, etc. Further applications are also reported
by Higham in [5].

This paper describes the first asynchronous, task-based
implementation of the QDWH-based polar decomposition on
manycore architectures. The standard algorithm requires up
to six iterations to converge and to calculate the polar factor,
depending on the condition number of the input matrix, involv-
ing O(n3) matrix operations at each operation. Its algorithmic
complexity may, therefore, be prohibitive. Nevertheless, this
challenge can be compensated for the high level of concur-
rency exposed at each iteration [6], [7].

This paper proposes to considerably improve previous
works [2], [6], [7] from two distinct algorithmic and im-
plementation perspectives. The former consists in replacing
the hostile LU-based matrix condition number estimation
by an adequate QR-based implementation for broader code
portability across vendor architectures. The latter has twofold
aspects: (1) it permits to take advantage and exploit the
structure of the identity matrix involved at each QR-based
QDWH iteration, which significantly reduces the algorithmic
complexity, thanks to fine-grained computations associated
with a dynamic asynchronous execution, and (2) the artifactual
synchronization points are severely weakened, unveiling look-
ahead opportunities for better hardware occupancy. The overall
QDWH-based polar decomposition can then be represented
as a directed acyclic graph (DAG), where nodes represent
computational tasks and edges define the inter-task data de-
pendencies. We employ the StarPU dynamic runtime system
to unroll the DAG, to track the various data dependencies
and to asynchronously schedule the computational tasks on
the underlying hardware resources, resulting in an out-of-
order task scheduling. StarPU increases user-productivity by
establishing a separation of concerns consisting in hiding the



hardware complexity from library developers. This enables
end-users to target various hardware architectures with a
single source code. Extensive benchmarking experiments show
significant improvements against existing state-of-the-art high
performance implementations (i.e., MKL and Elemental) for
the polar decomposition on latest shared-memory systems (i.e.,
Intel Haswell/Broadwell/Knights Landing, NVIDIA K80/P100
GPUs and IBM Power8), while maintaining high numerical
accuracy for well and ill conditioned matrices.

The remainder of the paper is organized as follows. Sec-
tion II presents related work. Section III highlights our
research contributions. Section IV briefly recalls the polar
decomposition and its main computational phases. Section V
describes the fundamental design of current state-of-the-art
DLA software libraries, as implemented in LAPACK [8],
MAGMA and PLASMA [9]. The implementation details of
the high performance task-based asynchronous QDWH are
given in Section VI. Section VII provides new upper-bound
for the QDWH algorithmic complexity. Numerical accuracy,
implementations assessments and performance comparisons
with existing state-of-the-art DLA softwares are given in
Section VIII and we conclude in Section IX.

II. RELATED WORK

The polar decomposition algorithm has been well studied in
the last three decades in terms of complexity and numerical
robustness/accuracy [10]–[16]. It consists in decomposing a
dense matrix A = UpH , where Up is the orthogonal polar
factor and H is the positive semi-definite Hermitian polar
factor. Initially designed with Newton’s method based on an
explicit matrix inversion calculation, numerical instability was
reported, especially in presence of ill-conditioned matrices. An
algorithm based on Halley’s iteration was then introduced with
asymptotically cubic rate of convergence in obtaining the final
polar factor. To solve the numerical accuracy issues due to the
matrix inversion computation, an inverse-free QR-based dy-
namically weighted Halley (QDWH) has finally been proposed
by Nakatsukasa et. al [2]. However, the polar decomposition
has not been implemented in a high performance computing
system’s environment, most probably due to its excessive
algorithmic complexity, which does not reflect a practical
assessment of the method. More recently, Nakatsukasa and
Higham [17] have shown that QDWH can be used as a building
block for the dense symmetric eigensolver and singular value
decomposition [18], [19], which has brought to the fore further
research directions. Indeed, previous works from the authors
have implemented QDWH-based singular value decomposition
on hardware accelerators [6] and distributed-memory sys-
tems [7], where the calculation of the polar factor is the most-
time consuming phase. The aforementioned implementations
have somewhat demonstrated limited performance scalability
on multiple GPUs and large clusters. This is mostly due
to the low hardware resource occupancy achieved by the
inherent bulk synchronous programming model (BSP), which
both implementations rely on for parallel performance. By
the same token, it is also noteworthy to mention that the

high performance software library Elemental [20] provides a
QDWH implementation for distributed-memory systems.

Last but not least, the polar decomposition can alternatively
be computed through an SVD as follows: A = UΣV > =
UV >V ΣV > = UpV ΣV > = UpH . This strategy has shown
some performance scalability issues, due to the slow con-
vergence of the QR algorithm on the condensed bidiagonal
form [7].

III. CONTRIBUTIONS

The following contributions represent the crux of the paper:
(1) improve the standard QDWH algorithm by replacing the
LU-based condition estimator with QR, without increasing
the overall algorithmic complexity, while enabling software
portability across hardware architectures, (2) develop the first
task-based QDWH implementation based on fine-grained com-
putations, which enables to exploit the identity data structure
during the QDWH iterations, reducing up to 20% the over-
all complexity, (3) rely on a dynamic runtime system (i.e.,
StarPU) to asynchronously schedule the computational tasks
among available processing units in order to improve hardware
occupancy, (4) provide a comprehensive performance assess-
ment and comparisons on a myriad of high-end architectures.

IV. THE POLAR DECOMPOSITION

The paper focuses on the inverse-free QDWH-based itera-
tive procedure to calculate the polar decomposition [2], [17] of
a matrix A ∈ Rm×n (m ≥ n), such that A = UpH . To ensure
the paper is self-contained, we briefly recall the convergent
sequence as follows, with A the initial matrix:{

U0 = A/α, α = ‖A‖2
Uk+1 = bk

ck
Uk + 1√

ck

(
ak − bk

ck

)
Q1Q

>
2 , k ≥ 0

(1)

where Up = limk→∞(Uk), and
[
Q1

Q2

]
R =

[√
ckUk
I

]
. H can

then be found with the two steps formula:

H = U>p ∗A, H =
1

2
(H +H>) (2)

The main goal consists in calculating the optimal parameters
(ak, bk, ck) so that cubical convergence can be attained during
the QDWH iteration. The expression of the parameters
(ak, bk, ck) can be written as follows:

ak = h(lk), bk = (ak − 1)2/4, ck = ak + bk − 1,

l0 =
β

α
, lk =

lk−1(ak−1 + bk−1l
2
k−1)

1 + ck−1l2k−1
, k >= 1,

h(l) =
√

1 + d+
1

2

√
8− 4d+

8(2− l2)

l2
√

1 + d
, d =

3

√
4(1− l2)

l4
,

(3)
with β = 1/‖A−1‖2. For ill-conditioned matrices, the number
of iterations k can vary up to six. We refer to [2] for
further details on the theoretical proof. When Uk becomes



well-conditioned, it is possible to replace Equation 1 with a
Cholesky-based implementation as follows:

Uk+1 =
bk
ck
Uk +

(
ak −

bk
ck

)
(UkW

−1
k )W−>k ,

Wk = chol(Zk), Zk = I + ckU
>
k Uk.

(4)

This algorithmic switch at runtime allows to further speed
up the overall computation, thanks to a lower algorithmic
complexity, while still maintaining numerical stability. In
practice, this transition is monitored by setting a threshold
for ck. Once convergence is reached, the polar factor is
Up = Uk and the positive semi-definite Hermitian polar
factor corresponds to H = U>p A. All in all, the number of
floating-point operations depends on the number of iterations
required to converge, which is dictated by the condition
number of the original matrix problem. Typically, for ill-
conditioned matrices, QDWH will perform three QR-based
QDWH iterations (Equation 1), followed by three Cholesky-
based QDWH iterations (Equation 4), besides executing other
compute-intensive Level 3 BLAS operations, i.e., triangular
solves, applications of Householder reflectors, matrix-matrix
multiplications etc.

V. HIGH PERFORMANCE DLA SOFTWARE LIBRARIES

As discussed in Section IV, although the QDWH-based
polar decomposition is a challenging and complex algorithm,
it relies on conventional dense linear algebra operations, e.g.,
QR/Cholesky-based linear solvers, which are well-supported
by several open-source and vendor-optimized numerical li-
braries. These libraries can be differentiated into the two
following algorithmic categories.

A. Block Algorithms

Block algorithms rely on successive panel and update se-
quences to perform matrix computations. The panel phase is
memory-bound and does not benefit from thread parallelism,
while the phase of the trailing submatrix update is highly
parallel, in which computations are applied by means of mul-
tithreaded Level 3 BLAS kernel executions. These sequences
are characteristic of the fork-join paradigm, alternating se-
quential and parallel computational phases, and therefore,
suffer from performance losses due to low hardware occu-
pancy engendered by unnecessary in-between synchronization
points. In fact, this bulk synchronous programming model
corresponds to the backbone of many open-source and ven-
dors’ state-of-the-art numerical libraries such as LAPACK [8],
MAGMA [21] and ScaLAPACK [22] for shared-memory,
accelerator-based and distributed-memory systems, respec-
tively. As highlighted in the exascale software roadmap [23],
BSP models may need to be reconsidered, especially in
presence of millions of cores, which already constitute today’s
supercomputers [1].

B. Tile Algorithms

To answer this call for action and provide a solution
for the challenge brought by the manycore era, the DLA

community has initiated a decade ago a profound redesign
of matrix computation algorithms in order to benefit from
the high level of concurrency. This translated into breaking
down the dense matrix data structure into tiles following a
tile data layout as opposed to the standard column-major
format, which is the standard for block algorithms. The various
matrix operations can then be represented as a directed acyclic
graph (DAG), where nodes represent sequential computational
tasks and edges define the inter-task data dependencies. The
resulting fine-grained computations permit to weaken the
artifactual synchronization points by bringing to the fore look-
ahead opportunities, which in return, can be exploited by
dynamic runtime systems in keeping threads in a busy state
throughout the entire execution. The performance gain of tile
versus block algorithms have been thoroughly addressed in
the literature [24]–[26], in the context of PLASMA [27] and
FLAME [28] numerical software libraries, using QUARK [29]
and SuperMatrix [30] runtime systems, respectively. More
recently, in a community effort to enhance user productiv-
ity by abstracting the hardware complexity, the Chameleon
library [31] has been developed to target multiple hardware
architectures with a single source code. This is achieved by
standardizing existing dynamic runtime system APIs (e.g.,
OpenMP [32], OmpSs [33], QUARK [29], StarPU [34],
PaRSEC [35]) through a thin layer of abstraction, making
the user developer experience oblivious to the underneath
runtime system and its corresponding hardware deployment.
For instance, this oblivious software infrastructure has been
already used in the context of computational astronomy using
StarPU [36], and more recently with OmpSs [37].

The QDWH-based polar decomposition resurfaces during a
possible period of convergence, where hardware/software co-
design plays now a major role in designing future systems and
numerical libraries for exascale.

VI. HIGH PERFORMANCE IMPLEMENTATIONS

In this section, we describe the task-based implementation
of the QDWH algorithm and the novel optimizations intro-
duced to increase hardware occupancy and overall perfor-
mance, in the context of the Chameleon library [31].

A. The StarPU Runtime System

StarPU is the de facto dynamic runtime system for
Chameleon. Although Chameleon supports other runtimes
(e.g., PaRSEC [35], QUARK [29] and recently OmpSS [33]),
we decided to solely rely on the StarPU [34] runtime system
to implement this algorithm, since it is probably one of the
most mature runtime systems when it comes to supporting
various hardware architectures. StarPU is a runtime, which
deals with the execution of generic task graphs. This task graph
is given through the sequential task flow (STF) programming
model where tasks are inserted to the runtime in a sequen-
tial manner with additional hints on the data usage: read,
write, read-write. Then, the runtime automatically infers data
dependencies from those hints while unrolling the sequential
flow of task submissions, and is in charge of scheduling the



tasks while enforcing those dependencies. The PaRSEC [35]
runtime is also used in dense linear algebra libraries but relies
on a parameterized task graph (PTG) representation of the
application. This model allows for compact and problem size
independent representations of the graph to execute but is
usually less intuitive to the non familiarized user.

One of the main advantages of using the task-based imple-
mentation is to become oblivious of the targeted architectures.
This improves the user productivity, and it is even more real-
istic for runtimes as StarPU, which are able to transparently
handle single heterogeneous nodes, and eventually multiple
heterogeneous nodes in case the StarPU-MPI [38] extension
is used. To enable such portability, StarPU tasks are associated
to codelets which groups under the same name multiple
implementations of the same task: CPU, CUDA, OpenCL,
OpenMP, . . . At runtime, StarPU will automatically decide
which implementation of the task is better suited to achieve the
highest performance based on cost models. These cost models
are automatically generated by StarPU when executing the
application and kept for subsequent executions. These models
are especially important to the Heterogeneous First Time [39]
(HeFT) scheduling strategy used by StarPU, when accelerators
are involved in the computations. Another benefit from using
such programming models is the capabilities offered to the
programmer to submit simultaneously independent steps of
an application to raise the resources occupancy, and add a
single synchronization point when all steps are performed. The
MORSE_xxxx_Tile_Async interface of the Chameleon
library offers this capability to interleave multiple dense lin-
ear algebra operations when it is possible. Conversely, the
non-asynchronous interface, MORSE_xxxx_Tile, enforces
a synchronization call at the end of the function to wait for
the end of all submitted tasks.

B. Task-Based QDWH Polar Decomposition Pseudo-Code

Algorithm 1 presents the pseudo-code of the task-based
QDWH implementation on top of the Chameleon library. It
is decomposed in three main code sections. The first one from
row 1 to 6 evaluates the two-norm of the input matrix A
that is required to start the iterative process. The specificity
of this code section is the 2-norm estimator genm2 that
we introduced in the Chameleon library through an iterative
computation in which we tried to minimized the number
of synchronizations. The second section of the algorithm
computes the initial condition number l0 from row 7 to 19.
The classical way consists in computing an LU factorization
of the matrix A, and its one-norm. Then, it is possible to
compute an estimator of the condition number with those two
information (dgecon). The main challenge here resides in
the LU factorization with partial pivoting, which is difficult to
implement using task-based programming model, due to the
global synchronization points needed during the panel factor-
ization while looking for pivot candidates and the resulting row
swapping step. Some solutions have been proposed on shared-
memory systems [40] but there are no existing solutions that
are oblivious of heterogeneous architectures. We thus propose

Algorithm 1 QDWH pseudo-code on top of Chameleon
1: /* Estimate the condition number */
2: dlacpy Async( A, U ) . U = A
3: dlacpy Async( A, B ) . B = A
4: Anorm = dlange Async( A ) . ‖A‖1
5: dgenm2( A, α ) . α ≈ ‖A‖2
6: RUNTIME sequence wait()
7: /* Compute U0 and l0*/
8: dlascl Async( U, 1./α ) . U0 = A/α
9: if lu then

10: dgetrf Async( B ); . A = LU
11: l0 = dgecon( B, Anorm ) . l0 ≈ 1/(‖A−1‖1‖A‖1)
12: else
13: dgeqrf Async( B ) . A = QR
14: dtrtri Async( B ) . Compute R−1

15: Ainvnorm = dlantr Async( B ) . ≈ ‖A−1‖1
16: RUNTIME sequence wait()
17: l0 = 1./(Ainvnorm ∗ Anorm)
18: end if
19: l0 = (α/1.1) ∗ l0
20:
21: /* Compute the polar decomposition A = UpH using QDWH */
22: k = 1, Li = β × α/1.1, conv = 100
23: while (conv ≥ 3

√
5eps || |Li− 1| ≥ 5eps) do

24: L2 = Li2, dd = 3
√

(4(1− L2)/L22)
25: sqd =

√
1 + dd

26: a1 = sqd+
√

8− 4× dd+ 8(2− L2)/(L2× sqd))/2
27: a = real(a1), b = (a− 1)2/4, c = a+ b− 1
28: Li = Li(a+ b× L2)/(1 + cL2)
29: dlacpy Async( U, U1 ) . Backup Uk−1

30:
31: /* Compute Uk from Uk−1 */
32: if c > 100 then
33: C =

[
C1

C2

]
=

[√
cUk−1

I

]
34: dgeqrf Async( C ) . C = QR =

[
Q1

Q2

]
R

35: dorgqr Async( C ) . C = Q =

[
Q1

Q2

]
36: dgemm Async( Q1, Q>2 , U ) . Uk = 1√

c

(
a− b

c

)
Q1Q

>
2 + b

cUk−1

37: else
38: dlaset Async( Z, 0., 1. ) . Z = I
39: dgemm Async( U>, U , Z) . Zk = I − cU>k−1U−1k

40: dgeadd Async( U , B ) . B = U>k−1

41: dposv Async( Z, B ) . Solve Zkx = U>k−1

42: dgeadd Async( B, U ) .
Uk = b

cUk−1 +
(
a− b

c

)
(Uk−1W

−1
k−1)Wk−1

43: end if
44: dgeadd Async( U, U1 ) . Uk − Uk−1

45: dlange Async( U1, conv ) . conv = ‖Uk − Uk−1‖F
46: RUNTIME sequence wait()
47: k = k + 1
48: end while
49:
50: /* Compute H */
51: dgemm Async( Uk , A, H ) . H = U>p A
52: dlacpy Async( H, B ) . B = H
53: dgeadd Async( B, H ) . H = 1

2 (H +H>)
54: RUNTIME sequence wait()

a QR-based solution which consists in estimating the norm
of A−1 by computing the norm of R−1 with A = QR.
This solution, which turns out to be less costly, alleviates the
pivoting issue all together, uses only regular tile algorithms
and allows code portability across various architectures, thanks
to the underlying runtime system. The third section of the
algorithm, rows 21 to 48, is the main loop of the algorithm,
which iterates on Uk and converges to the polar factors. This
section of the algorithm is straightforward and follows the
mathematical description of the problem using either a QR
or a Cholesky factorization to calculate the next U . Finally,
the last section, rows 49 to 53, computes the Hermitian polar
factor H from the polar factor computed out of the main loop.



C. Code Optimizations

The Chameleon library provides two APIs to perform dense
matrix computations. The first one, MORSE_xxxx_Tile, is
a synchronous implementation of a linear algebra operation.
This means that all the tasks required for the computations are
submitted to the runtime, and then the library internally waits
for the completion of all tasks before returning the control
to the programmer. This is the first version we implemented,
in black in the algorithm 1. To highlight the benefit of using
task-based programming model (through tile algorithms) as
opposed to the fork-join paradigm, as implemented in the
LAPACK library, we have manually integrated synchroniza-
tion points within the QR/Cholesky factorization kernel calls,
at the end of each panel and update computations, to better
emphasize on the performance discrepancy between both
approaches. We refer to this reference implementation as Sync.

The second API, MORSE_xxxx_Tile_Async, ensures
that all the tasks of an algorithm are submitted to the runtime,
but their completion is not ensured when the function call
returns. Thus, it is possible to simultaneously submit tasks
of multiple operations. The runtime is in charge of keeping
the data coherency of tasks, generated from different ker-
nel calls, since these tasks may operate on the same data.
Operations that are asynchronously submitted to the runtime
are indicated in red in Algorithm 1. At some point of the
algorithm, synchronization points are however required to
guarantee the consistency of the results. This is made through
a call to RUNTIME_sequence_wait(), which waits for
the completion of all tasks. It is then possible to release
synchronization in the three steps of the algorithm to ensure
a better occupancy of the resources, especially on small to
medium test cases, as presented in Section VIII. We refer to
this implementation as Async. It is also noteworthy to mention
that it is possible to estimate offline the minimal number
of iterations performed in the main loop. In that case, the
synchronization in line 45 can be safely removed for the first
iterations and introduced only for the last iteration as a sanity
check on the value conv against the convergence threshold.

The last optimization is the possible acceleration of the QR-
based Halley iterations. This optimization consists in exploit-
ing the identity matrix structure of the C2 matrix in the QR
factorization (line 34 in Algorithm 1) and the corresponding
Q generation (line 35 in Algorithm 1). Indeed, thanks to tile
algorithms, it is possible to design a specific QR factorization
algorithm in order to factorize a dense matrix on top of an
identity matrix. This new QR factorization takes into account
the identity matrix structure so that only non-zeros tiles are
operated on during the factorization. By the same token, during
the Q generation step, only the non-zeros tiles containing the
Householder reflectors will be accessed. This optimization is
important as it reduces the number of flops as well as data
movement. We refer to this implementation as OptId.

VII. ARITHMETIC COMPLEXITY

In this Section, we present the algorithmic complexity
(flops) of the polar decomposition using two variants based

on the Halley iteration (QDWH) and the SVD. For simplicity
purposes, we consider only square dense matrices, but QDWH
works also for rectangular matrices [17].

A. The QDWH-based Polar Decomposition

The condition number estimation l0 can be calculated using
the LU factorization, which requires 2

3n
3, followed by two tri-

angular solvers LX = Id and UA−1 = X , adding 2n3 flops.
Alternatively, l0 can be calculated using the QR factorization,
A = QR which needs 4

3n
3, followed by inverting the upper

triangular matrix R with 1
3n

3. Calculating l0 using the QR
factorization needs less flops overall. Moreover, the resulting
QR factors can be reused during the first iteration of QDWH,
thanks to fine-grained computations.

As shown in Equation 1, the QDWH flops using QR-based
iteration includes the QR decomposition of 2n × n matrix

for a cost of (3 + 1
3 )n3 flops. Then, forming

[
Q1

Q2

]
explicitly,

needs (3+ 1
3 )n3 flops. The product Q1Q

>
2 requires 2n3 flops.

Therefore, the arithmetic cost of each QR-based iteration is
(8 + 2

3 )n3 flops. For the Cholesky-based iteration in Equa-
tion 4, matrix-matrix multiplication involves 2n3, the Cholesky
factorization needs 1

3n
3, and solving two linear systems re-

quires 2n3. Therefore, the arithmetic cost of Cholesky-based
iteration is (4 + 1

3 )n3. Computing the Hermitian polar factor
H = U>p A requires 2n3. Hence, the overall cost of QDWH is
(8+ 2

3 )n3×#itQR+(4+ 1
3 )n3×#itChol+2n3, where #itQR

and #itChol correspond to the number of QR-based and
Cholesky-based iterations, respectively. As discussed in [17],
the flop count of QDWH depends on l0, which involves during
the QDWH iteration. The total flop count of QDWH for
dense matrices ranges then from (10 + 2

3 )n3 (for l0 ≈ 1
with #itChol = 2) to 41n3 (for l0 � 1, with typically
#itQR = 3 and #itChol = 3). Furthermore, taking advantage
of the trailing identity matrix structure in the QR factorization
(OptId) reduces the flop count of the iteration in Equation 1.
Forming the upper triangular matrix R by applying the House-
holder reflectors with n+1 nonzero elements Πn−1

k=1HkA = R
to k vectors requires 4(n + 1)k flops, therefore forming R
needs Σn−1k=14(n − k)(n + 1) = 2n3 flops. Accumulating

the Householder reflectors to form
[
Q1

Q2

]
= Πn−1

k=1Hn−k

[
In
0

]
requires Σn−1k=14nk = 2n3, as explained in [17]. Table I
summarizes the total flop count of QDWH (including condition
number estimation and Halley iteration) (1) when using LU
to estimate l0 (original implementation), (2) when using QR
to estimate l0 and reusing the QR factors in the first iteration
of QDWH and (3) when additionally taking advantage of the
identity matrix structure in QR-based iterations (Equation 1).

B. The SVD-based Polar Decomposition

The polar decomposition can be calculated via SVD as
follows, A = UΣV >, then, Up = UV , H = V >ΣV .
Therefore, the flop count of this approach includes the cost
of an SVD decomposition, a matrix-matrix multiplication to
compute the orthogonal polar factor Up and a matrix-matrix



well ill

(1) QDWH+LU (13 + 1
3
)n3 ≤ · · · ≤ (43 + 2

3
)n3

(2) QDWH+QR (12 + 1
3
)n3 ≤ · · · ≤ (41 + 1

3
)n3

(3) QDWH+QR+OptId (12 + 1
3
)n3 ≤ · · · ≤ (33 + 1

3
)n3

TABLE I
ALGORITHMIC COMPLEXITY OF THE QDWH-BASED POLAR

DECOMPOSITION.

multiplication to calculate the Hermitian polar factor H . The
standard approach to compute the SVD of a dense matrix
is to first reduce it to bidiagonal form A = U1BV

>
1 . The

subsequent left and right singular vectors from the bidiagonal
solver are then accumulated during the back transformation
phase, i.e., U = U1U2 and V = V2V1, to calculate the
singular vectors of the original matrix A. The final estimated
flop count to calculate the SVD is 22n3, as implemented in
the divide-and-conquer DGESDD [41]. Then, we need to add
2n3 to compute Up = UV , and n3 to compute H = V >ΣV
(symmetric rank-k update operation). The final estimated cost
of the polar decomposition using SVD is, therefore, 25n3.
Compared to the QDWH-based polar decomposition (3) in
Table I, this is 30% less than in case of ill-conditioned
matrices and almost twice the flops in case of well-conditioned
matrices. In theory, it seems there is a clear advantage to use
SVD-based for the polar decomposition in presence of ill-
conditioned matrices. However, the SVD algorithm inherently
suffers from lack of parallelism, due to a very expensive panel
factorization phase and may not be as competitive as QDWH-
based approaches.

VIII. PERFORMANCE RESULTS AND ANALYSIS

This Section provides a comprehensive performance anal-
ysis of the task-based QDWH implementation in the context
of the Chameleon library with the dynamic runtime system
StarPU on various architectures.

A. Environment Settings

We have considered three different systems, which are
representative of the current manycore-based hardware trends.
The first system is composed of dual-socket 16-core Intel
Haswell Intel Xeon CPU E5-2698 v3 running at 2.30GHz
equipped with 8 NVIDIA K80s (2 GPUs per board). The
second system hosts the latest Intel commodity chip with dual-
socket 14-core Intel Broadwell Intel Xeon E5-2680 v4 running
at 2.4GHz. The third system has the latest Intel manycore
Knights Landing (KNL) 7210 chips with 64 cores. For simplic-
ity purposes, each system is named after his chip codename.
Our QDWH implementation has been compiled with Intel
compiler 16 and linked against the Chameleon library v0.9.0
with hwloc v1.11.4, StarPU v1.2.0 and Intel MKL v11.3.1. We
have mainly considered ill-conditioned randomly generated
matrices, since this represents the worse case scenario, where

QDWH performs a maximum of six iterations. In particular,
in the subsequent experiments, our QDWH implementation
switches from Equation 1 to Equation 4 if ck is smaller than
100 (see Algorithm 1), which generates QR-based iterations
for the first three followed by three Cholesky-based iterations.

B. Numerical Accuracy

We recall the polar decomposition of a given general matrix
A ∈ Rn×n: A = UpH . The norm ‖ . ‖F denotes the Frobenius
norm. To highlight the numerical robustness of the method,
we use the following two accuracy metrics:

‖I−U>p Up‖F
‖A‖F for

the orthogonality of the polar factor Up and ‖A−UpH‖F
‖A‖F for

the accuracy of the overall computed polar decomposition.
Figure 1 presents the orthogonality of Up and the accuracy
of the polar decomposition A = UpH for ill-conditioned
matrix on the KNL system (very similar numerical results on
other systems). We can distinguish two clusters, i.e., QDWH-
based and SVD-base polar decomposition, with up to two
digits difference in the orthogonality and accuracy magnitudes.
Although both mostly employ orthogonal transformations, the
SVD variant of the polar decomposition necessitates the QR
algorithm, which may show some convergence limitations with
ill-conditioned matrices, as shown later in Section VIII-F.

1e-18

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

O
rt

h
o
g
o
n
a
lit

y
 U

MKL-SVD+GEMM

Elemental-SVD+GEMM

MKL-QDWH

Elemental-QDWH

Chameleon-QDWH

(a) Orthogonality of Up.

1e-18

1e-17

1e-16

1e-15

1e-14

1e-13

1e-12

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

A
c
c
u
ra

c
y
 o

f 
U

H

MKL-SVD+GEMM

Elemental-SVD+GEMM

MKL-QDWH

Elemental-QDWH

Chameleon-QDWH

(b) Accuracy of UpH .

Fig. 1. Assessing the numerical accuracy/robustness of the task-based
QDWH.

C. Incremental Optimizations

Figure 2 highlights the performance impact of various incre-
mental optimizations on the task-based QDWH, as described
in Section VI-C. Taking advantage of the identity matrix struc-
ture (OptId) engenders up to 20% performance improvements
compared to the oblivious approach on all studied systems.



Running additionally in asynchronous mode (Async) further
reduces time to solution (up to 2.8x), especially for medium
range of matrix sizes, where processing units run out of work
and look-ahead techniques jump right in to fill the performance
gap. For asymptotic matrix sizes, although work is abundant,
the asynchronous mode still provides additional performance.
In particular, on KNL and Haswell+8x80 systems, data move-
ment engendered by NUMA and PCIe channels is expensive
and can be overlapped by computations, thanks to the Async
optimization.

 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

2x

1.4x

Sync

Sync+OptId

Async+OptId

(a) Haswell.

 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

1.8x

1.3x

Sync

Sync+OptId

Async+OptId

(b) Broadwell.

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

2.8x

1.9x

Sync

Sync+OptId

Async+OptId

(c) KNL.

 1

 10

 100

 1000

 10000

 1
02

4

 3
07

2

 5
12

0

 7
16

8

 9
21

6

 1
12

64

 1
33

12

 1
53

60

 1
74

08

 1
94

56

 2
15

04

 2
35

52

 2
56

00

 2
76

48

 2
96

96

 3
17

44

 3
37

92

 3
58

40

 3
78

88

 3
99

36

 4
19

84

 4
40

32

 4
60

80

 4
81

28

 5
01

76

 T
im

e
 (

s
)

2.8x

2.3x

Sync

Sync+OptId

Async+OptId

(d) Haswell+8xK80.

Fig. 2. Assessing the performance of various incremental optimizations.

D. Execution Traces

Figure 3 shows the execution traces when running in syn-
chronous ( Tile API) and asynchronous ( Tile Async API)
modes. We have added additional synchronization points
within the Tile kernel API, after each panel/update computa-
tion, so that we can better capture the performance gain against
coarse-grained computations engendered by block algorithms,
as described in Section V. These traces have been obtained on
the KNL system for a matrix size of 10K. Since the matrix
is ill-conditioned, the task-based QDWH performs six itera-
tions (three QR-based and three Cholesky-based). The green,
blue and yellow blocks correspond to QR, Cholesky/Level
3 BLAS and Level 1/2 BLAS, respectively. We can clearly
notice the idle time during the first three QR-based iterations
when running with a synchronous mode (Figure 3(a)). The
performance impact of synchronous execution for the next
three Cholesky-based iterations is not as severe as QR-based
iterations because the Cholesky panel factorization involves
only the diagonal block (Figure 3(b)). For the subsequent

(a) Synchronous task-based QDWH.

(b) Asynchronous task-based QDWH.

Fig. 3. Assessing synchronous Vs asynchronous execution traces of task-
based QDWH on the KNL system with a matrix size of 10K.

graphs, the performance curves of the task-based QDWH
correspond to performance when all optimizations are enabled
(i.e., Async and OptId).

E. Performance Scalability

Figure 4 demonstrates the performance scalability of
the task-based QDWH implementation. The scalability
is almost linear for the commodity CPU systems (i.e,
Haswell/Broadwell). On KNL and Haswell+8xK80, although



the overhead of moving data on these systems is higher than
the commodity CPU platforms, StarPU is able to cope with
these communication overheads and the overall scalability is
still decent.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

G
fl
o
p
/s

32-Threads

16-Threads

8-Threads

4-Threads

(a) Haswell.

 100

 200

 300

 400

 500

 600

 700

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

G
fl
o
p
/s

28-Threads

14-Threads

7-Threads

(b) Broadwell.

 0

 200

 400

 600

 800

 1000

 1200

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

G
fl
o
p
/s

64-Threads

32-Threads

16-Threads

8-Threads

4-Threads

(c) KNL.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1
02

4

 3
07

2

 5
12

0

 7
16

8

 9
21

6

 1
12

64

 1
33

12

 1
53

60

 1
74

08

 1
94

56

 2
15

04

 2
35

52

 2
56

00

 2
76

48

 2
96

96

 3
17

44

 3
37

92

 3
58

40

 3
78

88

 3
99

36

 4
19

84

 4
40

32

 4
60

80

 4
81

28

 5
01

76

G
fl
o
p
/s

16-GPU

8-GPU

4-GPU

2-GPU

1-GPU

CPU

(d) Haswell+8xK80.

Fig. 4. Assessing the task-based QDWH scalability.

F. Performance Comparisons of QDWH Variants

Figure 5 reports task-based QDWH performance against
other various existing QDWH implementations on ill (left)
and well (right) conditioned matrices, across the three sys-
tems. Missing data points correspond to runs, which did not

achieve the proper accuracy, as defined in Section VIII-B.
For well-conditioned matrices, time to solution is much more
shortened for the QDWH implementation variants, thanks
to less iterations for convergence. The SVD variants of
the polar decomposition do not seem to take advantage of
such matrices since the bidiagonal reduction and the matrix-
matrix multiplication have still to be performed in the same
manner, regardless of the matrix condition number. All in
all, the task-based QDWH achieves gains up to [6%, 8%]
on Haswell and [39%, 17%] on Broadwell, [85%, 82%] on
Haswell+8xK80, and [63%, 67%] on KNL against the best
(non task-based) implementation for [ill, well]-conditioned
matrices, respectively. Highest performance are achieved on
systems where data movement are most expensive (e.g.,
NUMA for KNL and PCIe for Haswell+8xK80) since the
asynchronous mode can mitigate the overhead of data transfers
by overlapping communications with task computations. Also,
compared to MAGMA QDWH [6], the task-based QDWH
achieves gains up to [71%, 22%] on Haswell+4xK80 for [ill,
well]-conditioned matrices, respectively.

G. Performance Comparisons Across Architectures

We have additionally considered two more recent archi-
tectures, i.e., a dual-socket 10-cores IBM Power8 (3.69GHz)
and a dual-socket 16-cores Intel Haswell equipped with four
NVIDIA Pascal P100 GPUs. Figure 6 presents the perfor-
mance of the task-based QDWH across all systems investi-
gated in the paper. The main idea is not to cross-compare the
performance delivered by each system but rather to show that
the task-based QDWH can support various architectures with
a decent sustained peak (up to 90% and up to 60% of the
sustained Chameleon DGEMM peak for CPU only systems
and for KNL/GPUs platforms, respectively).

IX. CONCLUSION AND FUTURE WORK

We have presented a comprehensive performance analysis
of a novel asynchronous task-based QDWH algorithm for
the polar decomposition of a dense matrix. Thanks to fine-
grained computations, we have reduced by 20% the overall
complexity by taking advantage of the identity structure of
the matrix during the iterations, while exposing look-ahead
opportunities to increase hardware occupancy. Furthermore,
the Chameleon library and its dynamic runtime system StarPU
abstracts the hardware complexity from end-users and is
capable of asynchronously scheduling computational tasks on
the underlying processing units. Thanks to its wide hardware
range support, we demonstrated that StarPU can port a single
sequential source code to a myriad of hardware systems.
Experimental results of the asynchronous task-based QDWH
show significant performance improvement (up to an order of
magnitude) against state-of-the-art implementations on ill and
well-conditioned matrices across various hardware technolo-
gies, which are paving the road to future petascale/exascale
systems. Future works include using the task-based QDWH as
a building block for the dense symmetric eigensolver and SVD
on shared and distributed-memory systems. We would like also



 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

MKL-QDWH

Elemental-SVD+GEMM

Elemental-QDWH

MKL-SVD+GEMM

Chameleon-QDWH

Chameleon-QDWH-8xK80

(a) Haswell / 8xK80 - ill.

 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

Elemental-SVD+GEMM

MKL-SVD+GEMM

Elemental-QDWH

MKL-QDWH

Chameleon-QDWH

Chameleon-QDWH-8xK80

(b) Haswell / 8xK80 - well.

 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

Elemental-SVD+GEMM

Elemental-QDWH

MKL-QDWH

MKL-SVD+GEMM

Chameleon-QDWH

(c) Broadwell - ill.

 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

Elemental-SVD+GEMM

MKL-SVD+GEMM

Elemental-QDWH

MKL-QDWH

Chameleon-QDWH

(d) Broadwell - well.

 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

MKL-QDWH

MKL-SVD+GEMM

Elemental-QDWH

Elemental-SVD+GEMM

Chameleon-QDWH

(e) KNL - ill.

 0.1

 1

 10

 100

 1000

 10000

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

 2
56

00

 2
66

24

 T
im

e
 (

s
)

Elemental-SVD+GEMM

MKL-SVD+GEMM

Elemental-QDWH

MKL-QDWH

Chameleon-QDWH

(f) KNL - well.

Fig. 5. Assessing task-based QDWH performance against other QDWH variant implementations on ill (left) and well (right) conditioned matrices.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1
02

4

 2
04

8

 3
07

2

 4
09

6

 5
12

0

 6
14

4

 7
16

8

 8
19

2

 9
21

6

 1
02

40

 1
12

64

 1
22

88

 1
33

12

 1
43

36

 1
53

60

 1
63

84

 1
74

08

 1
84

32

 1
94

56

 2
04

80

 2
15

04

 2
25

28

 2
35

52

 2
45

76

G
fl
o
p
/s

NVIDIA 4xP100

NVIDIA 8xK80

Intel KNL

Intel Haswell

Intel Broadwell

IBM Power8

Fig. 6. Task-based QDWH performance across various architectures.

to investigate other QDWH variants, which may require more
flops but entails an even higher level of concurrency.

ACKNOWLEDGMENT

The authors would like to thank Samuel Thibault from
Inria for his support with StarPU, Jack Poulson from Google
Inc. for his help in tuning Elemental and the vendors
Cray/IBM/Intel/NVIDIA for their hardware donations and/or
systems’ remote accesses in the context of the Cray Center

of Excellence, the Intel Parallel Computing Center and the
NVIDIA GPU Research Center awarded to the Extreme Com-
puting Research Center at KAUST.

REFERENCES

[1] “The Top500 List,” http://www.top500.org/.
[2] Y. Nakatsukasa, Z. Bai, and F. Gygi, “Optimizing Halley’s Iteration for

Computing the Matrix Polar Decomposition,” SIAM Journal on Matrix
Analysis and Applications, pp. 2700–2720, 2010.

[3] J. Meyer and I. Y. Bar-itzhack, “Practical Comparison of Iterative Matrix
Orthogonalization Algorithms,” IEEE Transactions on Aerospace and
Electronic Systems, vol. AES-13, no. 3, pp. 230–235, May 1977.

[4] J. A. Goldstein and M. Levy, “Linear algebra and quantum chemistry,”
Am. Math. Monthly, vol. 98, no. 10, pp. 710–718, Oct. 1991. [Online].
Available: http://dx.doi.org/10.2307/2324422

[5] N. J. Higham, “Computing the Polar Decompositionwith Applications,”
SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 4,
pp. 1160–1174, 1986. [Online]. Available: http://dx.doi.org/10.1137/
0907079

[6] D. Sukkari, H. Ltaief, and D. Keyes, “A High Performance QDWH-
SVD Solver Using Hardware Accelerators,” ACM Trans. Math.
Softw., vol. 43, no. 1, pp. 6:1–6:25, Aug 2016. [Online]. Available:
http://doi.acm.org/10.1145/2894747

[7] ——, “High Performance Polar Decomposition on Distributed Memory
Systems,” in Best Papers, Euro-Par 2016: Parallel Processing: 22nd
International Conference on Parallel and Distributed Computing,



Grenoble, France, August 24-26, 2016, Proceedings, P.-F. Dutot
and D. Trystram, Eds. Cham: Springer International Publishing,
2016, pp. 605–616. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-43659-3 44

[8] E. Anderson, Z. Bai, C. H. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. J. D. Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. C. Sorensen, LAPACK User’s Guide, 3rd ed. Philadelphia:
Society for Industrial and Applied Mathematics, 1999.

[9] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical Linear Algebra
on Emerging Architectures: The PLASMA and MAGMA projects,” in
Journal of Physics: Conference Series, vol. 180, 2009.

[10] W. Gander, “On Halley’s iteration method,” American Mathematical
Monthly, vol. 92, no. 2, pp. 131–134, ???? 1985.

[11] ——, “Algorithms for the polar decomposition,” SIAM J. Scientific
Computing, vol. 11, no. 6, pp. 1102–1115, 1990. [Online]. Available:
http://dx.doi.org/10.1137/0911062

[12] C. S. Kenney and A. J. Laub, “On scaling Newton’s method for polar
decomposition and the matrix sign function,” SIAM J. Matr. Anal. Appl.,
vol. 13, pp. 688–706, 1992, cited in a personal communication by Alan
Laub.

[13] N. J. Higham and P. Papadimitriou, “A parallel algorithm for computing
the polar decomposition,” Parallel Computing, vol. 20, no. 8, pp. 1161–
1173, Aug. 1994.

[14] A. Kielbasinski and K. Zietak, “Numerical behaviour of higham’s scaled
method for polar decomposition,” Numerical Algorithms, vol. 32, no. 2-
4, pp. 105–140, 2003. [Online]. Available: http://dx.doi.org/10.1023/A:
1024098014869

[15] R. Byers and H. Xu, “A new scaling for newton’s iteration for the polar
decomposition and its backward stability,” SIAM J. Matrix Analysis
Applications, vol. 30, no. 2, pp. 822–843, 2008. [Online]. Available:
http://dx.doi.org/10.1137/070699895

[16] B. Laszkiewicz and K. Zietak, “Approximation of matrices and a
family of gander methods for polar decomposition,” BIT Numerical
Mathematics, vol. 46, no. 2, pp. 345–366, 2006. [Online]. Available:
http://dx.doi.org/10.1007/s10543-006-0053-4

[17] Y. Nakatsukasa and N. J. Higham, “Stable and Efficient Spectral
Divide and Conquer Algorithms for the Symmetric Eigenvalue
Decomposition and the SVD,” SIAM Journal on Scientific Computing,
vol. 35, no. 3, pp. A1325–A1349, 2013. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/120876605

[18] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., ser. John
Hopkins Studies in the Mathematical Sciences. Baltimore, Maryland:
Johns Hopkins University Press, 1996.

[19] L. N. Trefethen and D. Bau, Numerical Linear Algebra. Philadelphia,
PA: SIAM, 1997. [Online]. Available: http://www.siam.org/books/OT50/
Index.htm

[20] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM Trans. Math. Softw, vol. 39, no. 2, p. 13,
2013. [Online]. Available: http://doi.acm.org/10.1145/2427023.2427030

[21] MAGMA, “Matrix Algebra on GPU and Multicore Architectures. In-
novative Computing Laboratory, University of Tennessee. Available at
http://icl.cs.utk.edu/magma/,” 2009.

[22] L. S. Blackford, J. Choi, A. Cleary, E. F. D’Azevedo, J. W. Demmel,
I. S. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. W. Walker, and R. C. Whaley, ScaLAPACK Users’ Guide.
Philadelphia: Society for Industrial and Applied Mathematics, 1997.

[23] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre,
D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello,
B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,
A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway,
D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S.
Mueller, W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato,
E. Seidel, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,
B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Valero, A. Van Der Steen, J. Vetter, P. Williams, R. Wisniewski,
and K. Yelick, “The International Exascale Software Project Roadmap,”
Int. J. High Perform. Comput. Appl., vol. 25, no. 1, pp. 3–60, Feb.
2011. [Online]. Available: http://dx.doi.org/10.1177/1094342010391989

[24] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures,” Parellel

Comput. Syst. Appl., vol. 35, pp. 38–53, 2009, http://dx.doi.org/10.1016/
j.parco.2008.10.002 DOI: 10.1016/j.parco.2008.10.002.

[25] G. Quintana-Ortı́, E. S. Quintana-Ortı́, R. A. V. D. Geijn, F. G. V.
Zee, and E. Chan, “Programming matrix algorithms-by-blocks for
thread-level parallelism,” ACM Trans. Math. Softw., vol. 36, pp.
14:1–14:26, July 2009. [Online]. Available: http://doi.acm.org/10.1145/
1527286.1527288

[26] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarrra, “Comparative study
of one-sided factorizations with multiple software packages on multi-
core hardware,” in SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. New York,
NY, USA: ACM, 2009, pp. 1–12.

[27] PLASMA Users’ Guide, Parallel Linear Algebra Software for Multicore
Architectures, Version 2.3, University of Tennessee, November 2010.

[28] “The FLAME project,” April 2010, http://z.cs.utexas.edu/wiki/flame.
wiki/FrontPage.

[29] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’ Guide:
QUeueing And Runtime for Kernels,” University of Tennessee Innovative
Computing Laboratory Technical Report ICL-UT-11-02, 2011.

[30] E. Chan, E. S. Quintana-Ortı́, G. Quintana-Ortı́, and R. van de Geijn,
“Supermatrix out-of-order scheduling of matrix operations for smp and
multi-core architectures,” in SPAA ’07: Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and architectures. New
York, NY, USA: ACM, 2007, pp. 116–125.

[31] “The Chameleon project,” January 2016, https://project.inria.fr/
chameleon/.

[32] A. OpenMP, “Openmp application program interface version 4.0,” 2013.
[33] A. Duran, R. Ferrer, E. Ayguadé, R. M. Badia, and J. Labarta,

“A Proposal to Extend the OpenMP Tasking Model with Dependent
Tasks,” International Journal of Parallel Programming, vol. 37,
no. 3, pp. 292–305, 2009. [Online]. Available: http://dx.doi.org/10.
1007/s10766-009-0101-1

[34] C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency Computat. Pract. Exper., vol. 23, pp. 187–
198, 2011, (to appear).

[35] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier,
and J. Dongarra, “DAGuE: A generic distributed DAG engine
for High Performance Computing,” Parallel Computing, vol. 38,
no. 1–2, pp. 37–51, 2012, extensions for Next-Generation Parallel
Programming Models. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167819111001347

[36] A. Charara, H. Ltaief, D. Gratadour, D. E. Keyes, A. Sevin,
A. Abdelfattah, E. Gendron, C. Morel, and F. Vidal, “Pipelining
Computational Stages of the Tomographic Reconstructor for Multi-
Object Adaptive Optics on a Multi-GPU System,” in SC’14. IEEE,
2014, pp. 262–273. [Online]. Available: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7012142

[37] H. Ltaief, D. Gratadour, A. Charara, and E. Gendron, “Adaptive
Optics Simulation for the World’s Largest Telescope on Multicore
Architectures with Multiple GPUs,” in Proceedings of the Platform
for Advanced Scientific Computing Conference, ser. PASC ’16. New
York, NY, USA: ACM, 2016, pp. 9:1–9:12. [Online]. Available:
http://doi.acm.org/10.1145/2929908.2929920

[38] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost,
M. Sergent, and S. Thibault, “Achieving High Performance on
Supercomputers with a Sequential Task-based Programming Model,”
Inria Bordeaux Sud-Ouest ; Bordeaux INP ; CNRS ; Université de
Bordeaux ; CEA, Research Report RR-8927, Jun. 2016. [Online].
Available: https://hal.inria.fr/hal-01332774

[39] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
transactions on parallel and distributed systems, vol. 13, no. 3, pp. 260–
274, 2002.

[40] J. Dongarra, M. Faverge, H. Ltaief, and P. Luszczek, “Exploiting fine-
grain parallelism in recursive lu factorization.” in PARCO, 2011, pp.
429–436.

[41] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems:
Numerical Aspects of Linear Inversion, ser. Mathematical Modeling
and Computation. Philadelphia: Society for Industrial and Applied
Mathematics, 1998. [Online]. Available: http://books.google.com.sa/
books?id=A5XWG\ PFFdcC


